• Ei tuloksia

arctan x dx = Z

N/A
N/A
Info
Lataa
Protected

Academic year: 2022

Jaa "arctan x dx = Z"

Copied!
2
0
0

Kokoteksti

(1)

"!#$%$'&(()*+$-,-/.01/$- " 2 2)3,%($'14.

57686:9 14;8(< 9=>5@? 5 AB =

,-1 6:6 <:&41 @CEDGFED=4H4HJI

(,%,-$9 &(($-.<:K*L 9NM 1O.0 ",%< 6 9 <8.0 2 PPD

Q 2RJS M STAP;QDJUWVPXZY0[P\^]P_G`(aPabV7]"cd_eXdXfab_GVg

Z

arctan x dx = Z

|{z} 1

=f 0

arctan x

| {z }

=g

dx = x

|{z}

=f

arctan x

| {z }

=g

− Z

|{z} x

=f

1 1 + x 2

| {z }

=g 0

dx

= x arctan x − 1 2

Z 2x

1 + x 2 dx = x arctan x − 1

2 ln | 1 + x 2

| {z }

≥1>0

| + C

= x arctan x − 1

2 ln(1 + x 2 ) + C, C ∈

h

.

i%j(klnmo

UWV"X^Y[p\Z]p_GV"X^_GqNapr2_e]

m(s(s

X^X s(s

l/ktmovuwo/x ab\ZryapcdX

s

cK`Y\^_Gqp]P_G`(Y0V

i-l(kz{movu

g

d dx

x arctan x − 1

2 ln(1 + x 2 ) + C

= (Dx) arctan x + xD arctan x

− 1 2

D(1 + x 2 )

1 + x 2 = arctan x + x 1 1 + x 2 − 1

2 2x

1 + x 2 = arctan x

ryab_Gr"_G|G|Ga

x ∈

h

i-l(kG}7movuwo8~

aPay€_GVLqyp|e_

k

€]p|G|‚aƒ_eV"XZY0[p\fapap|e_e„

s

V(r"XZ_e]ƒcZapayXZ_e_GV

k

]PV…cd_G_Gc

I =

h

o

i-l/k†movu

2RJS M S = Dˆ‡c

o |s

YV(V(]pX oK‰

]p\Z\ZaPc€„

s

V/rPXZ_e]

l(kŠ‹moGk

ala R b a f

l(kŠ‹mEoekŒ

|G

R b a f

l(kŽmEo

daƒ_GVPXZY0[P\^]P_X s q

s(s

`YVL‘Pb\Z_X^X^Y0|GY0qyY’PXZ]ƒXZap_‘{_GrN+’

Œ

qypV/c^\Z_G_X^XZNqyY0’"X^]

i

Yc^_G‘

o

f

]pV

dayXZr

s

qNanrP]prp]nqyb|G_e|G|‚

m

pyXZY

m

_‚cdX^Y0_eXZn‘

Œp“

XZY0V

uQl/kv”mo

2RJS M S = ;D‡ˆ]Pc^rNa

0 ≤ sin x ≤ 1

rNap_er2_G|e|‚a

x ∈ [0, π]

k V(_e_GV i-l/kŠnmovu

sin x − sin 2 x

2 ≤ ln(1 + sin x) ≤ sin x

ryab_Gr2_e|G|‚a

x ∈ [0, π].

UWV"X^Y0[P\ZaPab|G_eV‘n]PV(]bXZ]pV(_‚c s(s

`YV

i

|Ga

s

cdY j(ojP†pu

V(]bdap|e|‚aXZp|e|

“

_GV

id}pkG}•mou

Z π 0

sin x − sin 2 x 2

dx ≤

Z π 0

ln(1 + sin x) dx ≤ Z π

0

sin x dx.

– _erPYa m(s

]P|e_]PV

i%l(kz{mou

π 0

− cos x = − cos π − (− cos 0) = − cos π + cos 0 = 1 + 1 = 2.

—˜apc^Y0V m(s

]P|e_]PV

i%l(kŽ™mou

Z π 0

sin x dx − 1 2

Z π 0

sin 2 x dx = 2 − 1 2

π 0

1

2 (x − sin x cos x) = 2 − π 4 .

š _eX^Y0V

2 − π 4 ≤

Z π 0

ln(1 + sin x) dx ≤ 2.

2RJS

M

S>›ED i‡ s

qya

}pkl”movuQ~

apc^rpY0XZaPabVry

Œ

\ZpV

y = ln x

dac s ]p\fabV

y = 1

|eY_er2rya s c m _‚c€XZYpg

ln x = 1 ⇔ x = e

i%l(kŠmEouœo š _eX^Y0Vr s q2_G]pVab|‚a]P|erP]2]pV

A = Z e

0

|1 − ln x| dx

| {z }

1,8 p.

= lim

a→0+

Z e a

|1 − ln x| dx

| {z }

0,5 p.

= lim

a→0+

Z e a

(1 − ln x) dx

| {z }

0,4 p.

.

(2)

Z e a

(1 − ln x) dx = Z e

a

1 dx − Z e

a

1 · ln x dx = e − a − e

a

x ln x + Z e

a

x · 1 x dx

= e − a − (e ln e − a ln a) + e − a = e − 2a + a ln a,

cd_G|G|G

ln e = 1

o š _XZY0V i-l/kz{movu

A = lim

a→0+ (e − 2a + a ln a) = e − 2 · 0 + 0 = e ≈ 2, 72.

−3

−2

−1 0 1 2

0 0.5 1 1.5 2 2.5 3

y

x

y=ln x y=1

‡ s qya

}

g‡

Œ

\fbVV

f (x) = ln x

danc

s

]p\Z_eYV

x = 0

da

y = 1

\faydaPab‘abV7ap|

s

YY0V

m

_eV"XfayWab|‚a

o

Viittaukset

LIITTYVÄT TIEDOSTOT

n points are plaed randomly and independently to the unit disk of the plain R 2. Let R be the distane from origin of the point that is

Oletetaan, että annetulla yhtälöllä olisi jokin positiivinen kokonaislukurat- kaisu x, y, z.. Todetaan aluksi, että jos x, y ja z olisivat kaikki parittomia, niin yhtälön vasen

[r]

Johda funktiolle arctan x v¨alill¨a ]−1, 1[ voimassa oleva sarjakehitelm¨a l¨ahtem¨all¨a sen derivaatan

Analyysi

Olkoon f v¨alill¨a [0, 1] m¨a¨aritelty

(Vihje: a-kohdassa

[r]