• Ei tuloksia

1. Mack, J. Expanded, Contracted, and Isomeric Porphyrins: Theoretical Aspects. Chem. Rev. 2017, 117, 3444-3478.

2. Gottfried, J. M. Surface chemistry of porphyrins and phthalocyanines. Surf. Sci. Rep. 2015, 259-379.

3. Valicsek, Z.; Horváth, O. Application of the electronic spectra of porphyrins for analytical pur-poses: The effects of metal ions and structural distortions. Microchem. J. 2013, 47-62.

4. Rix, C. J. The biochemistry of some iron porphyrin complexes. J. Chem. Educ. 1982, 59, 389.

5. Biesaga, M.; Pyrzyńska, K.; Trojanowicz, M. Porphyrins in analytical chemistry. A review. Ta-lanta 2000, 209-224.

6. Baraldi, I.; Carnevali, A.; Ponterini, G.; Vanossi, D. Electronic spectrum of porphyrins. CS INDO CI study. J. Mol. Struct.: THEOCHEM 1995, 121-133.

7. Otero, N.; Fias, S.; Radenković, S.; Bultinck, P.; Graña, A. M.; Mandado, M. How Does Aroma-ticity Rule the Thermodynamic Stability of Hydroporphyrins? Chem. Eur. J. 2011, 17, 3274-3286.

8. Suijkerbuijk, B.; Klein Gebbink, R. Merging Porphyrins with Organometallics: Synthesis and Applications. Angew. Chem., Int. Ed 2008, 47, 7396-7421.

9. Rosa, A.; Ricciardi, G.; Baerends, E. J. Synergism of Porphyrin-Core Saddling and Twisting of meso-Aryl Substituents. J. Phys. Chem. A 2006, 110, 5180-5190.

10. Sharma, R. K.; Ahuja, G.; Sidhwani, I. T. A new one pot and solvent-free synthesis of nickel porphyrin complex. Green Chem. Lett. Rev. 2009, 2, 101-105.

11. Steiner, E.; Fowler, P. W. Ring Currents in the Porphyrins: A Four-Orbital Model. Chem-PhysChem 2002, 3, 114-116.

12. Cheng, B.; Munro, O. Q.; Marques, H. M.; Scheidt, W. R. An Analysis of Porphyrin Molecular FlexibilityUse of Porphyrin Diacids. J. Am. Chem. Soc. 1997, 119, 10732-10742.

13. Ananthnag, G. S.; Shetti, V. S. Synthesis, structure and catalysis of organometallic porphyrin–

pincer hybrids: a review. Dalton Trans. 2017, 46, 14062-14082.

14. Sato, T.; Ebisawa, K.; Sue, K.; Ito, S.; Saito, T.; Itoh, N. The Kinetics of the Incorporation of Metals into Tetraphenylporphyrin with Metal Salts in High-Temperature Water. Ind. Eng.

Chem. Res. 2012, 51, 13908-13914.

67

15. Horváth, O.; Valicsek, Z.; Fodor, M. A.; Major, M. M.; Imran, M.; Grampp, G.; Wankmüller, A. Visible light-driven photophysics and photochemistry of water-soluble metalloporphyrins.

Coord. Chem. Rev. 2016, 325, 59-66.

16. Holten, D.; Bocian, D. F.; Lindsey, J. S. Probing Electronic Communication in Covalently Linked Multiporphyrin Arrays. A Guide to the Rational Design of Molecular Photonic De-vices. Acc. Chem. Res. 2002, 35, 57-69.

17. Serrano-Andrés, L.; Merchán, M.; Rubio, M.; Roos, B. O. Interpretation of the electronic ab-sorption spectrum of free base porphin by using multiconfigurational second-order perturbation theory. Chem. Phys. Lett. 1998, 195-203.

18. Zheng, W.; Shan, N.; Yu, L.; Wang, X. UV–visible, fluorescence and EPR properties of por-phyrins and metalloporpor-phyrins. Dyes Pigm. 2008, 153-157.

19. Minaev, B.; Ågren, H. Theoretical DFT study of phosphorescence from porphyrins. Chem.

Phys. 2005, 215-239.

20. Qureshi, F. M.; Martin, S. J.; Long, X.; Bradley, D. D. C.; Henari, F. Z.; Blau, W. J.; Smith, E.

C.; Wang, C. H.; Kar, A. K.; Anderson, H. L. Optical limiting properties of a zinc porphyrin polymer and its dimer and monomer model compounds. Chem. Phys. 1998, 87-94.

21. Stulz, E.; Scott, S. M.; Ng, Y.; Bond, A. D.; Teat, S. J.; Darling, S. L.; Feeder, N.; Sanders, J. K.

M. Construction of Multiporphyrin Arrays Using Ruthenium and Rhodium Coordination to Phosphines. Inorg. Chem. 2003, 42, 6564-6574.

22. Thies, S.; Bornholdt, C.; Köhler, F.; Sönnichsen, F.; Näther, C.; Tuczek, F.; Herges, R. Coordi-nation-Induced Spin Crossover (CISCO) through Axial Bonding of Substituted Pyridines to Nickel–Porphyrins: σ-Donor versus π-Acceptor Effects. Chem. Eur. J. 2010, 16, 10074-10083.

23. Liao, M.; Watts, J. D.; Huang, M. Effects of Peripheral Substituents and Axial Ligands on the Electronic Structure and Properties of Cobalt Porphyrins. J. Phys. Chem. A 2005, 109, 11996-12005.

24. Purrello, R.; Bellacchio, E.; Gurrieri, S.; Lauceri, R.; Raudino, A.; Scolaro, L. M.; Santoro, A.

M. pH Modulation of Porphyrins Self-Assembly onto Polylysine. J. Phys. Chem. B 1998, 102, 8852-8857.

25. Drain, C. M.; Varotto, A.; Radivojevic, I. Self-Organized Porphyrinic Materials. Chem. Rev.

2009, 109, 1630-1658.

26. Yella, A.; Lee, H.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.;

Yeh, C.; Zakeeruddin, S. M.; Grätzel, M. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–

Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334, 629.

27. Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tav-ernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Dye-sensitized solar cells with

68

13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat.

Chem. 2014, 6, 242.

28. Roth, K. M.; Yasseri, A. A.; Liu, Z.; Dabke, R. B.; Malinovskii, V.; Schweikart, K.; Yu, L.;

Tiznado, H.; Zaera, F.; Lindsey, J. S.; Kuhr, W. G.; Bocian, D. F. Measurements of Electron-Transfer Rates of Charge-Storage Molecular Monolayers on Si(100). Toward Hybrid Molecu-lar/Semiconductor Information Storage Devices. J. Am. Chem. Soc. 2003, 125, 505-517.

29. Liu, Z.; Yasseri, A. A.; Loewe, R. S.; Lysenko, A. B.; Malinovskii, V. L.; Zhao, Q.; Surthi, S.;

Li, Q.; Misra, V.; Lindsey, J. S.; Bocian, D. F. Synthesis of Porphyrins Bearing Hydrocarbon Tethers and Facile Covalent Attachment to Si(100). J. Org. Chem. 2004, 69, 5568-5577.

30. Sternberg, E. D.; Dolphin, D.; Brückner, C. Porphyrin-based photosensitizers for use in photo-dynamic therapy. Tetrahedron 1998, 4151-4202.

31. O'Connor, A. E.; Gallagher, W. M.; Byrne, A. T. Porphyrin and Nonporphyrin Photosensitizers in Oncology: Preclinical and Clinical Advances in Photodynamic Therapy. Photochem. Photo-biol. 2009, 85, 1053-74.

32. Purrello, R.; Gurrieri, S.; Lauceri, R. Porphyrin assemblies as chemical sensors. Coord. Chem.

Rev. 1999, 683-706.

33. Feixas, F.; Solà, M.; Swart, M. Chemical bonding and aromaticity in metalloporphyrins1,2.

Can. J. Chem. 2009, 87, 1063-1073.

34. Zaitzeva, S. V.; Zdanovich, S. A.; Ageeva, T. A.; Golubchikov, O. A. Coordination Properties of Ga, In, and Tl Tetraphenylporphine Complexes in Reactions with Nitrogen-containing Extra Ligands. Russ. J. Gen. Chem. 2003, 73, 145-150.

35. Charkin, O. P.; Makarov, A. V.; Klimenko, N. M. Theoretical study of first-row transition metal porphyrins and their carbonyl complexes. Russ. J. Inorg. Chem. 2008, 53, 718-730.

36. Ghosh, A.; Vangberg, T. Comparative Thermochemistry of Metalloporphyrin Isomers as a Function of Metal Ion Size. A Possible Insight into Nature's Choice of Porphyrin over Isomeric Ligands. Inorg. Chem. 1998, 37, 6276-6280.

37. Myradalyyev, S.; Limpanuparb, T.; Wang, X.; Hirao, H. Comparative computational analysis of binding energies between several divalent first-row transition metals (Cr2+, Mn2+, Fe2+, Co2+, Ni2+, and Cu2+) and ligands (porphine, corrin, and TMC). Polyhedron 2013, 96-101.

38. Hirao, H.; Shaik, S.; Kozlowski, P. M. Theoretical Analysis of the Structural and Electronic Properties of Metalloporphyrin π-Cation Radicals. J. Phys. Chem. A 2006, 110, 6091-6099.

39. Rovira, C.; Kunc, K.; Hutter, J.; Parrinello, M. Structural and Electronic Properties of Co-cor-role, Co-corrin, and Co-porphyrin. Inorg. Chem. 2001, 40, 11-17.

40. Zwaans, R.; van Lenthe, J. H.; den Boer, D. H. W. Ab initio calculations on first-row transition metal porphyrins Part 2. Ground state spin multiplicities, calculated ionisation potentials and

69

electron affinities and their relation to catalytic activity. J. Mol. Struct.: THEOCHEM 1996, 15-24.

41. Radoń, M. Spin-State Energetics of Heme-Related Models from DFT and Coupled Cluster Cal-culations. J. Chem. Theory Comput. 2014, 10, 2306-2321.

42. Ghosh, A.; Steene, E. High-valent transition metal centers and noninnocent ligands in metal-loporphyrins and related molecules: a broad overview based on quantum chemical calculations.

JBIC, J. Biol. Inorg. Chem. 2001, 6, 739-752.

43. Ghosh, A. Metalloporphyrin−NO Bonding:  Building Bridges with Organometallic Chemistry.

Acc. Chem. Res. 2005, 38, 943-954.

44. Cheng, R.; Chen, P.; Lovell, T.; Liu, T.; Noodleman, L.; Case, D. A. Symmetry and Bonding in Metalloporphyrins. A Modern Implementation for the Bonding Analyses of Five- and Six-Co-ordinate High-Spin Iron(III)−Porphyrin Complexes through Density Functional Calculation and NMR Spectroscopy. J. Am. Chem. Soc. 2003, 125, 6774-6783.

45. Rovira, C.; Kunc, K.; Hutter, J.; Ballone, P.; Parrinello, M. A comparative study of O2, CO, and NO binding to iron–porphyrin. Int. J. Quantum Chem. 1998, 69, 31-35.

46. Baerends, E. J.; Ricciardi, G.; Rosa, A.; van Gisbergen, S. J. A. A DFT/TDDFT interpretation of the ground and excited states of porphyrin and porphyrazine complexes. Coord. Chem. Rev.

2002, 5-27.

47. Vangberg, T.; Lie, R.; Ghosh, A. Symmetry-Breaking Phenomena in Metalloporphyrin π-Cation Radicals. J. Am. Chem. Soc. 2002, 124, 8122-8130.

48. Ali, M. E.; Sanyal, B.; Oppeneer, P. M. Tuning the Magnetic Interaction between Manganese Porphyrins and Ferromagnetic Co Substrate through Dedicated Control of the Adsorption. J.

Phys. Chem. C 2009, 113, 14381-14383.

49. Yamaki, T.; Nobusada, K. Theoretical Study of Metal−Ligand Bonds in Pb(II) Porphyrins. J.

Phys. Chem. A 2003, 107, 2351-2355.

50. Wu, W.; Wu, W.; Ji, S.; Guo, H.; Wang, X.; Zhao, J. The synthesis of 5,10,15,20-tetraarylpor-phyrins and their platinum(II) complexes as luminescent oxygen sensing materials. Dyes Pigm.

2011, 89, 199-211.

51. Balanay, M. P.; Kim, D. H. DFT/TD-DFT molecular design of porphyrin analogues for use in dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2008, 10, 5121-5127.

52. Saegusa, Y.; Ishizuka, T.; Komamura, K.; Shimizu, S.; Kotani, H.; Kobayashi, N.; Kojima, T.

Ring-fused porphyrins: extension of π-conjugation significantly affects the aromaticity and op-tical properties of the porphyrin π-systems and the Lewis acidity of the central metal ions.

Phys. Chem. Chem. Phys. 2015, 17, 15001-15011.

70

53. Misra, R.; Chandrashekar, T. K. Structural Diversity in Expanded Porphyrins. Acc. Chem. Res.

2008, 41, 265-279.

54. Ryeng, H.; Gonzalez, E.; Ghosh, A. DFT at Its Best: Metal- versus Ligand-Centered Reduction in Nickel Hydroporphyrins. J. Phys. Chem. B 2008, 112, 15158-15173.

55. Lehtinen, O. Laboratorioprojekti. Itä-Suomen yliopisto 2018.