• Ei tuloksia

Hyaluronan synthases in development and cancer : immunohistochemical studies

N/A
N/A
Info
Lataa
Protected

Academic year: 2022

Jaa "Hyaluronan synthases in development and cancer : immunohistochemical studies"

Copied!
75
0
0

Kokoteksti

(1)

DISSERTATIONS | KARI TÖRRÖNEN | HYALURONAN SYNTHASES IN DEVELOPMENT AND CANCER | No 371

uef.fi

PUBLICATIONS OF

THE UNIVERSITY OF EASTERN FINLAND Dissertations in Health Sciences

ISBN 978-952-61-2226-7 ISSN 1798-5706

Dissertations in Health Sciences

PUBLICATIONS OF

THE UNIVERSITY OF EASTERN FINLAND

KARI TÖRRÖNEN

HYALURONAN SYNTHASES IN DEVELOPMENT AND CANCER

Functions of hyaluronan, hyaluronan

synthases and hyaluronan receptors during embryonic development and cancer progression are dependent on their spatial

and temporal distribution in cells and tissues. This thesis gives new information on these molecules and confirms the importance

of hyaluronan during embryogenesis and cancer development, and establishes basis for future studies aiming to generate novel

treatments.

KARI TÖRRÖNEN

(2)
(3)

   

   

         

Hyaluronan  Synthases  in  Development  and   Cancer  

 

(4)
(5)

   

   

KARI TÖRRÖNEN

Hyaluronan  Synthases  in  Development  and   Cancer    

 

 

Immunohistochemical  studies  

   

         

To  be  presented  by  permission  of  the  Faculty  of  Health  Sciences,  University  of  Eastern  Finland  for   public  examination  in  lecture  hall  SN200,  Kuopio,  on  Friday  14th,  October    2016,  at  12  noon  

   

Publications  of  the  University  of  Eastern  Finland    Dissertations  in  Health  Sciences    

Number  371      

Institute  of  Biomedicine,  School  of  Medicine,  Faculty  of  Health  Sciences,     University  of  Eastern  Finland  

Kuopio   2016

 

(6)

 

                            Grano  Oy   Joensuu,  2016  

    Series  Editors:    

Professor  Tomi  Laitinen,  M.D.,  Ph.D.  

Institute  of  Clinical  Medicine,  Clinical  physiology  and  isotope  medicine   Faculty  of  Health  Sciences  

 

Professor  Hannele  Turunen,  Ph.D.  

Department  of  Nursing  Science   Faculty  of  Health  Sciences  

 

Assosiate  professor  Tarja  Malm,  Ph.D.  

A.I.  Virtanen  Institute  for  Molecular  Sciences   Faculty  of  Health  Sciences  

 

Professor  Kai  Kaarniranta,  M.D.,  PhD   Institute  of  Clinical  Medicine,  Opthalmology  

Faculty  of  Health  Science    

University  lecturer  Veli-­‐‑Pekka  Ranta,  Ph.D.  

School  of  Pharmacy   Faculty  of  Health  Science  

    Distributor:    

University  of  Eastern  Finland   Kuopio  Campus  Library  

P.O.Box  1627   FI-­‐‑70211  Kuopio,  Finland   http://www.uef.fi/kirjasto  

 

ISBN  (print):  978-­‐‑952-­‐‑61-­‐‑2226-­‐‑7   ISBN  (pdf):  978-­‐‑952-­‐‑61-­‐‑2227-­‐‑4  

ISSN  (print):  1798-­‐‑5706   ISSN  (pdf):  1798-­‐‑5714  

ISSN-­‐‑L:  1798-­‐‑5706

(7)

III    

 

Author’s  address:   Institute  of  Biomedicine/School  of  Medicine   University  of  Eastern  Finland  

KUOPIO   FINLAND    

Supervisors:   Docent  Kirsi  Rilla,  Ph.D.  

Institute  of  Biomedicine/School  of  Medicine   University  of  Eastern  Finland  

KUOPIO   FINLAND    

Professor  Raija  Tammi,  M.D.,  Ph.D.  

Institute  of  Biomedicine/School  of  Medicine   University  of  Eastern  Finland  

KUOPIO   FINLAND    

Professor  Markku  Tammi,  M.D.,  Ph.D.  

Institute  of  Biomedicine/School  of  Medicine   University  of  Eastern  Finland  

KUOPIO   FINLAND    

 

Reviewers:   Professor  Juha  Tuukkanen,  Ph.D   Institute  of  Biomedicine  

University  of  Oulu   OULU  

FINLAND    

Docent  Lauri  Eklund,  Ph.D  

Faculty  of  Biochemistry  and  Molecular  Medicine   Biocenter  Oulu,  University  of  Oulu  

Oulu    

Finland      

Opponent:   Docent  Sirkku  Peltonen,  M.D.,  Ph.D.  

Dermatology  Outpatient  Clinic   Turku  University  Hospital   Turku  

Finland  

   

(8)

 

 

IV  

   

(9)

V  

 

Törrönen,  Kari  

Hyaluronan  Synthases  in  Development  and  Cancer  –  Immunohistochemical  Studies   University  of  Eastern  Finland,  Faculty  of  Health  Sciences  

Publications  of  the  University  of  Eastern  Finland.  Dissertations  in  Health  Sciences  371.  2016.  51  p.  

 

ISBN  (print):  978-­‐‑952-­‐‑61-­‐‑2226-­‐‑7   ISBN  (pdf):  978-­‐‑952-­‐‑61-­‐‑2227-­‐‑4   ISSN  (print):  1798-­‐‑5706   ISSN  (pdf):  1798-­‐‑5714   ISSN-­‐‑L:  1798-­‐‑5706    

ABSTRACT

Hyaluronan   is   a   common   glycosaminoglycan   of   our   body   essential   for   fetal   development   and   tissue   regeneration   throughout   life.   It   is   an   important   component   of   the   extracellular   matrix  and  regulates  many  homeostatic  processes  in  various  tissues  like  differentiation  of   keratinocytes   and   moisture   balance   in   the   skin.   Disturbance   in   the   regulation   of   homeostasis   may   lead   to   emergence   of   malignant   cells,   which   develop   into   tumors.  

Hyaluronan   accumulation   on   the   cell   surface   and   surrounding   extracellular   matrix   is   suggested   to   participate   in   the   creation   of   a   favorable   growth   environment   for   the   cancer   cells.  Hyaluronan  is  an  effective  cell  growth  promoter  both  in  health  and  disease.  

     Hyaluronan   is   synthesized   by   enzymes,   called   hyaluronan   synthases.   Therefore,   these   enzymes   and   the   regulation   of   their   activities   have   an   important   role   in   the   normal   functioning   of   the   body   and   in   the   development   of   therapies   for   diseases   in   which   hyaluronan   is   produced   in   excess.   The   genes   encoding   hyaluronan   synthases   (HAS1-­‐‑3)   have  been  identified  more  than  twenty  years  ago,  and  novel  information  on  their  regulation   has   been   obtained   in   recent   studies.   However,   the   exact   functions   and   subcellular   localizations   of   the   hyaluronan   synthase   proteins   in   cells   and   tissues   are   still   not   known.  

The   aim   of   this   study   was   to   determine   the   location   of   these   three   enzymes   in   cells   and   tissues,  utilizing  both  immunohistochemical  stainings  and  fusion  proteins.  We  also  wanted   to  find  out  for  the  first  time  at  protein  level  the  spatial  and  temporal  distribution  of  these   enzymes  during  development,  with  mouse  fetuses  as  a  research  model.    

     We   used   mouse   model   to   study   changes   in   hyaluronan,   HASes   and   CD44   during   ultraviolet  radiation  (UVR)  induced  skin  squamous  cell  carcinoma.  In  addition,  we  studied   one   of   the   most   lethal   types   of   cancer,   mesothelioma,   which   originates   from   the   actively   hyaluronan   synthesizing   mesothelial   cells.   We   compared   the   incidence   of   hyaluronan   synthases,   hyaluronan,   and   the   main   receptor   for   hyaluronan,   CD44,   in   mesotheliomas   with  the  other  general  lung  cancer  type,  adenocarcinoma.  The  aim  was  to  find  out  whether   hyaluronan  and  associated  proteins  could  be  utilized  to  identify  these  two  cancer  types.  

        It   was   found   that   the   presence   of   different   hyaluronan   synthases   during   fetal   development   is   partly   overlapping   both   spatially   and   temporally,   but   some   differences   were   observed.   In   particular,   the   connective   tissue   of   the   heart,   skin   and   cartilage   were   highly   positive   for   all   isoforms.   Long-­‐‑term   exposure   to   UVR   increased   the   amount   of   hyaluronan,   CD44   and   hyaluronan   synthases   in   mouse   epidermis,   which   correlated   with   development  of  epidermal  hyperplasia  and  formation  of  carcinomas.    

        This   thesis   gives   novel   information   on   the   importance   of   hyaluronan   in   fetal   development   and   tumorigenesis.   Careful   studies   on   intracellular   location   of   hyaluronan   synthases   and   their   differences   provide   novel   cell   biological   data   and   support   the   development  of  therapy.  

 

National  Library  of  Medicine  Classification:  QS  604,  QU  83,  QU  141,  QZ  365  

Medical  Subject  Headings:Glycosaminoglycans;  Hyaluronic  Acid;  Glucuronosyltransferase;  Antigens,  CD44;  

Embryonic   Development;   Fetal   Development;   Neoplasms;   Ultraviolet   Rays;   Carcinoma,   Squamous   Cell;  

Mesothelioma;  Adenocarcinoma;  Disease  Models,  Animal;  Mice  

(10)

 

 

VI    

   

(11)

VII  

 

Törrönen,  Kari  

Hyaluronan  Synthases  in  Development  and  Cancer  –  Immunohistochemical  Studies   Itä-­‐‑Suomen  yliopisto,  terveystieteiden  tiedekunta  

Publications  of  the  University  of  Eastern  Finland.  Dissertations  in  Health  Sciences  371.  2016.  51  s.  

 

ISBN  (print):  978-­‐‑952-­‐‑61-­‐‑2226-­‐‑7   ISBN  (pdf):  978-­‐‑952-­‐‑61-­‐‑2227-­‐‑4   ISSN  (print):  1798-­‐‑5706   ISSN  (pdf):  1798-­‐‑5714   ISSN-­‐‑L:  1798-­‐‑5706    

TIIVISTELMÄ

Hyaluronaani   on   hyvin   yleisenä   elimistössämme   esiintyvä   glykosaminoglykaaneihin   kuuluva   polysakkaridi,   joka   on   välttämätön   sikiönkehitykselle   ja   lisäksi   edistää   kudosten   uusiutumista   läpi   elämän.   Se   on   tärkeä   soluväliaineen   komponentti   ja   säätelee   mm.   ihon   kosteustasapainoa   ja   ihon   pintasolujen   eli   keratinosyyttien   erilaistumista.   Elimistön   säätelyjärjestelmien   pettäessä   syntyy   pahanlaatuisia   soluja,   joista   kehittyy   kasvaimia.  

Hyaluronaanin   ajatellaan   osallistuvan   syöpäsolujen   kasvulle   suotuisan   kasvuympäristön   luomiseen   kertymällä   solujen   pinnalle   ja   niitä   ympäröivään   soluväliaineeseen.  

Hyaluronaani  on  siis  solujen  kasvun  edistäjä  sekä  hyvässä  että  pahassa.    

Hyaluronaanin   valmistus   tapahtuu   entsyymien,   hyaluronaanisyntaasien   (HAS1-­‐‑3)   avulla.   Siksi   nämä   entsyymit   ja   niiden   toiminnan   säätely   ovat   tärkeässä   asemassa,   kun   pyritään   ymmärtämään   normaalin   elimistön   toimintaa   ja   suunnittelemaan   mahdollisia   hoitoja   sairauksiin,   joissa   hyaluronaania   tuotetaan   liikaa.   Hyaluronaanisyntaaseja   1-­‐‑3   koodaavat   geenit   on   tunnistettu   jo   parikymmentä   vuotta   sitten,   ja   niiden   toiminnasta   on   saatu   viimeaikaisissa   tutkimuksissa   paljon   tietoa.   Kuitenkin   itse   proteiinien   säätelystä   ja   sijannista   soluissa   ja   kudoksissa   tiedetään   varsin   vähän.   Tämän   väitöskirjatyön   tarkoituksena   oli   selvittää   ja   osoittaa   näiden   kolmen   entsyymin   sijainti   soluissa   ja   kudoksissa   sekä   immunohistokemiallisia   värjäyksiä   että   fuusioproteiineja   käyttäen.  

Halusimme   myös   selvittää   ensimmäistä   kertaa   proteiinitasolla   näiden   entsyymien   esiintymisen  eri  sikiönkehitysvaiheessa,  käyttäen  eri-­‐‑ikäisiä  hiiren  sikiöitä  tutkimusmallina.  

     Tutkimme   hiirimallin   avulla   ultraviolettisäteilyn   (UVR)   vaikutusta   hyaluronaanin   ja   siihen   liittyviin   proteiineihin   sekä   levyepiteelisyövän   kehitykseen.   Lisäksi   käytimme   esimerkkinä   yhtä   tappavimmista   syöpätyypeistä,   mesotelioomaa,   joka   saa   alkunsa   runsaasti   hyaluronaania   tuottavista   keuhkopussia   verhoavista   mesoteelisoluista.  

Vertasimme   hyaluronaanisyntaasien,   hyaluronaanin   ja   tärkeimmän   hyaluronaaniresep-­‐‑

torin,   CD44:n   esiintyvyyttä   mesotelioomissa   toiseen   yleiseen   keuhkoissa   esiintyvään   syöpätyyppiin,   adenokarsinoomaan.   Tarkoituksena   oli   selvittää,   voisiko   hyaluronaania   ja   siihen   liittyviä   proteiineja   hyödyntää   näiden   kahden   toisistaan   hankalasti   erotettavan   syöpätyypin  erottamisessa.  

     Totesimme   että   eri   hyaluronanisyntaasien   esiintyminen   sikiönkehityksen   aikana   on   osittain   samanaikaista,   mutta   tietyissä   elimissä   eroja   kuitenkin   havaittiin.   Erityisesti   sidekudoksessa,   sydämessä,   ihossa   ja   rustossa   niiden   esiintyminen   oli   merkittävää.  

Isoentsyymien   solunsisäinen   lokalisaatio   poikkesi   myös   toisistaan.   Lisäksi   pitkäaikainen   altistus  ultraviolettisäteilylle  lisäsi  sekä  hyaluronaanin,  CD44:n  että  hyaluronaanisyntaasien   määrää  hiiren  epidermiksessä  ja  korreloi  hyperplasian  ja  karsinoomien  kanssa.  

     Tämä   väitöskirjatyön   tulokset   tukevat   hyaluronaanin   merkitystä   sikiönkehityksessä   ja   syövässä.   Hyaluronaanisyntaasien   solunsisäisen   sijainnin   ja   niiden   erojen   perinpohjainen   selvittäminen  antavat  tärkeää  perussolubiologista  tietoa  ja  tukevat  hoitojen  kehittämistä.  

 

Luokitus:  QS  604,  QU  83,  QU  141,  QZ  365  

Yleinen   Suomalainen   asiasanasto:   hyaluronaani;   alkionkehitys;   ultraviolettisäteily;   kasvaimet;   syöpätaudit;  

karsinoomat;  adenokarsinooma;  mesoteliooma;  koe-­‐‑eläinmallit;  hiiret  

(12)

 

 

VIII  

       

   

(13)

IX    

                                                   

 

To  Vanessa,  Oliver,  Nastja  and  Dasha  

   

(14)

 

 

X  

Acknowledgements  

There   is   a   long   journey   behind   of   this   doctoral   thesis   work.   It   started   two   decades   ago   in   Department   of   Anatomy,   Faculty   of   Medicine,   University   of   Kuopio   and   finished   in   Institute  of  Biomedicine,  School  of  Medicine,  University  of  Eastern  Finland.    

First   of   all,   I   want   to   thank   my   principal   supervisor   Docent   Kirsi   Rilla,   Ph.D..   She   has   almost  endless  patience,  great  knowledge  of  microscopy  and  cell  biology.  I  know  you  were   sometimes  quite  desperate  and  exhausted  with  my  thesis  work,  but  still  you  get  somewhere   strength   to   continue   pushing   ahead   me   with   writing.   We   have   had   many   philosophical   discussions  about  life  and  sometimes  also  about  science.  We  have  laught  and  cried  during   this  process  and  finally  finished  it.  

I  am  grateful  to  my  second  supervisor  Professor  Emerita  Raija  Tammi.  You  have  teached   me  the  meaning  of  accuracy  and  importance  to  repeat  experiments.  You  have  a  great  sense   of  humour.    

I  wish  to  express  my  sincere  gratitude  to  my  third  supervisor  Professor  Markku  Tammi.  

You   introduced   me   the   world   of   hyaluronan.   It   has   been   a   honour   to   work   in   the   HA   research  group.  I  have  also  enjoyed  our  floorball  games.  

I   owe   my   warm   tanks   to   present   and   former   colleagues   in   HA-­‐‑group,   Sanna   Pasonen-­‐‑

Seppänen,   Ph.D.,   Sanna   Oikari,   Ph.D.,   Hanna   Siiskonen,   M.D.,   Ph.D.,   Anne   Kultti,   Ph.D.,   Tiina  Jokela,  Ph.D.,  Katri  Makkonen,  Ph.D,  Leena  Rauhala,  M.Sc.,  Piia  Takabe,  M.Sc.,  Lasse   Hämäläinen,  M.Sc.,  Susanna  Hartmann-­‐‑Petersen,  M.D.  Ph.D.,  Ashik  Jawahar  Deen,  Ph.D.,   Uma   Thanigai   Arasu,   M.Sc.,   Ritva   Tumelius,   Ph.D.,   Juha-­‐‑Pekka   Pienimäki,   M.D.,   Ville   Koistinen,  M.D.,  Kai  Härkönen,  M.Sc.,  Raquel  Melero,  Ph.D.,  and  Genevieve  Bart,  PhD.  

I   am   grateful   to   the   official   reviewers,   professor   Juha   Tuukkanen   and   Docent   Lauri   Eklund,   Ph.D.,   for   reviewing   this   thesis   work.   I   thank   Eeva   Nukarinen,   M.Ed.,   for   her   revision  of  the  language  in  this  thesis.  

I   want   to   thank   proficient   laboratory   professionals   attended   in   this   thesis   work.   Riikka   Kärnä,   M.Sc.,   has   done   numerous   laboratory   experiments   and   sheered   up   everyone   with   her  laught.  Ms.  Eija  Rahunen  and  Mr.  Kari  Kotikumpu  have  done  most  of  the  histology  and   have  been  hard  competirors  in  floorball.  Ms.  Arja  Venäläinen  and  Ms.  Eija  Kettunen  have   done  precious  work  in  laboratory.  

 My   special   thanks   go   to   the   former   head   of   Anatomy   Professor   Emiritus   Heikki   Helminen.  He  is  an  old  style  gentleman  and  great  scientist  in  cartilage  research  area.  He  has   been  like  a  godfather  for  me  and  many  other  “young”  scientists.  I  also  want  to  thank  Anitta   Mahonen,  the  head  of  Institute  of  Biomedicine,  for  providing  some  extra  time  for  this  thesis   work.  Rita  Sorvari,  D.D.S.,  is  always  in  my  heart.  She  has  mentored  and  engouraged  me  in   the  field  of  teaching.  I  thank  Petteri  Nieminen,  M.D.,  Ph.D.,  and  Virpi  Tiitu,  Ph.D.,  for  their   valuable  help  with  teaching  of  anatomy.  

During  these  years  I  have  got  help  from  several  “office”  persons.  I  am  grateful  to  Ms.  Eija   Vartianen,   Ms.   Arja   Hoffren,   Ms.   Karoliina   Tenkanen,   Ms.   Outi   Tikkanen,   Ms.   Irma   Pääkkönen,  and  Ms.  Kati  Bolodin.  

I  have  been  fortunate  to  have  great  collegues  and  friends  from  the  cartilage  and  cancer   research  areas.  Specially,  I  like  to  thank  Docent  Reijo  Sironen,  M.D.,  Ph.D.,  Professor  Mikko   Lammi,   Hannu   Karjalainen,   Ph.D.,   Janne   Sahlman,   M.D,   Ph.D,   Mika   Elo,   M.D.,   Ph.D.,   Professor   Juha   Töyräs,   and   Associated   Professor   Rami   Korhonen   for   collaboration   during   work  and  free  time.  I  also  want  to  thank  other  members  of  Cargo-­‐‑  and  BBC-­‐‑groups.  

I   would   like   to   thank   to   the   whole   personel   of   former   Department   of   Anatomy   and   present   Institute   of   Biomedicine.   I   want   to   thank   the   personel   of   SibLabs   and   former   Department   of   Electron   microscopy,   for   their   help   with   microscopy.   Additionally,   during   these   two   decades   I   have   worked   with   many   other   people.   I   want   to   thank   all   of   you   collectively.    

(15)

XI    

 

I   am   grateful   of   financial   support   of   North   Savo   Cultural   Foundation   and   Paavo   Koistinen’s  foundation.  

I  want  to  thank  my  sister  Anu  Törrönen  and  my  brothers  Kalle,  Ville  and  Eero  Törrönen   for  helping  and  supporting  me  during  my  life.  

My   loving   thanks   belong   to   my   family.   Dasha   you   are   the   light   in   my   life.   Our   dear   children   Oliver,   Nastja   and   little   Vanessa   have   teached   me   a   lot   of   about   the   true   of   meaning  life.  

   

Kuopio,  August  2016    

       

Kari  Törrönen    

(16)

 

 

XII  

   

(17)

XIII  

 

 

List  of  the  original  publications  

   

This   dissertation   is   based   on   the   following   original   publications,   which   are   referred   to   in   the  text  by  their  Roman  numerals:    

 

I Törrönen  K,  Nikunen  K,  Kärnä  R,  Tammi  M,  Tammi  R  and  Rilla  K.  Tissue   distribution  and  subcellular  localization  of  hyaluronan  synthase  isoenzymes.  

Histochem  Cell  Biol.  1414(1):17-­‐‑31,  2014    

II Siiskonen  H,  Törrönen  K,  Kumlin  T,  Rilla  K,  Tammi  MI  and  Tammi  RH.  Chronic   UVR  causes  increased  immunostaining  of  CD44  and  accumulation  of  hyaluronan   in  mouse  epidermis.  J  Histochem  Cytochem.  59(10):908-­‐‑17,  2011  

 

III Törrönen   K,   Soini   Y,   Pääkkö   P,   Parkkinen   J,   Sironen   R   and   Rilla   K.  

Mesotheliomas   show   higher   hyaluronan   positivity   around   tumor   cells   than   metastatic  pulmonary  adenocarcinomas.  Histol  Histopathol,  31(10):1113-­‐‑1122,  2016  

 

The  publications  were  adapted  with  the  permission  of  the  copyright  owners.  

 

   

(18)

 

 

XIV  

   

(19)

XV  

 

Contents  

1  INTRODUCTION  ...  1  

2  REVIEW  OF  THE  LITERATURE  ...  2  

2.1  Hyaluronan  ...  2  

2.1.1  Hyaluronan  overview  and  history  ...  2  

2.1.2  Structure  of  hyaluronan  ...  3  

2.2  Hyaluronan  synthesis  ...  3  

2.2.1  Hyaluronan  is  synthesized  on  the  plasma  membrane  ...  3  

2.2.5  Regulation  of  hyaluronan  synthesis  ...  5  

2.3  Hyaluronan  degradation  ...  6  

2.4  CD44  and  other  hyaluronan  receptorS/binding  proteins  ...  7  

2.4.1  CD44  ...  7  

2.4.2  Other  hyaldherins  ...  8  

2.5  Hyaluronan  and  cancer  ...  9  

2.5.1  Hyaluronan  in  cancer  cell  cultures  ...  9  

2.5.2  Hyaluronan  in  animal  tumor  models  ...  9  

2.5.3  Hyaluronan  in  human  cancer  ...  9  

2.6  Hyaluronan  in  skin  and  it  ’s  diseases  ...  10  

2.6.1.  Structure  of  human  skin  ...  10  

2.6.2  Tumors  derived  from  epidermis  ...  11  

2.6.3  Hyaluronan  in  normal  skin  ...  11  

2.6.4  Hyaluronan  in  skin  pathology  ...  12  

2.7  Hyaluronan  in  Mesothelioma  ...  13  

2.7.1  Pathogenesis  of  pleural  mesothelioma  and  lung  adenocarcinoma  ...  13  

2.7.2  Hyaluronan  in  lung  mesothelioma  and  adenocarcinoma  ...  13  

2.8  Hyaluronan  in  development  ...  14  

2.8.1  Mouse  development  ...  14  

2.8.2  Hyaluronan  in  development  ...  14  

3  AIMS  OF  THE  STUDY  ...  16  

4  MATERIALS  AND  METHODS  ...  17  

4.1  Materials  ...  17  

4.2  METHODS  ...  17  

4.2.1  EGFP-­‐‑human  Has1,  2,  and  3  plasmid  construction  and  transfection  ...  17  

4.2.2  Immunostaining  ...  17  

4.2.3  Microscopy  ...  19  

4.2.4  Analysis  of  hyaluronan  concentration  ...  19  

4.2.5  Evaluation  and  statistical  analysis  ...  19  

(20)

XVI  

5  RESULTS  ...  20  

5.1  Subcellular  localization  of  hyaluronan  synthases  (I)  ...  20  

5.1.1  Immunostainings  of  tissues  ...  20  

5.1.2  Immunostainings  of  cultured  cells  ...  20  

5.1.3  GFP-­‐‑tagged  HAS  proteins  ...  20  

5.2  Spatial  and  temporal  distribution  of  hyaluronan  and  HAS1-­‐‑3  during  mouse   embryonic  development  (I)  ...  21  

5.3  Hyaluronan,  CD44  and  HAS1-­‐‑3  in  UV  radiated  mouse  epidermis  (II)  ...  23  

5.3.1  Hyaluronan  and  CD44  stainings  ...  23  

5.3.2  HAS  immunostainings  ...  23  

5.4  Hyaluronan,  CD44  and  HAS1-­‐‑3  in  lung  mesothelioma  and  adenocarcinoma  (III)  23   5.4.1  Hyaluronan  staining  in  mesotheliomas  and  adenocarcinomas  ...  23  

5.4.2  CD44  stainings  ...  24  

5.4.3  HAS  immunostainings  ...  24  

6  DISCUSSION  ...  25  

6.1  Function  and  localization  of  HAS  proteins  ...  25  

6.2  Role  of  hyaluronan  in  cancer  and  development  ...  26  

6.2.1  Hyaluronan  role  in  cancer  ...  26  

6.2.2  Hyaluronan  in  development  ...  27  

6.3  Effects  of  UV  radiation  on  hyaluronan  metabolism  ...  28  

6.4  Putative  role  of  hyaluronan  and  hyaluronan  synthases  as  tools  for  diagnostics  and   treatment  of  cancer  ...  30  

6.5  Hyaluronan  as  a  growth  promoting  molecule  ...  31  

7  SUMMARY  AND  CONCLUSION  ...  32  

8  REFERENCES  ...  33  

(21)

XVII  

Abbreviations  

bHABC   biotinylated   hyaluronan   binding   complex    

CD44   cluster  of  differentiation  44     EGFP   enhanced   green   fluorescent  

protein  

ECM   extracellular  matrix    

EGFR   epidermal  growth  factor  receptor   GlcNAc   N-­‐‑acetylglucosamine  

GlcUA   glucuronic  acid    

HABC   hyaluronan  binding  complex     HAS   hyaluronan  synthase    

HexNac   N-­‐‑acetylhexosamine   HYAL   hyaluronidase    

ICAM-­‐‑1   intercellular  adhesion  molecule  1   LYVE-­‐‑1   lymph   vessel   endothelium  

receptor  1  

RHAMM   receptor   for   hyaluronan-­‐‑

mediated  motility  

SHAP   serum-­‐‑derived   hyaluronan-­‐‑

associated  protein    

TGF-­‐‑β   transforming  growth  factor  beta     TSG-­‐‑6   tumor  necrosis  stimulated  gene  6     TNFIP6   tumor   necrosis   factor-­‐‑induced  

protein-­‐‑6    

UDP   uridine  diphosphate   UVR   ultraviolet  radiation  

(22)
(23)

 

1  Introduction    

Hyaluronan   is   the   simplest   of   glycosaminoglycans   and   a   major   constituent   of   the   extracellular   matrix   (ECM),   acting   as   a   space   filler,   moisturizer   and   lubricator   in   most   tissues   of   our   body.   However,   it   has   special   properties   and   is   synthesized   by   a   special   mechanism  on  the  plasma  membrane,  which  makes  it  unique  among  other  ECM  molecules.  

Hyaluronan   content   is   high   in   rapidly   renewing   and   growing   tissues,   like   in   tumorigenesis   and   embryonic   development.   It   is   unclear   whether   this   accumulation   of   hyaluronan   is   a   cause   or   consequence   of   the   high   cellular   growth   rate   that   occurs   during   cancer   progression   and   development.   Furthermore,   it   is   not   clear   how   crucial   the   role   of   hyaluronan   synthases   and   their   activation   is   in   hyaluronan   accumulation.   Detailed   information  about  hyaluronan  synthases  and  hyaluronan  binding  receptors  would  help  to   solve  these  questions.  

Hyaluronan   is   produced   by   specific   enzymes,   hyaluronan   synthases   (HAS1-­‐‑3)   at   the   inner   face   of   the   plasma   membrane,   and   this   localization   is   highly   dependent   on   HAS   activity.   However,   only   little   information   on   the   subcellular   localization   of   the   three   synthase  proteins  is  available.  The  aim  of  this  thesis  work  was  to  study  the  distribution  and   localization   of   hyaluronan,   its   main   receptor   CD44   and   hyaluronan   synthases   in   cultured   cells  and  in  rapidly  growing  tissues  like  embryonic  tissues,  tumors,  and  UV  radiated  skin.  

The   results   of   this   thesis   work   provide   new   data   on   the   properties   and   functions   of   hyaluronan   and   proteins   related   to   it   and   support   the   hypothesis   that   hyaluronan   is   an   important   regulator   of   growth   of   cells   and   homeostasis   of   tissues.   These   properties   make   hyaluronan  and  proteins  associated  with  it  as  potential  therapeutic  targets  in  many  clinical   conditions,  like  cancer  and  inflammation.    

   

 

   

(24)

 

 

2  

2  Review  of  the  literature  

2.1 HYALURONAN

2.1.1  Hyaluronan  overview  and  history  

Hyaluronan,   a   nonsulfated   glycosaminoglycan,   is   one   of   the   major   components   of   the   extracellular   matrix.   The   importance   of   hyaluronan   in   normal   biological   and   pathological   processes  has  been  noticed  during  last  decades  (Table  1).  Hyaluronan  has  a  significant  role   in  embryogenesis  (Camenisch  et  al.  2000,  Tien  and  Spicer  2005),  angiogenesis  (Slevin  et  al.  

2007),   immunoregulation   (Jackson   2009),   and   cancer   progression   and   cancer   therapeutics   (Toole   et   al.   2008).   Hyaluronan   has   several   functions   including   space   filling,   matrix   formation   and   lubrication   in   joints.   During   wound   healing   and   tissue   repair   hyaluronan   synthesis  is  elevated  (Slevin  et  al.  2007).    

 

Table 1. Historical milestones of hyaluronan research  

 Year   Event   Reference  

1934   Isolated   from   the   vitreous  

humor  of  bovine  eyes   (Meyer  and  Palmer  1934)   1930-­‐‑40s   Isolated   from   synovial   fluid,  

skin,   umbilical   cord,   tumors   and  rooster  combs  

(Kabat   1939,   Meyer   and   Palmer   1936,   Meyer   and   Chaffee   1941,   Ogston   et   al.   1939,   Ragan   and  Meyer  1949)  

1951   Chemical  structure   (Meyer  et  al.  1951)   1970   Clinical  use   (Butler  et  al.  1970)   1972   Interaction   with   cartilage  

proteoglycans   (Hardingham  and  Muir  1972)   1979   Hyaluronan  receptor  CD44   (Underhill  and  Toole  1979)   1993   Group   A   Streptococcus  

synthase   (DeAngelis  et  al.  1993)  

1996   Molecular   cloning   of  

mammalian   hyaluronan  

synthase  

(Itano  and  Kimata  1996)  

1998   Hyaluronan   is   an   independent  

prognostic  factor  in  cancer   (Ropponen  et  al.  1998)   1999   Active  hyaluronan  synthase   (Tlapak-­‐‑Simmons  et  al.  1999)  

1999   EGFP-­‐‑tagged  HASs   (Müllegger   et   al.   2001,   Rilla   et   al.   2005,   Spicer   and  Nguyen  1999)  

2000   HAS2   knockout   is   lethal   in   mouse  

(Camenisch  et  al.  2000)  

2012   Target  of  cancer  therapy   (Jiang  et  al.  2012a)    

Hyaluronan   is   found   in   many   species   from   some   simple   bacteria   (Lowther   and   Rogers   1955)   to   vertebrates   (Prehm   1990).   High   concentrations   of   hyaluronan   exist   e.g.   in   the   vitreous  body  of  the  eye  (Meyer  and  Palmer  1934),  the  umbilical  cord  (Hadidian  and  Pirie   1948),  skin  (Mier  and  Wood  1969)  and  synovial  fluid  (Ragan  and  Meyer  1949).  

 

(25)

   

 

3   2.1.2  Structure  of  hyaluronan  

Hyaluronan   is   composed   of   repeating   disaccharides,   D-­‐‑glucuronic   acid   and   N-­‐‑acetyl-­‐‑

glucosamine  (Figure  1).  There  are  alternating  β(1-­‐‑3)  and  β(1-­‐‑4)glucuronidic  bonds    between   the   sugars   (Weissmann   et   al.   1954).   Hyaluronan   chain   may   contain   up   to   25   000   disaccharides,   and   molecular   mass   of   one   hyaluronan   molecule   can   be   as   high   as   107   Da   and  length  25  µμm  (Toole  2004).  At  physiological  pH  hyaluronan  is  highly  hydrophilic  due   to  negatively  charged  glucuronic  acid  groups.  In  aqueous  solutions  linear  hyaluronan  chain   forms   a   random   coiled   structure.   Unlike   the   other   glycosaminoglycans,   hyaluronan   does   not  covalently  attach  to  core  protein  to  form  proteoglycans.  

         

   

Figure  1.  The  general  chemical  structure  of  the  disaccharide  unit  of  hyaluronan.  Hyaluronan   is  composed  of  alternating  residues  of  β-­‐‑D-­‐‑(1→3)  glucuronic  acid  (GlcA)  and  β-­‐‑D-­‐‑(1→4)-­‐‑N-­‐‑

acetylglucosamine  (GlcNAc).    

2.2 HYALURONAN SYNTHESIS

 

2.2.1  Hyaluronan  is  synthesized  on  the  plasma  membrane  

Hyaluronan   is   synthesized   by   hyaluronan   synthases   (HAS),   integral   transmembrane   proteins   that   act   on   the   inner   face   of   the   plasma   membrane   and   extrude   the   growing   hyaluronan  chain  through  the  plasma  membrane  into  the  extracellular  space  (Prehm  1984).  

Mammals   have   three   hyaluronan   synthase   isoenzymes,   HAS1,   HAS2   and   HAS3   (Toole   2004).   These   enzymes   utilize   two   precursors,   UDP-­‐‑N-­‐‑acetylglucosamine   and   UDP-­‐‑

glucuronic  acid  for  hyaluronan  synthesis.  The  new  sugar  units  are  added  into  the  reducing   end  of  the  growing  chain  by  the  native  vertebrate  enzyme  (Weigel  et  al.  1997).  Studies  with   a  recombinant  enzyme  and  the  enzyme  from  Pasteurella  multocida  show  chain  growth  in   the  non-­‐‑reducing  end  (Bodevin-­‐‑Authelet  et  al.  2005,  DeAngelis  1999).  

The  amino  acid  sequences  of  HAS  isoenzymes  are  quite  homologous  between  different   species.  The  predicted  structure  of  the  enzyme  consists  of  4-­‐‑6  transmembrane  domains  and   1-­‐‑2  membrane  associated  domains  (Figure  2).  A  large  cytoplasmic  domain  is  suggested  to   contain   the   enzymatically   active   area.   The   transmembrane   domains   that   span   the   lipid  

(26)

 

 

4  

bilayer   are   suggested   to   create   a   pore   in   the   plasma   membrane   for   the   protruding   hyaluronan   chain  (Weigel   et   al.   1997).   There   has   been   speculation   on   the   structure   of   the   pore.   A   recent   review   by   Weigel   concludes   that   the   HAS   enzyme   itself   forms   the   pore   (Weigel  2015),  while  previous  studies  using  inhibition  of  multidrug  resistance  transporters   had   suggested   that   they   are   involved   in   the   export   of   hyaluronan   from   the   inner   to   the   outer  surface  of  plasmamembrane  (Schulz  et  al.  2007).  

       

 

Figure   2.  A   schematic   structure   of   vertebrate   hyaluronan   synthase   hyaluronan   binding   proteins   and   degradation   enzymes.   The   synthase   is   composed   of   7   transmembrane   or   membrane-­‐‑associated  domains  and  a  large  cytoplasmic  domain,  latter  assumed  to  contain   the  enzymatic  activity.  Aggrecan  is  an  example  of  extracellular  hyaluronan  binding  protein.  

CD44   is   the   main   cell   surface   receptor   for   hyaluronan.   Hyaluronidase   2   is   a   cell   surface   degradation   enzyme   of   hyaluronan.   Modified   from   Itano   and   Kimata   (Itano   and   Kimata   2002),   Anderegg   et   al.   (Anderegg   et   al.   2014)   and   Chowdhury   et   al.   (Chowdhury   et   al.  

2016).  

 

The  human  HAS1  gene  is  localized  in  chromosome  19  and  the  mouse  gene  in  chromosome   17   (Spicer   and   McDonald   1998).   HAS1   is   the   isoenzyme   with   lowest   activity   (Itano   et   al.  

1999),   (Rilla   et   al.   2013a),   and   HAS1   knockout   mice   have   no   apparent   phenotype   (Kobayashi   et   al.   2010).   The   hyaluronan   chains   synthesized   by   HAS1   are   suggested   to   be   smaller  as  compared  to  those  of  HAS2  (Itano  et  al.  1999).  Hyaluronan  production  by  HAS1   is  highly  dependent  of  the  intracellular  UDP-­‐‑sugar  concentration  and  high  concentrations   are  necessary  for  full  enzymatic  activity  (Rilla  et  al.  2013a).  TGF-­‐‑β  stimulated  synoviocytes  

(27)

   

 

5  

have   elevated  HAS1   expression   and   increased   hyaluronan   production   (Stuhlmeier   and   Pollaschek  2004a).  HAS1  promoter  contains  SP3  and  SMAD3  elements  and  these  elements   regulate  the  level  of  its  expression(Chen  et  al.  2012).  

   High  expression  of  HAS1  is  typical  for  some  diseases  like  rheumatoid  arthritis  (Stuhlmeier   and   Pollaschek   2004b),   osteoarthritis   (Lambert   et   al.   2014)   and   infectious   lung   disease   (Chang   et   al.   2014).   Bone   marrow   mesenchymal   progenitor   cells   isolated   from   myeloma   patients  have  higher  HAS1  mRNA  expression  as  compared  to  cells  collected  from  healthy   people,  with  a  corresponding  elevation  in  HA  production  (Calabro  et  al.  2002).    

The   location   of   the   human  HAS2   gene   is   in   chromosome   8   and   that   of   mouse   in   chromosome   15   (Spicer   and   McDonald   1998).  HAS2   deletion   has   lethal   effects   during   embryonic   development.   HAS2   produces   large   hyaluronan   polymers   with   an   average   molecular   mass   of   >2   MDalton   (Itano   et   al.   1999).   The   availability   of   UDP-­‐‑HexNac   in   the   cytosol   limits   the   synthesis   rate   of   hyaluronan   and   feedback   regulates   the   expression   of   HAS2  (Jokela  et  al.  2011).  On  the  other  hand  extracellularly  applied  UDP-­‐‑Glucose  activates   HAS2   expression   by   binding   to   the   P2Y14-­‐‑   plasma   membrane   receptor,   leading   to   the   phosphorylation  of  STAT3  in  tyrosine  705  and    binding  to  the  promoter  of  HAS2  (Jokela  et   al.  2014).  

Interestingly,  HAS2  is  overexpressed  in  the  hereditary  cutaneous  mucinosis  of  Shar  Pei   dogs  (Zanna  et  al.  2009),  and  fibroblasts  from  Shar  Pei  dogs  have  higher  numbers  of  plasma   membrane  protrusions  (Docampo  et  al.  2011).  The  lifespan  of  naked  mole  rat  is  the  longest   among   rodents,   even   exceeding   30   years   (Buffenstein   and   Jarvis   2002).   Skin   fibroblasts   of   naked   mole   rat   have   high   expression   levels   for   HAS2   and   produce   extremely   high   molecular   weight   hyaluronan,   which   accumulates   in   the   subcutaneous   tissue   (Tian   et   al.  

2013).    

HAS2   is   overexpressed   in   fibroblasts   isolated   from   patients   suffering   idiopathic   pulmonary   fibrosis.   These   fibroblasts   are   more   invasive   compared   to   fibroblasts   from   healthy  people.  This  invasion  capacity  is  regulated  by  CD44  (Li  et  al.  2011).    

Human   and   mouse  HAS3   genes   are   localized   in   chromosomes   16   and   8,   respectively   (Spicer   and   McDonald   1998).   HAS3   knockout   mice   are   viable   and   have   no   specific   morphological  phenotype  (Bai  et  al.  2005),  but  they  have  epileptic  phenotype  (Arranz  et  al.  

2014).  Hyaluronan  produced  by  HAS3  is  usually  shorter  than  hyaluronan  made  by  HAS1   and  by  HAS2  (Brinck  and  Heldin  1999,  Itano  et  al.  1999).  The  promoter  area  of  HAS3  has   been   recently   characterized.   There   are   binding   sites   for   C/EBP   and   NFκB   and   Sp1,   which   seem   to   be   essential   for   promoter   activity   (Wang   et   al.   2015).   HAS3   is   abundant   on   the   plasma  membrane  (Rilla  et  al.  2005),  and  a  specific  feature  of  HAS3  is  its  accumulation  into   plasma   membrane   protrusions   that   collapse   after   hyaluronidase   digestion   or   inhibition   of   hyaluronan  synthesis  (Kultti  et  al.  2006).    This  suggests  that  the  protrusions  are  dependent   on  HAS3  activity.    

 

2.2.5  Regulation  of  hyaluronan  synthesis  

Hyaluronan   synthesis   is   stimulated   in   many   physiological   and   pathological   states,   like   in   inflammation,   after   tissue   injury   and   during   tumor   progression   (Cyphert   et   al.   2015).   The   HAS   expression   is   regulated   by   numerous   local   and   systemic   stimuli,   like   growth   factors,   cytokines  and  hormones.  

The  effects  of  growth  factors  on  HAS  activity  are  mainly  mediated  at  the  transcriptional   level,   since   they   induce   rapid   changes   in  HAS   mRNA   levels,   usually   associated   with   a   simultaneous  increase  in  hyaluronan  synthesis  (Jacobson  et  al.  2000,  Karvinen  et  al.  2003b,   Pienimäki  et  al.  2001,  Yamada  et  al.  2004).  For  example,  keratinocyte  growth  factor  (KGF)     (Karvinen  et  al.  2003b)  and  epidermal  growth  factor  (EGF)  (Pienimäki  et  al.  2001)  stimulate   the  expression  of  HAS2  and  HAS3  in  keratinocytes.  In  fact,  HAS2  is  one  of  the  direct  target   genes  for  EGF  signaling  (Saavalainen  et  al.  2005).  Examples  of  hormones  that  induce  HAS  

(28)

 

 

6  

expression  are  estrogen  (Tellbach  et  al.  2002)  and  progesterone  (Uchiyama  et  al.  2005).  Also   several   cytokines,   like   interleukin-­‐‑   1β   (IL-­‐‑1β)   upregulate  HAS   expression   and   hyaluronan   synthesis  in  many  cell  types,  like  fibroblasts  (Yamada  et  al.  2004),  endothelial  cells  (Vigetti   et   al.   2010)   and   lung   adenocarcinoma   cells   (Chow   et   al.   2010).     Hydrocortisone   inhibits   hyaluronan   synthesis   in   human   epidermis   (Ågren   et   al.   1995).   Glucocorticoids   almost   totally  block  HAS2  expression  in  dermal  fibroblasts  (Zhang  et  al.  2000)  

4-­‐‑methylumbelliferone   (4-­‐‑MU)   has   been   reported   to   specifically   inhibit   hyaluronan   synthesis  in  cultured  mammalian  cells  (Kosaki  et  al.  1999a,  Kultti  et  al.  2009,  Nakamura  et   al.   1995,   Nakamura   et   al.   1997,   Sohara   et   al.   2001)   and   in   Streptococcus   equi   FM100   cells   (Kakizaki  et  al.  2002).  It  inhibits  melanoma  cell  adhesion  and  locomotion  (Kudo  et  al.  2004),   and  metastasis  (Yoshihara  et  al.  2005).  4-­‐‑MU  also  reverses  the  effect  of  HAS2  transfection  on   hyaluronan  synthesis  and  colony  formation  of  tumor  cells  (Kosaki  et  al.  1999a).  Nowadays   4-­‐‑MU  is  widely  utilized  as  a  research  tool  to  inhibit  hyaluronan  synthesis.  

At   post-­‐‑transcriptional   level   the   availability   of   UDP-­‐‑sugar   precursors   is   a   potential   regulator   of   HAS   activity   (Itano   et   al.   1999).     This   hypothesis   is   supported   with   a   finding   that  depletion  of  the  UDP-­‐‑glucuronic  acid  pool  through  glucuronidation  of  4-­‐‑MU  (Kakizaki   et  al.  2004)  reduces  hyaluronan  synthesis  rate.  Also  reduction  of  UDP-­‐‑GlcNA  by  mannose   reduces   hyaluronan   synthesis   rate   (Jokela   et   al.   2011).   In   general,   the   availability   of   both   UDP-­‐‑sugars   regulates   the   activity   of   hyaluronan   synthesis   (Deen   et   al.   2016,   Jokela   et   al.  

2011,  Kakizaki  et  al.  2004,  Kultti  et  al.  2009,  Rilla  et  al.  2013a,  Vigetti  et  al.  2009).  

It   has   been   suggested   that   hyaluronan   synthases   can   form   homo-­‐‑   and   heteromers   in   plasma  membrane,  which  offers  one  more  possible  way  of  regulation  for  HAS  activity  (Bart   et  al.  2015,  Karousou  et  al.  2010).  Bart  and  coworkers  showed  reduced  hyaluronan  synthesis   in   HAS2   and   HAS3   overexpressing   cells   cotransfected   with  Has1   (Bart   et   al.   2015).   Other   putative   factors   regulating   HAS   activity   are   post-­‐‑transcriptional   modifications   in   HAS2   enzyme,  including  phosphorylation  (Goentzel  et  al.  2006,  Vigetti  et  al.  2011),  ubiquitination   (Karousou  et  al.  2010)  and  O-­‐‑GlcNAcylation  (Deen  et  al.  2016,  Vigetti  et  al.  2012).    

Because   HASs   are   known   to   be   active   only   in   the   plasma   membrane   (Rilla   et   al.   2005),   their   traffic   is   potentially   an   important   post-­‐‑transcriptional   factor   regulating   hyaluronan   synthesis   (Deen   et   al.   2014).   All   HAS   isoenzymes   follow   the   normal   route   for   transmembrane  proteins,  travelling  from  ER  to  Golgi  apparatus  and  further  to  the  plasma   membrane   (Müllegger   et   al.   2003).   Regulation   of   HAS   trafficking   is   not   fully   understood,   but   posttranslational   modifications   of   HAS   and   intracellular   UDP-­‐‑sugar   levels   affect   it   (Müllegger  et  al.  2003,  Siiskonen  et  al.  2014).  HAS1  seems  to  be  less  present  on  the  plasma   membrane   (Siiskonen   et   al.   2014)   than   HAS2   and   HAS3   (Rilla   et   al.   2005,   Siiskonen   et   al.  

2014).   Accordingly,   HAS2   and   especially   HAS3   are   more   active   in   inducing   plasma   membrane   protrusions   (Kultti   et   al.   2006,   Rilla   et   al.   2005)   and   secretion   of   extracellular   vesicles  (Rilla  et  al.  2013b,  Rilla  et  al.  2014).  

   

2.3 HYALURONAN DEGRADATION

Hyaluronan  is  degraded  by  hyaluronidases.  Vertebrate  hyaluronidases  produce  a  large  size   range   of   hyaluronan   oligomers   (Stern   and   Jedrzejas   2006).   They   can   also   break   down   chondroitin,   chondroitin-­‐‑4   sulfate,   chondroitin-­‐‑6   sulfate   and   to   some   extent   dermatan   sulfate  (Kreil  1995).  There  are  six  hyaluronidase  genes  in  humans,  hyaluronidases  1-­‐‑4,  PH-­‐‑

20   and   HYALP1   (Stern   and   Jedrzejas   2006).   Free   radicals   and   reactive   oxygen   species   can   fragment  hyaluronan  without  hyaluronidases  (Monzon  et  al.  2010,  Ågren  et  al.  1997b).  

The  most  studied  hyaluronidases  are  HYAL1  and  HYAL2.  In  humans  HYAL1  is  found   in   many   organs,   like   liver,   kidney,   spleen   and   heart   (Csoka   et   al.   2001).   This   enzyme   is  

(29)

   

 

7  

mainly  located  in  lysosomes  and  requires  a  low  pH  for  activity  (Csoka  et  al.  2001).  HYAL1   is  also  detected  in  serum  (Csoka  et  al.  2001)  and  urine  (Csoka  et  al.  1997).  High  serum  levels   of  HYAL1  are  explained  by  its  continuous  secretion  and  uptake  in  cells  (Gasingirwa  et  al.  

2010).  

HYAL2  is  a  glycosylphosphatidylinositol-­‐‑linked  (GPI-­‐‑linked)  protein  on  cell  surface  (Fig.  

2).   Its   expression   has   been   detected   in   all   mouse   tissues   except   brain   (Rai   et   al.   2001).  

HYAL2  has  a  relatively  low  hyaluronidase  activity  and  it  hydrolyses  only  high  molecular   weight   hyaluronan   (Lepperdinger   et   al.   1998).   A   recent   study   has   suggested   possible   HYAL2   binding   to   CD44.   Shedding   of   HYAL2   from   cell   surface   is   correlated   with   CD44   shedding  (Hida  et  al.  2015,  Tian  et  al.  2013).  

2.4 CD44 AND OTHER HYALURONAN RECEPTORS/BINDING PROTEINS There   are   several   hyaluronan-­‐‑binding   proteins   including   CD44,   LYVE1,   HARE/Stabilin2,   RHAMM,  TSG-­‐‑6/TNFIP6,  aggrecan,  brevican,  versican  and  SHAP  (Knudson  and  Knudson   1993).  Some  of  these  proteins  like  CD44,  LYVE,  HARE,  are  membrane  associated  proteins   and  some  like  aggrecan,  brevican,  versican  and  TSG-­‐‑6  are  found  in  the  extracellular  space.  

RHAMM   is   found   intracellularly   and   on   cell   suface   (Day   and   Prestwich   2002).   Most   of   these  proteins  have  a  constitutive  hyaluronan  binding  protein  motif,  so  called  link  module   (Kohda   et   al.   1996)   while   in   some   of   them   like   RHAMM   B(X7)B   motif   (B   is   arginine   or   lysine,   X   is   any   non-­‐‑acidic   amino   acid)   is   responsible   for   hyaluronan   binding   (Yang   et   al.  

1994).  

 

2.4.1  CD44    

The  main  cell  surface  hyaluronan  binding  protein  is  CD44  (Fig.2)  (Aruffo  et  al.  1990).  CD44   is   a   glycosylated   transmembrane   protein   containing   an   N-­‐‑terminal   link-­‐‑module.   The   structure   of   the   extracellular   domain   and   its   glycosylations   are   regulated   via   alternative   splicing  (Lesley  et  al.  1993).  Ten  variable  exons  can  be  inserted  in  the  extracellular  part  of   CD44  and  there  are  two  alternative  exons  for  the  intracellular  domain  (Thorne  et  al.  2004).  

The  intracellular  part  of  CD44  is  rather  short  (Thorne  et  al.  2004).  CD44  has  several  N-­‐‑  and   O-­‐‑glycolysationsites  (Lesley  and  Hyman  1998).  Substitution  of  CD44  by  chondroitin  sulfate,   heparan  sulfate  and  keratan  sulfate  chains  is  possible  (Piepkorn  et  al.  1997,  Piepkorn  et  al.  

1999,   Takahashi   et   al.   1996,   Tuhkanen   et   al.   1997).   These   glycosaminoglycan   side   chains   make   CD44   capable   of   binding   growth   factors,   like   hepatocyte   growth   factor   (Orian-­‐‑

Rousseau  et  al.  2002).  There  are  three  phosphorylation  sites  in  the  standard  CD44  molecule.  

Serine   325   relays   CD44   association   with   the   ezrin–radixin-­‐‑moesin   complex,   and   through   them   to   actin   cytoskeleton   (Thorne   et   al.   2004).   CD44-­‐‑actin   cytoskeleton   interaction   is   stabilized  by  lipid  rafts  in  the  plasma  membrane  (Oliferenko  et  al.  1999).  Palmitoylation  of   the   transmembrane   domain   of   CD44   might   regulate   its   association   in   lipid   rafts   (Thankamony   and   Knudson   2006).   CD44   is   expressed   in   most   human   and   mouse   tissues   (Sherman   et   al.   1997).   The   capacity   of   CD44   to   bind   hyaluronan   varies.   It   can   be   totally   inactive,   activatableby   certain   signals   and   constitutively   active   (Lesley   and   Hyman   1992).  

CD44   affinity   to   HA   is   quite   low.   Clustering   of   CD44   molecules   increases   affinity   to   hyaluronan  (Sleeman  et  al.  1996).  Specific  de-­‐‑N-­‐‑glycosylation  at  the  hyaluronan  binding  site   of  CD44  increases  its  affinity  to  HA  (English  et  al.  1998).  CD44-­‐‑HA  interaction  has  several   roles  in  tissues.  CD44  binding  to  hyaluronan  links  cells  to  the  pericellular  matrix.  CD44  also   mediates  the  uptake  of  hyaluronan  in  many  cell  types,  like  macrophages  and  chondrocytes   (Culty   et   al.   1992).   Hyaluronan   binding   to   CD44   has   been   shown   to   recruit   signaling   molecules   including   ErbB2   and   epidermal   growth   factor   receptor   (Toole   2009).   The  

(30)

 

 

8  

interactions   between   hyaluronan   and   CD44   have   an   important   role   in   the   development,   inflammation,  T-­‐‑cell  recruitment,  tumor  growth  and  metastasis  (Lesley  et  al.  1993).    

Overexpression   of   CD44   variants   has   a   role   in   many   tumors   such   as   ovarian   (Bourguignon  et  al.  2001),  gastric  (Carvalho  et  al.  2006)  and  head  and  neck  cancers  (Wang  et   al.   2007).   A   phenotype   with   CD44   overexpression   is   generally   more   malignant.   In   squamous   cell   carcinomas   CD44   is   decreased   in   high   malignant   cases   (Karvinen   et   al.  

2003a,  Kosunen  et  al.  2004).  There  are  also  reports  suggesting  suppression  of  metastasis  by   CD44  (Gao  et  al.  1997,  Kuo  et  al.  2006).  CD44  is  one  of  the  markers  for  cancer  stem  cells  for   example  in  head  and  neck  (Bourguignon  et  al.  2012),  and  lung  (Wang  et  al.  2013)  cancers.  

2.4.2  Other  hyaldherins  

LYVE1  (lymphatic  vessel  endothelial  hyaluronan  receptor  1)  is  found  in  human  (Banerji  et   al.  1999)  and  mice  (Prevo  et  al.  2001)  lymphatic  vessels.  It  is  a  homolog  of  CD44  and  has  a   link   module   (Banerji   et   al.   1999).   LYVE1   is   present   in   hepatic   sinusoidal   endothelial   cells   (Mouta  Carreira  et  al.  2001)  and  in  the  reticular  cells  of  lymph  nodes  (Wrobel  et  al.  2005).    

HARE/stabilin   2   is   a   hyaluronan   receptor   for   endosytosis.   It   was   first   found   in   liver   endothelial  cells  (Zhou  et  al.  2000).  Different  splice  variants  have  been  found  in  tissues  like   spleen,   lymph   node   and   bone   marrow   (Hare   and   Harris   2015).   HARE   is   a   plasma   membrane  protein  that  binds  to  hyaluronan  with  high  affinity  and  the  bound  hyaluronan  is   rapidly   endocytosed.   There   are   several   other   ligands   for   HARE,   like   chondroitin   sulfate,   dermatan   sulfate   and   heparin.   Stabilin   2   knockout   mouse   has   an   otherwise   normal   phenotype,  except  that  the  serum  level  of  hyaluronan  is  high  (Schledzewski  et  al.  2011).  

RHAMM  (receptor  for  hyaluronan  mediated  motility)  is  expressed  in  many  tissue  types   (Hardwick  et  al.  1992).  Hyaluronan  interaction  with  RHAMM  has  an  important  role  during   tissue   injury   and   repair   (Zaman   et   al.   2005).   For   example,   upregulation   of   RHAMM   expression  has  been  detected  in  bovine  aortic  smooth  muscle  cells  after  injury  (Savani  et  al.  

1995).    

Brevican  is  a  brain-­‐‑specific  proteoglycan,  which  exists  both  as  secreted  and  cell  surface   glycosylphosphatidytinositol-­‐‑anchored   isoforms   (Jaworski   et   al.   1999).   Neurocan   is   a   proteoglycan   specific   for   brain   and   nervous   tissues.   During   brain   remodelling   processes   neurocan   and   hyaluronan   distributions   and   functions   are   associated   (Rauch   et   al.   2004).  

Neurocan  expression  is  increased  following  brain  (Asher  et  al.  2000)  and  spinal  cord  (Jones   et  al.  2003)  injuries.  Aggrecan  is  a  cartilage-­‐‑specific  high  molecular  weight  proteoglycan.  It   has   a   long   core   protein   with   a   large   number   of   glycosaminoglycan   side   chains   (Fig.2).   In   cartilage   about   100   aggrecan   molecules   bind   to   a   hyaluronan   chain   and   make   very   large   aggregates.  These  aggregates  are  negatively  charged  and  bind  water  and  positive  ions.  The   aggregates   are   trapped   in   the   collagen   network.   This   helps   to   create   the   high   osmotic   pressure   of   cartilage   (Chandran   and   Horkay   2012).   Versican   is   another   large   chondroitin   sulfate   proteoglycan.   Some   versican   is   present   in   most   tissues.   It   has   four   splice   variants.  

Versican   is   involved   in   cell   adhesion,   proliferation,   extracellular   matrix   modeling,   and   migration   (Wight   et   al.   2014).   Versican   can   regulate   inflammation   (Wight   et   al.   2014)   and   has  a  role  in  cancer  development  and  metastasis  (Ricciardelli  et  al.  2009).  

Hyaluronan   binding   protein-­‐‑2   (HABP2)   was   originally   isolated   from   plasma   (Choi-­‐‑

Miura  et  al.  1996).  This  extracellular  protease  takes  part  in  blood  coagulation  and  has  been   linked   to   atherosclerosis   (Kanse   et   al.   2008).   Low   molecular   weight   hyaluronan   activates   HAPB2   and   high   molecular   weight   hyaluronan   inhibits.   This   activation   results   in   endothelial   barrier   dysfunction   (Mambetsariev   et   al.   2010).   HABP2   is   an   important   in   human  lung  carcinoma  (Mirzapoiazova  et  al.  2015).  

 

(31)

   

 

9   2.5 HYALURONAN AND CANCER

 

2.5.1  Hyaluronan  in  cancer  cell  cultures  

The   rate   of   hyaluronan   secretion   is   typically   high   in   cancer   cells   compared   to   non-­‐‑

malignant   cells,   and   often   correlates   with   the   malignant   properties   of   the   cells.  

Overexpression   of   HAS2   promotes   anchorage-­‐‑independent   growth   of   cultured   fibrosarcoma  cells  (Kosaki  et  al.  1999b)  and  mesothelioma  cells  (Li  and  Heldin  2001),  while   inhibition  of  HAS2  leads  to  decreased  anchorage-­‐‑independent  growth  in  breast  cancer  cells   (Li   et   al.   2007a).   Moreover,   growth   of   colon   carcinoma   cells   is   dependent   on   HAS3   expression   (Bullard   et   al.   2003).  Increased   production   of   hyaluronan   enhances   multidrug   resistance   of   many   cultured   cancer   cell   lines   (Misra   et   al.   2003).   Hyaluronan   and   hyaluronan   binding   proteins   have   been   shown   to   take   part   in   epithelial-­‐‑mesenchymal   transition  (Cho  et  al.  2012,  Itano  and  Kimata  2008).  HAS3  overexpression  and  hyaluronan   accumulation   disrupted   epithelial   cell   polarity.   This   failure   of   tissue   organization   is   a   possible  premalignant  feature  that  can  lead  to  malignant  growth  (Rilla  et  al.  2012).    

 

2.5.2  Hyaluronan  in  animal  tumor  models  

The   importance   of   hyaluronan   in   cancer   progression   has   been   shown   in   several   animal   models.   Hyaluronan   overproduction   by   HAS2   overexpression   or   HYAL1   inhibition   promotes  tumorigenicity  of  rat  colon  carcinoma  cells  (Jacobson  et  al.  2002).  Transgenic  mice   with  HAS2   overexpression   in   the   mammary   gland   show   increased   tumor   growth   and   angiogenesis   (Koyama   et   al.   2007).   In   a   tumor   xenocraft   model   intratumoral   lymphangiogenesis  is  promoted  by  a  hyaluronan-­‐‑rich  tumor  stroma  (Koyama  et  al.  2008).  

Furthermore,   depletion   of   hyaluronan   by   a   clinically   formulated   hyaluronidase   increased   the   tumor   delivery   of   chemotherapeutic   agents   in   a   mouse   model   of   pancreatic   cancer   (Jacobetz  et  al.  2013).  

 

2.5.3  Hyaluronan  in  human  cancer  

Hyaluronan   is   a   strong   indicator   of   malignant   growth   and   acts   as   an   independent   unfavourable   prognostic   factor   in   many   tumors   of   epithelial   origin.   Poor   prognosis   of   cancer   is   associated   with   hyaluronan   accumulation   in   breast,   colorectal,   prostate,   lung,   ovarian,  and  gastric  cancers  (Tammi  et  al.  2008).    

Hyaluronan   accumulates   in   the   stroma   of   several   tumors,   like   breast   (Auvinen   et   al.  

2000),  ovarian  (Anttila  et  al.  2000),  prostate  (Lipponen  et  al.  2001),  and  thyroid  (Böhm  et  al.  

2002)  cancers.  Strong  hyaluronan  staining  in  the  tumor  stroma  is  linked  to  invasion  and  is   usually   correlated   with   poor   prognosis.   Cell   associated   hyaluronan   is   also   increased   in   tumors   like   bladder   (Hautmann   et   al.   2001),   ovarian   (Anttila   et   al.   2000),   and   colorectal   cancers  (Ropponen  et  al.  1998)  and  even  nuclear  positivity  has  been  detected  in  some  cases,   like  in  basal  cell  carcinoma  (Karvinen  et  al.  2003a)  and  breast  cancer  (Auvinen  et  al.  2000).  

In  squamous  cell  carcinomas  originating  from  mouth  (Kosunen  et  al.  2004),  lung  (Pirinen  et   al.   1998),   larynx   (Hirvikoski   et   al.   1999)   skin   (Karvinen   et   al.   2003a),   and   melanoma   (Karjalainen   et   al.   2000)   show   reducing   levels   of   hyaluronan   during   the   progression   of   cancer.   Poor   prognosis   of   mouth   carcinoma   is   associated   with   reduced   hyaluronan   level   (Kosunen  et  al.  2004).  

Viittaukset

LIITTYVÄT TIEDOSTOT

Additionally, cancer cell- associated hyaluronan accumulation has been associated with poor outcome in the patients with breast (168) and colorectal (172)

In  aggregate,  the  experiments  on  the  effects  of  UDP-­‐‑sugars  on  multiple  key  points  in  HAS3   activity,  including  its  endocytosis,  shedding

Abundant  hyaluronan  is  retained  around  the  cells  after  its  synthesis  by  binding  to  its  receptors, like 

The results of this thesis show that low tumoral hyaluronan content in melanomas is associated with decreased expression of hyaluronan synthases 1 and 2 (HAS1 and

At maturation, Vitamin C downregulated Has2, Hyal2 and Cd44, while it increased high molecular mass hyaluronan in the epidermis, and reduced small fragments in the medium,

Interestingly, even high over- expression of HAS1 in cell types with little or no endogenous hyaluronan production is not enough to produce a clearly visible hyaluronan coat (12,

(2014) ‘Excessive hyaluronan production promotes acquisition of cancer stem cell signatures through the coordinated regulation of twist and the transforming growth factor β

 Therefore,  the  aim   of  this  dissertation  was  to  study  the  ultrastructure  and  function  of  the  hyaluronan  coated   microvilli  in  more  detail,  and