• Ei tuloksia

Hyaluronan  in  lung  mesothelioma  and  adenocarcinoma

2   REVIEW  OF  THE  LITERATURE

2.7   Hyaluronan  in  Mesothelioma

2.7.2   Hyaluronan  in  lung  mesothelioma  and  adenocarcinoma

2.7.1  Pathogenesis  of  pleural  mesothelioma  and  lung  adenocarcinoma  

Malignant   mesothelioma   is   one   of   the   most   highly   malignant   tumor   types.   It   originates   from  serous  mesothelial  cells  like  those  of  pleura  and  peritoneum.  Exposure  to  asbestos  is   the   main   risk   factor   for   mesotheliomas.   During   the   malignant   transformation   process   the   normal,   flat   epithelial   cells   of   mesothelium   are   transformed   into   aggressive   epithelioid   or   sarcomatoid   cancer   cells   (Hjerpe   and   Dobra   2008).   Experiments  in   vitro   have   shown   that   EGFR   signaling   has   an   important   role   in   mesothelioma   cell   proliferation   and   migration   (Jänne  et  al.  2002).    

Lung  cancer  is  one  of  the  most  common  cancers.  Lung  cancers  are  divated  into  small  cell   carcinomas  and  non  small  cell  carcinomas.  Non  small  cell  carcinomas  are  subdivated  into   adenocarcinomas,   squamous   cell   carcinomas,   large   cell   carcinomas,   and   sarcomatoid   carcinomas   (Petersen   and   Warth   2016).   About   one   third   of   all   lung   cancers   are   adenocarcinomas,   with   several   subtypes.   Contrary   to   other   lung   cancers,   patients   with   adenocarcinomas  are  typically  non-­‐‑smokers  (Sun  et  al.  2007).  The  new  classification  of  lung   adenocarcinomas   include   preinvasive   adenocarcinoma,   minimally   invasive   adenocarcinomas   and,   invasive   adenocarcinomas   (Travis   et   al.   2011).   Most   of   the   lung   adenocarcinomas   arise   from   the   epithelium   of   the   terminal   bronchiole   or   alveolar   duct.  

Normal  bronchiole  and  the  most  adenocarcinomas  express  the  thyroid  transcription  factor-­‐‑

1   (TTF-­‐‑1),   while   adenocarcinomas   originating   from   the   mucus-­‐‑secreting   epithelium   are   negative   for   TTF-­‐‑1.   Epidermal   growth   factor   receptor   mutation   represents   one   of   the   molecular  mechanisms  and  markers  of  lung  adenocarcinomas  (Pao  et  al.  2004).  

 

2.7.2  Hyaluronan  in  lung  mesothelioma  and  adenocarcinoma  

Thylen   and   co-­‐‑workers   showed   positive   correlation   between   a   short   survival   and   hyaluronan   content   in   mesothelioma   patients   (Thylen   et   al.   2001).   All   three   HASs   are   expressed   in   mesotheliomas   (Kanomata   et   al.   2005)   and   plasma   membrane   expression   of   CD44   has   been   reported   in   mesothelioma   cells   (Ordonez   2000).   Affify   et   al   showed   intracellular  staining  of  hyaluronan  in  mesothelioma  cells  and  used  it  for  the  differentiation   between   lung   adenocarcinoma   and   mesothelioma   (Afify   et   al.   2005).   Pleural   hyaluronan   level  is  a  promising  diagnostic  marker  for  mesothelioma  (Creaney  et  al.  2013).  

 The  percentage  of  hyaluronan-­‐‑positive  cancer  cells  and  their  staining  intensity  is  typically   low  in  lung  adenocarcinomas  while  tumor  stroma  is  strongly  positive  (Pirinen  et  al.  2001).  

A   strong   tumor   cell-­‐‑associated   hyaluronan   signal   correlates   with   poor   tumor   differentiation,   and   a   strong   stromal   signal   is   linked   to   the   recurrence   of   the   cancer   and   shortened  survival  (Pirinen  et  al.  2001).  Hyaluronan  binding  protein  2  is  overexpressed  in   lung   adenocarcinomas   (Wang   et   al.   2002).   Functional   studies   suggest   that   lung   adenocarcinoma   progression   is   promoted   by   low   molecular   weight   hyaluronan   and   hyaluronan   binding   protein   2   via   the   urokinase   plasminogen   activator   pathway   (Mirzapoiazova   et   al.   2015).   Expression   of   CD44   and   its   variant   forms   in   lung   adenocarcinoma  have  been  shown  (Okudela  et  al.  2012,  Pirinen  et  al.  2000)  and  high  CD44   expression   was   shown   to   correlate   with   poor   patient   prognosis   (Okueda   et   al.   2012).  

Comparison   of   CD44   expression   in   mesotheliomas   and   different   lung   cancers   indicated   higher  CD44  expression  in  mesotheliomas  (Afify  et  al.  2005).  The  levels  of  standard  CD44   and   CD44v6   in   the   pleural   fluid   of   mesothelioma   patients   are   lower   than   in   other   lung   malignancies  (Porcel  et  al.  2011).  

 

 

 

14   2.8 HYALURONAN IN DEVELOPMENT 2.8.1  Mouse  development  

Early  development  of  all  mammals  is  almost  identical.  After  fertilization  there  are  severals   cleavage  divisions.  The  16-­‐‑cell  embryo  is  called  morula,  and  in  the  morula  stage  all  cells  are   still  identical  but  then  start  to  differentiate.  One  part  of  the  cells  form  the  embryo  proper,   while   others   take   part   in   the   implantation   and   later   form   the   placenta.     The   cells   in   the   embryo  form  two  layers,  called  the  epiblast  and  hypoblast.  The  epiblast  layer  is  the  origin   of  the  cells  of  the  developing  animal  and  hypoblast  layer  forms  extraembryonic  mesoderm,   and   placenta   with   trophoblast   cells.   The   epiblast   cells   form   three   different   cell   layers:  

ectoderm,   mesoderm   and   endoderm.   Nervous   and   epidermal   tissues   originate   from   the   ectoderm   while   the   gut   tube   and   its   derivatives   form   the   endoderm.   All   other   tissues   develop   from   the   mesoderm.   The   disk-­‐‑like   embryo   starts   to   elongate   and   polarize.     The   neural   plate   develops   in   the   cranial   end,   and   starts   folding   on   day   7.   The   first   somites   appear   in   day   8,   followed   by   the   development   of   different   organs   in   a   specific   sequence.    

The  heart  tube  starts  to  develop  during  day  8  and  its  endocardial  cushions  appear  on  day   10,  and  are  finished  on  day  12.    The  first  parts  of  the  developing  kidney  appear  on  day  9.  

The  outmost  layer  of  the  embryonic  ectoderm  is  the  origin  of  the  epidermis.  Stratification  of   the   epidermis   starts   in   day   9,   and   hair   follicle   development   on   day   14.   The   stratum   corneum   is   established   during   day   16   (Hardman   et   al.   1998).   The   whole   development   of   mouse  embryo  takes  21  days  (Kaufman  1992).  

 

2.8.2  Hyaluronan  in  development    

Hyaluronan   is   an   important   regulator   throughout   the   development.   It   enables   oocyte   maturation   and   release   during   ovulation   and   regulates   the   penetration   of   spermatozoa   to   oocyte   during   fertilization   (Richards   2005,   Salustri   et   al.   1999).   During   the   gastrulation   hyaluronan   has   been   suggested   to   facilitate   the   formation   of   the   three-­‐‑layered   embryo   (Müllegger  and  Lepperdinger  2002).    

Hyaluronan   accumulates   in   the   heart   tube   of   the   developing   embryo   and   is   crucial   for   the   heart   valve   development   (Camenisch   et   al.   2000).   It   has   been   suggested,   that   hyaluronan   is   required   also   for   epithelial   tube   formation   in   the   developing   prostate   (Gakunga   et   al.   1997),   and   kidney   (Pohl   et   al.   2000).   During   kidney   development,   hyaluronan   promotes   the   branching   of   the   ureteric   bud   (Pohl   et   al.   2000).   Camenish   et   al   demonstrated  abnormalities  in  the  development  of  the  heart  and  vessels  in  HAS2  knockout   mice.  In  particular,  endocardial  cushions  did  not  develop  correctly,  probably  accounting  for   the  death  of  the  embryo  at  E9.5  (Camenisch  et  al.  2000).  This  is  consistent  with  the  fact  that   during  the  formation  of  the  heart  valves  HAS2  is  upregulated,  and  is  the  main  HAS  isoform   expressed   in   the   heart   tube   (Tien   and   Spicer   2005).   Hyaluronan   content   is   also   changed   during   the   development   of   the   cornea   (Toole   and   Trelstad   1971),   cartilage   (Toole   et   al.  

1972),  joint  cavity  (Pitsillides  et  al.  1995)  and  palate  (Pratt  et  al.  1973),  and  HAS2  expression   is   high   in   all   of   these   locations   (Tien   and   Spicer   2005).  HAS2   overexpression   showed   shortened   limbs   in   chick   embryos.   The   morphology   of   the   skeleton   of   the   limbs   was   disordered,   and   some   of   its   components   had   an   abnormal   location   (Li   et   al.   2007a).  

Additionally,  HAS2  has  a  crucial  role  in  chondrogenesis  and  chondrocyte  differentiation  (Li   et  al.  2007b,  Matsumoto  et  al.  2009).  HAS2  is  probably  the  most  important  isoform  during   the  development,  responsible  for  hyaluronan  production  in  the  differentiation  and  growth   of   most   organs.   This   is   consistent   with   the   findings   that   knockout   of  HAS1   or  HAS3   or   HAS1/HAS3  double  knockouts  do  not  show  any  developmental  malformations.    

During  mouse  skin  development  HAS2  mRNA  is  localized  in  the  dermal  area,  and  HAS3   mRNA  in  the  epidermal  compartment  (Tien  and  Spicer  2005).  However,  HAS3  knockouts,   or   HAS3/HAS1   double   knockouts   have   no   defects   in   the   skin   during   development,  

   

 

15  

suggesting  that  HAS2  can  replace  HAS3  also  in  the  developing  epidermis  (Tien  and  Spicer   2005).   During   epidermal   stratification   hyaluronan   content   is   high   in   all   layers   of   the   epidermis,  while  during  the  formation  of  the  stratum  corneum,  hyaluronan  decreases,  and   eventually   disappears   from   the   terminally   differentiated   cells   in   both   human   and   mouse   skin  (Tammi  et  al.  2005,  Ågren  et  al.  1997a).  The  level  of  hyaluronan  dramatically  decreases   after   birth   in   the   mouse   epidermis.   Correspondingly,  HAS2   and  HAS3   mRNA   levels   are   lower   in   the   newborn   and   adult   mice   as   compared   to   the   embryonic   epidermal   tissue  

(Tammi  et  al.  2005).    

 

 

16  

3  Aims  of  the  study  

Hyaluronan,   a   ubiquitous   glycosaminoglycan   of   the   extracellular   matrix,   accumulates   particularly   in   situations   with   active   cell   renewal,   like   development,   tissue   healing   and   cancer.   Despite   recent   progress   on   understanding   its   biology   and   functions,   unsolved   questions   about   its   role   in   health   and   disease   are   still   waiting   for   answers.   For   example,   little   is   known   about   cellular   and   tissue   localization   of   the   HAS   enzymes   that   are   responsible   for   the   synthesis   of   hyaluronan.   The   aim   of   this   thesis   work   was   to   study   the   content   and   localization   of   hyaluronan,   and   proteins   closely   related   to   its   production   and   functions,   the   hyaluronan   synthases   and   the   hyaluronan   receptor   CD44,   by   utilizing   histochemical   and   immunohistochemical   stainings.   Developing   tissues   and   cell   cultures,   UV   induced   cutaneous   tumors,   and   the   lung   malignancies   mesothelioma   and   adenocarcinoma,  were  used  as  examples.  

       

The  specific  aims  of  this  thesis  were:  

 

1.  To  investigate  the  distribution  of  HAS1-­‐‑3  enzymes  in  developing  mouse  tissues,  as  well   as   their   subcellular   localization   in   cultured   cells   using   immunohistochemistry   and   GFP-­‐‑

tagged  fusion  proteins.  

 

2.   To   study   the   content   and   changes   of   epidermal   hyaluronan,   CD44   and   HAS1-­‐‑3   in   a   mouse  model  of  tumors  induced  by  long-­‐‑term  exposure  to  UV  radiation.  

 

3.     To   compare   and   analyze   the   histochemical   staining   patterns   of   HAS1-­‐‑3,   CD44   and   hyaluronan  in  pulmonary  malignant  mesotheliomas  and  adenocarcinomas.  

 

 

  collected  and  fixed,  and  5  µμm  thick  sections  were  prepared  for  histological  analysis.  Human   breast  adenocarcinoma  cells  (MCF-­‐‑7),  human  epidermal  keratinocytes  (HaCat)  and  human   dermal   fibroblasts   were   cultured   as   explained   in   publication   I.   UV-­‐‑exposed   skin   samples   for   study   II   were   gathered   during   the   study   of   Kumlin  et   al.   (Kumlin   et   al.   1998).   The   protocol  for  the  preparation  of  the  histological  samples  from  skin  is  presented  in  study  II.  

The  tumor  samples  for  study  III  were  collected  in  Oulu  University  hospital.    

 

4.2 METHODS

4.2.1  EGFP-­‐‑human  Has1,  2,  and  3  plasmid  construction  and  transfection  

The  preparation  of  the  human  HAS1,  2,  and  3  constructs  is  detailed  in  study  I.  Shortly,  the   open   reading   frame   of   each  HAS   was   taken   from   human   cDNA   and   amplified.   The   amplified  HAS  open  reading  frames  were  cloned  to  pEGFP-­‐‑C1  vector.  These  plasmids  were   used  for  the  transfections.  The  transfections  were  performed  on  cells  cultured  in  8-­‐‑chamber   slides   (Ibidi   GmbH,   Martinsried,   Germany)   for   microscopy   and   in   24-­‐‑well   plates   (CELL   STAR®,  Greiner  Bio-­‐‑One,  Kremsmunster,  Austria)  for  the  measurements  of  the  hyaluronan   concentrations  in  the  growth  medium.    

 

4.2.2  Immunostaining  

Live  cells  with  the  GFP-­‐‑tagged  HAS  constructs  were  observed  with  a  confocal  microscope.  

Cultured   cells   were   fixed   for   the   immunostainigs   with   4%   paraformaldehyde   for   1   h   in   room  temperature  and  permeabilized  for  20  min  with  1%  BSA  containing  0.1%  Triton  X100.  

The  cells  were  incubated  overnight  at  4°C  with  the  HAS  antibodies  (Table  2),  then  washed   and  incubated  with  a  fluorescein-­‐‑labeled  anti-­‐‑goat  secondary  antibody.  To  perform  double   stainings   for   endoplamic   reticulum,   Golgi   or   hyaluronan,   the   HAS   antibody   was   mixed   with   anti-­‐‑Calnexin   or   anti-­‐‑Golgi   antibody,   or   bHABC   (Table   2).   The   anti-­‐‑ER   and   Golgi   antibodies   were   visualized   with   a   Texas   Red   anti-­‐‑mouse   secondary   antibody,   and   hyaluronan   with   fluorescently   labelled   streptavidin.   Biotinylated   anti-­‐‑goat   secondary   antibody   (1:1000)   with   the   avidin-­‐‑biotin-­‐‑peroxidase   method   was   used   for   the   wide-­‐‑field   microscopy.  

 

HAS1,  2,  and  3  immunostaining  were  used  in  the  studies  I,  II  and  III.  The  tissue  sections   were   incubated   in   10   mM   citrate   buffer   for   15   min   at   120   °C   in   a   pressure   cooker.   Non-­‐‑

specific  binding  was  blocked  by  incubation  with  1%  BSA  and  0.1%  gelatin  in  a  phosphate   buffer   for   30   min.   The   sections   were   incubated   overnight   at   4°C   with   the   hyaluronan   synthase   antibodies   and   biotinylated   secondary   antibodies   and   the   avidin-­‐‑biotin-­‐‑

peroxidase   method   were   used   for   their   microscopic   detection.   Hyaluronan   staining   was   used  in  studies  I,  II,  and  III.  A  complex  containing  the  hyaluronan  binding  region  of  bovine   articular  cartilage  aggrecan  G1  domain  and  link  protein  (HABC)  was  biotinylated  (bHABC)  

 

 

18  

and   used   as   a   probe   to   detect   hyaluronan   (Tammi   et   al.   1994b).   The   immunostaining   for   CD44  was  done  in  studies  II  and  III.  The  tissue  sections  were  first  incubated  in  an  antigen   retrieval  solution  (Dako,  Carpentia,  CA,  USA)  for  30  min  at  95°C  (II)  and  then  with  an  anti-­‐‑

CD44  antibody  (IM7)  overnight  at  4°C.  There  was  no  retrieval  treatment  in  study  III  for  the   detection   of   CD44   with   the   Hermes   3   antibody.   The   blocking   solution   for   CD44   stainings   was   1%   BSA   in   a   phosphate   buffer.   The   bound   primary   antibody   was   detected   using   a   biotin-­‐‑labeled  secondary  antibody  and  the  avidin-­‐‑biotin-­‐‑peroxidase  method.  The  antibodies   and  probes  used  are  listed  in  Table  2.  

The   specificity   of   the   HABC-­‐‑probe   was   controlled   by   pretreating   the   samples   with   hyaluronidase  or  by  blocking  the  probe  with  hyaluronan  oligosaccharides.  The  antibodies   for  the  HASs  were  controlled  with  several  methods.  The  HAS-­‐‑antibodies  were  omitted  and   replaced  with  non-­‐‑immune  goat  IgG  from  incubation,  and  the  antibodies  were  also  treated   with   the   peptides   used   in   the   immunization.   Possible   cross-­‐‑reactivities   of   the   HAS-­‐‑

antibodies   against   other   HAS   family   members   were   tested   in   transfected   cells   overexpressing  different  HASs  (I,  Figure  6).  In  controls  for  the  CD44  stainings  the  primary   antibodies  IM7  (study  II)  and  Hermes  3  (III)  were  omitted  

 

Table  2  The  antibodies  and  the  probe  used  in  the  thesis    

Calnexin   1:100   Cell   Signaling   Technology,  

Inc.,  Boston,  MA,  USA  

Golgin-­‐‑97   1:100   Molecular   Probes,   Eugene,  

OR,  USA  

Biotinylated  anti-­‐‑goat   1:1000   Vector   Laboratories,  

Burlingame,  CA,  USA  

Biotinylated  anti-­‐‑mouse   1:100   Vector   Laboratories,  

Burlingame,  CA,  USA  

Biotinylated  anti-­‐‑rat   1:100   Vector   Laboratories,  

Burlingame,  CA,  USA  

Fluorescein  anti-­‐‑mouse   1:1000   Vector   Laboratories,  

Burlingame,  CA,  USA  

Texas  Red  anti-­‐‑mouse   1:1000   Vector   Laboratories,  

Burlingame,  CA,  USA    

   

   

 

19   4.2.3  Microscopy  

In   study   I   the   fluorescent   images   were   obtained   by   a   Zeiss   Axio   Observer   inverted   microscope   equipped   with   a   Zeiss   LSM   700   confocal   module   (Carl   Zeiss   Microimaging   GmbH,   Jena,   Germany).   A   conventional   light   microscope   (Zeiss   Axio   Imager.M2   light   microscope,  Carl  Zeiss)  was  used  in  studies  I,  II  and  III.    

 

4.2.4  Analysis  of  hyaluronan  concentration  

Hyaluronan   secretion   into   the   culture   medium   (I)   was   measured   with   an   ELSA   assay   as   previously   described   (Hiltunen   et   al.   2002).   Shortly,   96-­‐‑well   plates   were   precoated   with   HABC.  The  diluted  samples  and  the  hyaluronan  standards  were  incubated  in  the  wells  for   1h.  The  hyaluronan  attached  was  quantified  with  the  sequential  incubations  of  biotinylated   HABC,  horse  radish  streptavidin  and  the  substrate-­‐‑chromogen  solutions  containing  0.01  %   of  3,3′,5,5′-­‐‑tetramethybenzidine  and  0.005  %  H2O2  in  a  0.1  M  sodium  acetate-­‐‑1.5  mM  citric   acid  buffer.  

 

4.2.5  Evaluation  and  statistical  analysis  

The   intensity   of   the   HAS1-­‐‑3,   hyaluronan   and   CD44   stainings   were   analyzed   by   two   independent   evaluators   in   studies   II   and   III.   The   statistical   analysis   was   performed   using   the   SPSS   program   (IBM   Corporation,   Armonk,   New   York,   USA).   The   comparison   of   the   extent  and  intensity  of  the  stainings  between  treatments  was  done  with  the  Kruskal-­‐‑Wallis   and   Mann-­‐‑Whitney   U-­‐‑tests   (II).   The   correlations   between   the   amount   of   epidermal   hyperplasia  and  the  hyaluronan  and  CD44  parameters  were  determined  with  Kendall’s  test   (II).   In   study   III   the   differences   between   mesotheliomas   and   adenocarcinomas   were   calculated  with  the  Pearson  chi-­‐‑square  tests.  

     

 

 

 

 

20  

5  Results  

5.1 SUBCELLULAR LOCALIZATION OF HYALURONAN SYNTHASES (I)

 

5.1.1  Immunostainings  of  tissues  

Because   hyaluronan   content   of   the   dermis   is   high,   human   skin   sections   were   used   as   an   example  to  test  the  localization  and  amount  of  HAS  isoenzymes  in  human  tissues  (I,  Figure   5).  Dermal  fibroblasts  were  intensely  stained  with  all  HAS  antibodies.  Most  of  the  staining   detected  was  cytoplasmic,  but  also  plasma  membrane  signal  could  be  detected,  for  example   for  HAS1  (I,  Figure  5b).    

 

5.1.2  Immunostainings  of  cultured  cells  

We   used   three   different   cell   lines,   human   skin   dermal   fibroblasts,   human   keratinocytes   (HaCat)   and   transformed   fibroblastic   like   COS-­‐‑1   cells   derived   from   monkey   kidney,   to   study   subcellular   localization   of   endogenous   HASs.   These   cell   lines   produce   different   amounts   of   hyaluronan,   the   fibroblasts   producing   the   highest   and   COS-­‐‑1   cells   the   lowest   amount   (I,   table   1).   In   line   with   their   high   hyaluronan   production   (Jokela   et   al.   2013)   fibroblasts   were   intensely   stained   for   all   HAS   isoenzymes   with   the   antibodies   used   (I,   Figure  7a-­‐‑c).  The  signal  for  HAS1  was  low  in  HaCat  keratinocytes,  while  HAS2  and  HAS3   immunostainings   were   clearly   positive,   in   accordance   with   the   substantial   levels   of  HAS2   and  HAS3,  and  low  HAS1  mRNA  in  these  cells  (Saavalainen  et  al.  2007)  (I,  Figure  7d-­‐‑f).  The   immunostainings  for  all  HASs  were  almost  negative  in  COS-­‐‑1  cells  (I,  Figure  7g-­‐‑i).    

HAS3  was  abundant  in  plasma  membrane  and  the  protrusions  of  the  cells.  These  areas   were   also   rich   in   hyaluronan   (I,   Figure   8j-­‐‑l).     The   majority   of   HAS1   was   found   intracellularly,   mostly   in   the   Golgi   area.   A   weak   signal   was   also   seen   in   the   plasma   membrane  and  its  protrusions  (I,  Figure  8a-­‐‑c).    Cytoplasmic  vesicles  contained  most  of  the   HAS2  staining  (I,  Figure  8d-­‐‑f).  Interestingly,  a  part  of  the  HAS2  signal  was  also  localized  in   the  ER  and  nuclear  membrane,  especially  in  the  fibroblasts  (I,  Figure  7b).  

Native  MCF-­‐‑7  cells,  expressing  a  low  level  of  HAS3  mRNA,  a  modest  level  of  HAS2,  and   almost  no  HAS1,  produce  about  2.6  ng  hyaluronan/10,000cells/24h  (Kultti  et  al.  2009),  while   the   MCF-­‐‑7   cells   transfected   with   HAS1-­‐‑3   constructs   synthesize   large   quantities   of   hyaluronan   (Kultti   et   al.   2009).     The   antibody   for   HAS1   stained   the  HAS1   overexpressing   cells   nicely,   but   produced   no   signal   in   cells   overexpressing  HAS2   and  HAS3   (I,   Figure   6).  

Likewise,   the   antibody   for   HAS2   showed   no   cross-­‐‑reaction   in   cells   overexpressing  HAS1   and  HAS3.  No  cross-­‐‑reactivity  was  seen  with  HAS3  antibody  either.    

 

5.1.3  GFP-­‐‑tagged  HAS  proteins  

To  confirm  the  different  subcellular  distributions  of  the  HAS  isoforms,  as  suggested  by  the   immunostainings,   MCF-­‐‑7   cells   were   transiently   tranfected   with   the   human  HAS-­‐‑GFP-­‐‑

constructs.   Each   of   the   GFP-­‐‑tagged   isoenzymes   had   a   typical   subcellular   distribution   (I,   Figure  9).    GFP-­‐‑HAS1  showed  the  lowest  signal  in  the  plasma  membrane.  It  was  especially   abundant  in  the  Golgi  area  and  in  the  ER.  However,  some  GFP-­‐‑HAS1  positive  intracellular   vesicles   were   seen   near   the   plasma   membrane   and   in   the   thin   protrusions   of   the   plasma   membrane  (I,  Figure  9a,b).  The  GFP-­‐‑HAS2  signal  was  primarily  found  in  the  ER,  Golgi  and  

   

 

21  

cytoplasmic   vesicles.   Some   of   the   protrusions   of   the   plasma   membrane,   especially   those   standing  on  the  edges  of  lamellipodia,  contained  high  levels  of  GFP-­‐‑HAS2  (I,  Figure  9c,d).  

GFP-­‐‑HAS3   had   the   highest   plasma   membrane   signal   among   the   HASs,   in   addition   to   the   intracellular  locations  similar  to  the  other  HAS  isoenzymes.  The  apical  surface  of  the  GFP-­‐‑

HAS3  expressing  cells  was  covered  by  very  long  plasma  membrane  protrusions  positive  for   GFP-­‐‑HAS3  (I,  figure  9e,f).    

     

5.2 SPATIAL AND TEMPORAL DISTRIBUTION OF HYALURONAN AND HAS1-3 DURING MOUSE EMBRYONIC DEVELOPMENT (I)

 

Paraffin  sections  from  mouse  embryos  at  different  ages  were  stained  with  bHABC  and  HAS   antibodies  to  detect  hyaluronan  and  HAS1-­‐‑3.  The  specificity  of  the  hyaluronan  staining  was   controlled   by   treatment   of   the   sections   with   hyaluronidase,   and   blocking   the   probe   with   hyaluronan  oligosaccharides.  The  spesificities  of  the  HAS1-­‐‑3  stainings  were  determined  by   blocking   with   peptides   corresponding   to   those   used   for   immunization   (I,   Figure2,   i-­‐‑l)   or   replacing  the  primary  antibody  with  non-­‐‑immune  IgG.    

The   stainings   for   hyaluronan   were   typically   intense   in   all   stages   of   the   development   (I,   Figures  1-­‐‑4).  Hyaluronan  was  abundant  especially  in  the  tissues  of  mesodermal  origin,  like   the   stuctures   surrounding   the   neural   tube,   branchial   arch,   cardic   tube   and   its   cushions   in   samples  from  the  E9  embryos  (I,  Figure  1a-­‐‑d).  During  the  embryonic  day11    (E11)-­‐‑E15  stage   HA   accumulated   in   the   mesenchymal   tissues   all   over   the   body   (I,   Figures   2m,   3a),   in   the   skin  and  its  underlying  connective  tissues  (I,  Figure  2e,  Figure  3a,c),  cartilage  (I,  Figure  3m)   and   certain   brain   areas   (I,   Figure   3a,q).   In   the   E17   stage   hyaluronan   stainings   were   still   intense   in   the   connective   tissues,   part   of   the   brain,   kidney   and   developing   eye   (I,   Figure   4a,e,I,m).  Interestingly,  at  this  stage  parts  of  the  brain,  liver  and  calcified  bones  were  almost   negative  for  hyaluronan  (Figure  4).    

As   expected,   the   HAS   stainings   in   the   embryos   were   localized   in   the   cells   (as   opposed   to   the   extracellular   matrix).   The   main   location   was   cytoplasm   for   all   HASs   (I,   Figures   1-­‐‑4).  

Nevertheless,  HAS2  signal  was  seen  in  positions  consistent  with  plasma  membrane  in  the   tubular   epithelium   of   the   developing   kidneys   (I,   Figure   4o).   In   addition,   some   plasma   membrane   protrusions   on   the   mesenchymal   cells   of   the   intramembraneous   bones   were   stained   with   the   HAS1   and   HAS3   antibodies   (I,   Figures   2n,p,   arrows).   In   general,   the   mesenchymal  cells  in  particular  were  highly  positive  for  all  HASs  (I,  Figures  2n-­‐‑p),  but  the   staining   was   also   high   in   the   developing   epidermal   keratinocytes.   In   the   kidney,   the   stainings  of  the  HASs  were  most  intense  in  the  tubular  cells  (I,  Figures  4n-­‐‑p).  The  sections   through   a   whole   E17   mouse   embryo   stained   for   HAS1,   2   and   3   and   hyaluronan,   show   a   relatively  high  signal  intensity  of  all  HASs  e.g.  in  the  developing  skin  and  cartilage,  as  well   as  the  overall  distribution  of  each  isoenzyme  (Figure  4).  Large  amounts  of  hyaluronan  are   found  especially  in  the  connective  tissues,  brain  and  kidney  (I:  Figure  4).  

 

 

 

22  

 

Figure   4.  Distribution   of   hyaluronan   and   hyaluronan   synthases   in   sections   of   a   whole   mouse  E17  embryo.  The  sections  were  stained  with  bHABC  to  detect  hyaluronan  and  with   affinity   purified   polyclonal   antibodies   for   HAS1,   HAS2   and   HAS3.   The   brown   color   indicates   the   signal   for   hyaluronan   and   the   antibodies,   and   hematoxylin   was   utilized   to   stain  the  nuclei  (blue).  Magnification  bar  1  mm.  

 

The  staining  intensity  of  HAS2  was  generally  highest  in  the  E9  embryos,  but  signals  were   present  also  for  HAS1  and  HAS3  (I,  Figure  1).  On  the  embryonic  day  11  all  HASs  stained   with  high  intensity  in  the  heart,  and  mesenchymal  tissues  such  as  dermis.  At  this  stage,  a  

The  staining  intensity  of  HAS2  was  generally  highest  in  the  E9  embryos,  but  signals  were   present  also  for  HAS1  and  HAS3  (I,  Figure  1).  On  the  embryonic  day  11  all  HASs  stained   with  high  intensity  in  the  heart,  and  mesenchymal  tissues  such  as  dermis.  At  this  stage,  a