• Ei tuloksia

 

20  

5  Results  

5.1 SUBCELLULAR LOCALIZATION OF HYALURONAN SYNTHASES (I)

 

5.1.1  Immunostainings  of  tissues  

Because   hyaluronan   content   of   the   dermis   is   high,   human   skin   sections   were   used   as   an   example  to  test  the  localization  and  amount  of  HAS  isoenzymes  in  human  tissues  (I,  Figure   5).  Dermal  fibroblasts  were  intensely  stained  with  all  HAS  antibodies.  Most  of  the  staining   detected  was  cytoplasmic,  but  also  plasma  membrane  signal  could  be  detected,  for  example   for  HAS1  (I,  Figure  5b).    

 

5.1.2  Immunostainings  of  cultured  cells  

We   used   three   different   cell   lines,   human   skin   dermal   fibroblasts,   human   keratinocytes   (HaCat)   and   transformed   fibroblastic   like   COS-­‐‑1   cells   derived   from   monkey   kidney,   to   study   subcellular   localization   of   endogenous   HASs.   These   cell   lines   produce   different   amounts   of   hyaluronan,   the   fibroblasts   producing   the   highest   and   COS-­‐‑1   cells   the   lowest   amount   (I,   table   1).   In   line   with   their   high   hyaluronan   production   (Jokela   et   al.   2013)   fibroblasts   were   intensely   stained   for   all   HAS   isoenzymes   with   the   antibodies   used   (I,   Figure  7a-­‐‑c).  The  signal  for  HAS1  was  low  in  HaCat  keratinocytes,  while  HAS2  and  HAS3   immunostainings   were   clearly   positive,   in   accordance   with   the   substantial   levels   of  HAS2   and  HAS3,  and  low  HAS1  mRNA  in  these  cells  (Saavalainen  et  al.  2007)  (I,  Figure  7d-­‐‑f).  The   immunostainings  for  all  HASs  were  almost  negative  in  COS-­‐‑1  cells  (I,  Figure  7g-­‐‑i).    

HAS3  was  abundant  in  plasma  membrane  and  the  protrusions  of  the  cells.  These  areas   were   also   rich   in   hyaluronan   (I,   Figure   8j-­‐‑l).     The   majority   of   HAS1   was   found   intracellularly,   mostly   in   the   Golgi   area.   A   weak   signal   was   also   seen   in   the   plasma   membrane  and  its  protrusions  (I,  Figure  8a-­‐‑c).    Cytoplasmic  vesicles  contained  most  of  the   HAS2  staining  (I,  Figure  8d-­‐‑f).  Interestingly,  a  part  of  the  HAS2  signal  was  also  localized  in   the  ER  and  nuclear  membrane,  especially  in  the  fibroblasts  (I,  Figure  7b).  

Native  MCF-­‐‑7  cells,  expressing  a  low  level  of  HAS3  mRNA,  a  modest  level  of  HAS2,  and   almost  no  HAS1,  produce  about  2.6  ng  hyaluronan/10,000cells/24h  (Kultti  et  al.  2009),  while   the   MCF-­‐‑7   cells   transfected   with   HAS1-­‐‑3   constructs   synthesize   large   quantities   of   hyaluronan   (Kultti   et   al.   2009).     The   antibody   for   HAS1   stained   the  HAS1   overexpressing   cells   nicely,   but   produced   no   signal   in   cells   overexpressing  HAS2   and  HAS3   (I,   Figure   6).  

Likewise,   the   antibody   for   HAS2   showed   no   cross-­‐‑reaction   in   cells   overexpressing  HAS1   and  HAS3.  No  cross-­‐‑reactivity  was  seen  with  HAS3  antibody  either.    

 

5.1.3  GFP-­‐‑tagged  HAS  proteins  

To  confirm  the  different  subcellular  distributions  of  the  HAS  isoforms,  as  suggested  by  the   immunostainings,   MCF-­‐‑7   cells   were   transiently   tranfected   with   the   human  HAS-­‐‑GFP-­‐‑

constructs.   Each   of   the   GFP-­‐‑tagged   isoenzymes   had   a   typical   subcellular   distribution   (I,   Figure  9).    GFP-­‐‑HAS1  showed  the  lowest  signal  in  the  plasma  membrane.  It  was  especially   abundant  in  the  Golgi  area  and  in  the  ER.  However,  some  GFP-­‐‑HAS1  positive  intracellular   vesicles   were   seen   near   the   plasma   membrane   and   in   the   thin   protrusions   of   the   plasma   membrane  (I,  Figure  9a,b).  The  GFP-­‐‑HAS2  signal  was  primarily  found  in  the  ER,  Golgi  and  

   

 

21  

cytoplasmic   vesicles.   Some   of   the   protrusions   of   the   plasma   membrane,   especially   those   standing  on  the  edges  of  lamellipodia,  contained  high  levels  of  GFP-­‐‑HAS2  (I,  Figure  9c,d).  

GFP-­‐‑HAS3   had   the   highest   plasma   membrane   signal   among   the   HASs,   in   addition   to   the   intracellular  locations  similar  to  the  other  HAS  isoenzymes.  The  apical  surface  of  the  GFP-­‐‑

HAS3  expressing  cells  was  covered  by  very  long  plasma  membrane  protrusions  positive  for   GFP-­‐‑HAS3  (I,  figure  9e,f).    

     

5.2 SPATIAL AND TEMPORAL DISTRIBUTION OF HYALURONAN AND HAS1-3 DURING MOUSE EMBRYONIC DEVELOPMENT (I)

 

Paraffin  sections  from  mouse  embryos  at  different  ages  were  stained  with  bHABC  and  HAS   antibodies  to  detect  hyaluronan  and  HAS1-­‐‑3.  The  specificity  of  the  hyaluronan  staining  was   controlled   by   treatment   of   the   sections   with   hyaluronidase,   and   blocking   the   probe   with   hyaluronan  oligosaccharides.  The  spesificities  of  the  HAS1-­‐‑3  stainings  were  determined  by   blocking   with   peptides   corresponding   to   those   used   for   immunization   (I,   Figure2,   i-­‐‑l)   or   replacing  the  primary  antibody  with  non-­‐‑immune  IgG.    

The   stainings   for   hyaluronan   were   typically   intense   in   all   stages   of   the   development   (I,   Figures  1-­‐‑4).  Hyaluronan  was  abundant  especially  in  the  tissues  of  mesodermal  origin,  like   the   stuctures   surrounding   the   neural   tube,   branchial   arch,   cardic   tube   and   its   cushions   in   samples  from  the  E9  embryos  (I,  Figure  1a-­‐‑d).  During  the  embryonic  day11    (E11)-­‐‑E15  stage   HA   accumulated   in   the   mesenchymal   tissues   all   over   the   body   (I,   Figures   2m,   3a),   in   the   skin  and  its  underlying  connective  tissues  (I,  Figure  2e,  Figure  3a,c),  cartilage  (I,  Figure  3m)   and   certain   brain   areas   (I,   Figure   3a,q).   In   the   E17   stage   hyaluronan   stainings   were   still   intense   in   the   connective   tissues,   part   of   the   brain,   kidney   and   developing   eye   (I,   Figure   4a,e,I,m).  Interestingly,  at  this  stage  parts  of  the  brain,  liver  and  calcified  bones  were  almost   negative  for  hyaluronan  (Figure  4).    

As   expected,   the   HAS   stainings   in   the   embryos   were   localized   in   the   cells   (as   opposed   to   the   extracellular   matrix).   The   main   location   was   cytoplasm   for   all   HASs   (I,   Figures   1-­‐‑4).  

Nevertheless,  HAS2  signal  was  seen  in  positions  consistent  with  plasma  membrane  in  the   tubular   epithelium   of   the   developing   kidneys   (I,   Figure   4o).   In   addition,   some   plasma   membrane   protrusions   on   the   mesenchymal   cells   of   the   intramembraneous   bones   were   stained   with   the   HAS1   and   HAS3   antibodies   (I,   Figures   2n,p,   arrows).   In   general,   the   mesenchymal  cells  in  particular  were  highly  positive  for  all  HASs  (I,  Figures  2n-­‐‑p),  but  the   staining   was   also   high   in   the   developing   epidermal   keratinocytes.   In   the   kidney,   the   stainings  of  the  HASs  were  most  intense  in  the  tubular  cells  (I,  Figures  4n-­‐‑p).  The  sections   through   a   whole   E17   mouse   embryo   stained   for   HAS1,   2   and   3   and   hyaluronan,   show   a   relatively  high  signal  intensity  of  all  HASs  e.g.  in  the  developing  skin  and  cartilage,  as  well   as  the  overall  distribution  of  each  isoenzyme  (Figure  4).  Large  amounts  of  hyaluronan  are   found  especially  in  the  connective  tissues,  brain  and  kidney  (I:  Figure  4).  

 

 

 

22  

 

Figure   4.  Distribution   of   hyaluronan   and   hyaluronan   synthases   in   sections   of   a   whole   mouse  E17  embryo.  The  sections  were  stained  with  bHABC  to  detect  hyaluronan  and  with   affinity   purified   polyclonal   antibodies   for   HAS1,   HAS2   and   HAS3.   The   brown   color   indicates   the   signal   for   hyaluronan   and   the   antibodies,   and   hematoxylin   was   utilized   to   stain  the  nuclei  (blue).  Magnification  bar  1  mm.  

 

The  staining  intensity  of  HAS2  was  generally  highest  in  the  E9  embryos,  but  signals  were   present  also  for  HAS1  and  HAS3  (I,  Figure  1).  On  the  embryonic  day  11  all  HASs  stained   with  high  intensity  in  the  heart,  and  mesenchymal  tissues  such  as  dermis.  At  this  stage,  a   stronger   staining   intensity   was   found   for   HAS1   and   HAS3   than   HAS2   in   the   developing   bones.   Epithelial   tissues   were   mostly   negative   for   all   HASs   (I;   Figure   2).   In   E15   chondrocytes  the  interior  of  the  cartilage  was  intensively  stained  for  HAS1-­‐‑3.  The  stratified   epithelia   of   mouth   and   skin   had   turned   positive   for   HASs   (I,   Figure   3).   In   stage   E17   all   HASs  were  positive  in  the  mesenchymal  tissues  such  as  skin.  At  this  stage,  there  was  less   HAS1  than  HAS2  and  HAS3  in  the  epidermis  (I,  Figure  4).  

   

 

23  

5.3 HYALURONAN, CD44 AND HAS1-3 IN UV RADIATED MOUSE EPIDERMIS (II)

5.3.1  Hyaluronan  and  CD44  stainings  

In  paper  (II)  mice  were  exposed  to  UV  lamps  simulating  the  spectrum  of  the  sun  (280-­‐‑400   nm)  for  35min  three  times  a  week  for  10.5  months,  with  doses  corresponding  to  one  human   minimum  erythema  dose  (MED).  Most  of  the  treated  animals  showed  epidermal  thickening   as   compared   with   non-­‐‑exposed   controls.   There   was   a   squamous   cell   carcinoma   in   every   fifth,  and  dysplastic  changes  in  every  third  treated  sample.  No  dysplasias  or  squamous  cell   carcinomas  were  found  in  control  animals  (II,  Table  1).    

Normal   adult   mouse   epidermis   was   mostly   negative   for   hyaluronan,   but   the   dermal   connective  tissue  showed  a  highly  intensive  staining  (II,  Figure  1a).  There  was  a  faint  signal   for  CD44  in  the  interfollicular  epidermis,  especially  in  the  basal  layers  (II,  Figure  1b).  The   treatment   with   UV   caused   hyaluronan   accumulation   in   the   epidermis,   especially   in   the   areas   with   strong   hyperplasia   (II,   Figure   1e).   The   epidermal   area   positive   for   hyaluronan,   and  the  intensity  of  the  staining  increased  in  hyperplasia.  There  was  a  positive  correlation   between   the   degree   of   hyperplasia   and   level   of   hyaluronan.   The   number   of   cell   layers   positive   for   hyaluronan   also   increased   with   advancing   hyperplasia   (II,   Figure   1c,e).   The   benign  hyperplasia  in  mouse  epidermis  displayed  a  hyaluronan  distribution  similar  to  that   of  the  human  epidermis,  both  containing  hyaluronan  between  the  basal  and  spinous  layers,   but   missing   hyaluronan   in   the   granular   and   more   superficial   layers   (II,   Figure   1c).   The   staining   of   CD44   also   increased   with   hyperplasia   (II,   Figure   1f).   The   dysplastic   and   squamous  carcinoma  cells  were  moderately  or  intensely  positive  for  hyaluronan  and  CD44,   with  occasional  areas  of  a  faint  signal  (II,  Figure  2).    

Dermis   was   positive   for   hyaluronan   in   both   control   and   UV-­‐‑treated   samples.  

Hyaluronan  staining  under  the  epidermal  basement  membrane  was  reduced  in  69%  of  the   hyperplastic  samples  (II,  Figure  1).  

5.3.2  HAS  immunostainings  

Normal  mouse  epidermis  was  almost  negative  for  all  HASs  with  only  a  few  faintly  positive   cells.  Dermal  fibroblasts  had  a  weak  or  moderate  staining  for  all  HASs  (II,  Figures  3a,e,i).  

The  UV-­‐‑treatment  increased  the  HAS1,  HAS2  and  HAS3  signals  both  in  the  epidermis  and   dermis  (II,  Figure  3).  The  response  was  strongest  for  the  HAS2  immunostaining.    

5.4 HYALURONAN, CD44 AND HAS1-3 IN LUNG MESOTHELIOMA AND ADENOCARCINOMA (III)

 

5.4.1  Hyaluronan  staining  in  mesotheliomas  and  adenocarcinomas  

Hyaluronan   was   observed   on   the   surfaces   of   the   mesothelioma   cells   and   in   the   adjacent   extracellular  space  (III,  Figures  1  a,  b,  d,  e).  There  was  also  some  intracellular  staining.  The   intensity   of   the   staining   and   its   coverage   are   varied   between   the   samples.   The   staining   intensity  was  weak  or  moderate  in  most  of  the  mesothelioma  cases.  Adenocarcinoma  cells   had   significantly   less   (p=0.001)   hyaluronan   than   mesothelioma   cells   (III,   Figures   c,   f).   The   stromal   tissue   was   moderately   positive   for   hyaluronan   in   both   mesotheliomas   and   adenocarcinomas.  

 

 

 

24   5.4.2  CD44  stainings  

Most   cancer   cells   and   stromal   cells   were   CD44   positive   in   the   epithelioid   mesotheliomas   (III,  Figure  3  a,  d).  In  some  of  the  sarcomatoid  mesotheliomas  most  of  the  cancer  cells  were   positive   for   CD44   while   in   some   cases   only   a   small   part   of   the   cells   were   positive   (III,   Figures  3  d,  e).  The  staining  of  CD44  in  the  stromal  cells  was  generally  less  intense.  A  part   of   the   adenocarcinoma   cells   was   almost   negative   for   CD44   while   a   part   of   these   cells   showed  a  faint  signal  (III,  Figures  e,  f).  There  were  no  significant  differences  in  the  cancer   cell   or   the   stromal   CD44   staining   intensity   between   mesotheliomas   and   adenocarcinomas   (III,  Figure  3).  

 

5.4.3  HAS  immunostainings  

The   stromal   cells   in   both   mesothelioma   and   adenocarcinoma   samples   were   mostly   negative,   or   weakly   positive   for   all   HAS   isoenzymes   (III,   Figure   5).   There   were   HAS   positive  cancer  cells  in  epithelioid  mesotheliomas  and  adenocarcinomas  (III,  Figure  5a,  c),   but  in  the  sarcomatoid  mesotheliomas  the  cancer  cells  were  weakly  stained  (III,  Figures  5b,   e,  h).  The  granular  staining  was  found  intracellularly,  while  only  a  few  cells  showed  a  HAS   positive  plasma  membrane  (III,  Figures  5c,  f,  I).  The  differences  in  the  intensity  or  frequency   of   the   HAS   stainings   between   mesotheliomas   and   adenocarcinomas   were   not   statistically   significant.    

 

 

 

   

 

25