• Ei tuloksia

collected  and  fixed,  and  5  µμm  thick  sections  were  prepared  for  histological  analysis.  Human   breast  adenocarcinoma  cells  (MCF-­‐‑7),  human  epidermal  keratinocytes  (HaCat)  and  human   dermal   fibroblasts   were   cultured   as   explained   in   publication   I.   UV-­‐‑exposed   skin   samples   for   study   II   were   gathered   during   the   study   of   Kumlin  et   al.   (Kumlin   et   al.   1998).   The   protocol  for  the  preparation  of  the  histological  samples  from  skin  is  presented  in  study  II.  

The  tumor  samples  for  study  III  were  collected  in  Oulu  University  hospital.    

 

4.2 METHODS

4.2.1  EGFP-­‐‑human  Has1,  2,  and  3  plasmid  construction  and  transfection  

The  preparation  of  the  human  HAS1,  2,  and  3  constructs  is  detailed  in  study  I.  Shortly,  the   open   reading   frame   of   each  HAS   was   taken   from   human   cDNA   and   amplified.   The   amplified  HAS  open  reading  frames  were  cloned  to  pEGFP-­‐‑C1  vector.  These  plasmids  were   used  for  the  transfections.  The  transfections  were  performed  on  cells  cultured  in  8-­‐‑chamber   slides   (Ibidi   GmbH,   Martinsried,   Germany)   for   microscopy   and   in   24-­‐‑well   plates   (CELL   STAR®,  Greiner  Bio-­‐‑One,  Kremsmunster,  Austria)  for  the  measurements  of  the  hyaluronan   concentrations  in  the  growth  medium.    

 

4.2.2  Immunostaining  

Live  cells  with  the  GFP-­‐‑tagged  HAS  constructs  were  observed  with  a  confocal  microscope.  

Cultured   cells   were   fixed   for   the   immunostainigs   with   4%   paraformaldehyde   for   1   h   in   room  temperature  and  permeabilized  for  20  min  with  1%  BSA  containing  0.1%  Triton  X100.  

The  cells  were  incubated  overnight  at  4°C  with  the  HAS  antibodies  (Table  2),  then  washed   and  incubated  with  a  fluorescein-­‐‑labeled  anti-­‐‑goat  secondary  antibody.  To  perform  double   stainings   for   endoplamic   reticulum,   Golgi   or   hyaluronan,   the   HAS   antibody   was   mixed   with   anti-­‐‑Calnexin   or   anti-­‐‑Golgi   antibody,   or   bHABC   (Table   2).   The   anti-­‐‑ER   and   Golgi   antibodies   were   visualized   with   a   Texas   Red   anti-­‐‑mouse   secondary   antibody,   and   hyaluronan   with   fluorescently   labelled   streptavidin.   Biotinylated   anti-­‐‑goat   secondary   antibody   (1:1000)   with   the   avidin-­‐‑biotin-­‐‑peroxidase   method   was   used   for   the   wide-­‐‑field   microscopy.  

 

HAS1,  2,  and  3  immunostaining  were  used  in  the  studies  I,  II  and  III.  The  tissue  sections   were   incubated   in   10   mM   citrate   buffer   for   15   min   at   120   °C   in   a   pressure   cooker.   Non-­‐‑

specific  binding  was  blocked  by  incubation  with  1%  BSA  and  0.1%  gelatin  in  a  phosphate   buffer   for   30   min.   The   sections   were   incubated   overnight   at   4°C   with   the   hyaluronan   synthase   antibodies   and   biotinylated   secondary   antibodies   and   the   avidin-­‐‑biotin-­‐‑

peroxidase   method   were   used   for   their   microscopic   detection.   Hyaluronan   staining   was   used  in  studies  I,  II,  and  III.  A  complex  containing  the  hyaluronan  binding  region  of  bovine   articular  cartilage  aggrecan  G1  domain  and  link  protein  (HABC)  was  biotinylated  (bHABC)  

 

 

18  

and   used   as   a   probe   to   detect   hyaluronan   (Tammi   et   al.   1994b).   The   immunostaining   for   CD44  was  done  in  studies  II  and  III.  The  tissue  sections  were  first  incubated  in  an  antigen   retrieval  solution  (Dako,  Carpentia,  CA,  USA)  for  30  min  at  95°C  (II)  and  then  with  an  anti-­‐‑

CD44  antibody  (IM7)  overnight  at  4°C.  There  was  no  retrieval  treatment  in  study  III  for  the   detection   of   CD44   with   the   Hermes   3   antibody.   The   blocking   solution   for   CD44   stainings   was   1%   BSA   in   a   phosphate   buffer.   The   bound   primary   antibody   was   detected   using   a   biotin-­‐‑labeled  secondary  antibody  and  the  avidin-­‐‑biotin-­‐‑peroxidase  method.  The  antibodies   and  probes  used  are  listed  in  Table  2.  

The   specificity   of   the   HABC-­‐‑probe   was   controlled   by   pretreating   the   samples   with   hyaluronidase  or  by  blocking  the  probe  with  hyaluronan  oligosaccharides.  The  antibodies   for  the  HASs  were  controlled  with  several  methods.  The  HAS-­‐‑antibodies  were  omitted  and   replaced  with  non-­‐‑immune  goat  IgG  from  incubation,  and  the  antibodies  were  also  treated   with   the   peptides   used   in   the   immunization.   Possible   cross-­‐‑reactivities   of   the   HAS-­‐‑

antibodies   against   other   HAS   family   members   were   tested   in   transfected   cells   overexpressing  different  HASs  (I,  Figure  6).  In  controls  for  the  CD44  stainings  the  primary   antibodies  IM7  (study  II)  and  Hermes  3  (III)  were  omitted  

 

Table  2  The  antibodies  and  the  probe  used  in  the  thesis    

Calnexin   1:100   Cell   Signaling   Technology,  

Inc.,  Boston,  MA,  USA  

Golgin-­‐‑97   1:100   Molecular   Probes,   Eugene,  

OR,  USA  

Biotinylated  anti-­‐‑goat   1:1000   Vector   Laboratories,  

Burlingame,  CA,  USA  

Biotinylated  anti-­‐‑mouse   1:100   Vector   Laboratories,  

Burlingame,  CA,  USA  

Biotinylated  anti-­‐‑rat   1:100   Vector   Laboratories,  

Burlingame,  CA,  USA  

Fluorescein  anti-­‐‑mouse   1:1000   Vector   Laboratories,  

Burlingame,  CA,  USA  

Texas  Red  anti-­‐‑mouse   1:1000   Vector   Laboratories,  

Burlingame,  CA,  USA    

   

   

 

19   4.2.3  Microscopy  

In   study   I   the   fluorescent   images   were   obtained   by   a   Zeiss   Axio   Observer   inverted   microscope   equipped   with   a   Zeiss   LSM   700   confocal   module   (Carl   Zeiss   Microimaging   GmbH,   Jena,   Germany).   A   conventional   light   microscope   (Zeiss   Axio   Imager.M2   light   microscope,  Carl  Zeiss)  was  used  in  studies  I,  II  and  III.    

 

4.2.4  Analysis  of  hyaluronan  concentration  

Hyaluronan   secretion   into   the   culture   medium   (I)   was   measured   with   an   ELSA   assay   as   previously   described   (Hiltunen   et   al.   2002).   Shortly,   96-­‐‑well   plates   were   precoated   with   HABC.  The  diluted  samples  and  the  hyaluronan  standards  were  incubated  in  the  wells  for   1h.  The  hyaluronan  attached  was  quantified  with  the  sequential  incubations  of  biotinylated   HABC,  horse  radish  streptavidin  and  the  substrate-­‐‑chromogen  solutions  containing  0.01  %   of  3,3′,5,5′-­‐‑tetramethybenzidine  and  0.005  %  H2O2  in  a  0.1  M  sodium  acetate-­‐‑1.5  mM  citric   acid  buffer.  

 

4.2.5  Evaluation  and  statistical  analysis  

The   intensity   of   the   HAS1-­‐‑3,   hyaluronan   and   CD44   stainings   were   analyzed   by   two   independent   evaluators   in   studies   II   and   III.   The   statistical   analysis   was   performed   using   the   SPSS   program   (IBM   Corporation,   Armonk,   New   York,   USA).   The   comparison   of   the   extent  and  intensity  of  the  stainings  between  treatments  was  done  with  the  Kruskal-­‐‑Wallis   and   Mann-­‐‑Whitney   U-­‐‑tests   (II).   The   correlations   between   the   amount   of   epidermal   hyperplasia  and  the  hyaluronan  and  CD44  parameters  were  determined  with  Kendall’s  test   (II).   In   study   III   the   differences   between   mesotheliomas   and   adenocarcinomas   were   calculated  with  the  Pearson  chi-­‐‑square  tests.  

     

 

 

 

 

20