• Ei tuloksia

2   REVIEW  OF  THE  LITERATURE

2.2   Hyaluronan  synthesis

 

 

3   2.1.2  Structure  of  hyaluronan  

Hyaluronan   is   composed   of   repeating   disaccharides,   D-­‐‑glucuronic   acid   and   N-­‐‑acetyl-­‐‑

glucosamine  (Figure  1).  There  are  alternating  β(1-­‐‑3)  and  β(1-­‐‑4)glucuronidic  bonds    between   the   sugars   (Weissmann   et   al.   1954).   Hyaluronan   chain   may   contain   up   to   25   000   disaccharides,   and   molecular   mass   of   one   hyaluronan   molecule   can   be   as   high   as   107   Da   and  length  25  µμm  (Toole  2004).  At  physiological  pH  hyaluronan  is  highly  hydrophilic  due   to  negatively  charged  glucuronic  acid  groups.  In  aqueous  solutions  linear  hyaluronan  chain   forms   a   random   coiled   structure.   Unlike   the   other   glycosaminoglycans,   hyaluronan   does   not  covalently  attach  to  core  protein  to  form  proteoglycans.  

         

   

Figure  1.  The  general  chemical  structure  of  the  disaccharide  unit  of  hyaluronan.  Hyaluronan   is  composed  of  alternating  residues  of  β-­‐‑D-­‐‑(1→3)  glucuronic  acid  (GlcA)  and  β-­‐‑D-­‐‑(1→4)-­‐‑N-­‐‑

acetylglucosamine  (GlcNAc).    

2.2 HYALURONAN SYNTHESIS

 

2.2.1  Hyaluronan  is  synthesized  on  the  plasma  membrane  

Hyaluronan   is   synthesized   by   hyaluronan   synthases   (HAS),   integral   transmembrane   proteins   that   act   on   the   inner   face   of   the   plasma   membrane   and   extrude   the   growing   hyaluronan  chain  through  the  plasma  membrane  into  the  extracellular  space  (Prehm  1984).  

Mammals   have   three   hyaluronan   synthase   isoenzymes,   HAS1,   HAS2   and   HAS3   (Toole   2004).   These   enzymes   utilize   two   precursors,   UDP-­‐‑N-­‐‑acetylglucosamine   and   UDP-­‐‑

glucuronic  acid  for  hyaluronan  synthesis.  The  new  sugar  units  are  added  into  the  reducing   end  of  the  growing  chain  by  the  native  vertebrate  enzyme  (Weigel  et  al.  1997).  Studies  with   a  recombinant  enzyme  and  the  enzyme  from  Pasteurella  multocida  show  chain  growth  in   the  non-­‐‑reducing  end  (Bodevin-­‐‑Authelet  et  al.  2005,  DeAngelis  1999).  

The  amino  acid  sequences  of  HAS  isoenzymes  are  quite  homologous  between  different   species.  The  predicted  structure  of  the  enzyme  consists  of  4-­‐‑6  transmembrane  domains  and   1-­‐‑2  membrane  associated  domains  (Figure  2).  A  large  cytoplasmic  domain  is  suggested  to   contain   the   enzymatically   active   area.   The   transmembrane   domains   that   span   the   lipid  

 

 

4  

bilayer   are   suggested   to   create   a   pore   in   the   plasma   membrane   for   the   protruding   hyaluronan   chain  (Weigel   et   al.   1997).   There   has   been   speculation   on   the   structure   of   the   pore.   A   recent   review   by   Weigel   concludes   that   the   HAS   enzyme   itself   forms   the   pore   (Weigel  2015),  while  previous  studies  using  inhibition  of  multidrug  resistance  transporters   had   suggested   that   they   are   involved   in   the   export   of   hyaluronan   from   the   inner   to   the   outer  surface  of  plasmamembrane  (Schulz  et  al.  2007).  

       

 

Figure   2.  A   schematic   structure   of   vertebrate   hyaluronan   synthase   hyaluronan   binding   proteins   and   degradation   enzymes.   The   synthase   is   composed   of   7   transmembrane   or   membrane-­‐‑associated  domains  and  a  large  cytoplasmic  domain,  latter  assumed  to  contain   the  enzymatic  activity.  Aggrecan  is  an  example  of  extracellular  hyaluronan  binding  protein.  

CD44   is   the   main   cell   surface   receptor   for   hyaluronan.   Hyaluronidase   2   is   a   cell   surface   degradation   enzyme   of   hyaluronan.   Modified   from   Itano   and   Kimata   (Itano   and   Kimata   2002),   Anderegg   et   al.   (Anderegg   et   al.   2014)   and   Chowdhury   et   al.   (Chowdhury   et   al.  

2016).  

 

The  human  HAS1  gene  is  localized  in  chromosome  19  and  the  mouse  gene  in  chromosome   17   (Spicer   and   McDonald   1998).   HAS1   is   the   isoenzyme   with   lowest   activity   (Itano   et   al.  

1999),   (Rilla   et   al.   2013a),   and   HAS1   knockout   mice   have   no   apparent   phenotype   (Kobayashi   et   al.   2010).   The   hyaluronan   chains   synthesized   by   HAS1   are   suggested   to   be   smaller  as  compared  to  those  of  HAS2  (Itano  et  al.  1999).  Hyaluronan  production  by  HAS1   is  highly  dependent  of  the  intracellular  UDP-­‐‑sugar  concentration  and  high  concentrations   are  necessary  for  full  enzymatic  activity  (Rilla  et  al.  2013a).  TGF-­‐‑β  stimulated  synoviocytes  

   

 

5  

have   elevated  HAS1   expression   and   increased   hyaluronan   production   (Stuhlmeier   and   Pollaschek  2004a).  HAS1  promoter  contains  SP3  and  SMAD3  elements  and  these  elements   regulate  the  level  of  its  expression(Chen  et  al.  2012).  

   High  expression  of  HAS1  is  typical  for  some  diseases  like  rheumatoid  arthritis  (Stuhlmeier   and   Pollaschek   2004b),   osteoarthritis   (Lambert   et   al.   2014)   and   infectious   lung   disease   (Chang   et   al.   2014).   Bone   marrow   mesenchymal   progenitor   cells   isolated   from   myeloma   patients  have  higher  HAS1  mRNA  expression  as  compared  to  cells  collected  from  healthy   people,  with  a  corresponding  elevation  in  HA  production  (Calabro  et  al.  2002).    

The   location   of   the   human  HAS2   gene   is   in   chromosome   8   and   that   of   mouse   in   chromosome   15   (Spicer   and   McDonald   1998).  HAS2   deletion   has   lethal   effects   during   embryonic   development.   HAS2   produces   large   hyaluronan   polymers   with   an   average   molecular   mass   of   >2   MDalton   (Itano   et   al.   1999).   The   availability   of   UDP-­‐‑HexNac   in   the   cytosol   limits   the   synthesis   rate   of   hyaluronan   and   feedback   regulates   the   expression   of   HAS2  (Jokela  et  al.  2011).  On  the  other  hand  extracellularly  applied  UDP-­‐‑Glucose  activates   HAS2   expression   by   binding   to   the   P2Y14-­‐‑   plasma   membrane   receptor,   leading   to   the   phosphorylation  of  STAT3  in  tyrosine  705  and    binding  to  the  promoter  of  HAS2  (Jokela  et   al.  2014).  

Interestingly,  HAS2  is  overexpressed  in  the  hereditary  cutaneous  mucinosis  of  Shar  Pei   dogs  (Zanna  et  al.  2009),  and  fibroblasts  from  Shar  Pei  dogs  have  higher  numbers  of  plasma   membrane  protrusions  (Docampo  et  al.  2011).  The  lifespan  of  naked  mole  rat  is  the  longest   among   rodents,   even   exceeding   30   years   (Buffenstein   and   Jarvis   2002).   Skin   fibroblasts   of   naked   mole   rat   have   high   expression   levels   for   HAS2   and   produce   extremely   high   molecular   weight   hyaluronan,   which   accumulates   in   the   subcutaneous   tissue   (Tian   et   al.  

2013).    

HAS2   is   overexpressed   in   fibroblasts   isolated   from   patients   suffering   idiopathic   pulmonary   fibrosis.   These   fibroblasts   are   more   invasive   compared   to   fibroblasts   from   healthy  people.  This  invasion  capacity  is  regulated  by  CD44  (Li  et  al.  2011).    

Human   and   mouse  HAS3   genes   are   localized   in   chromosomes   16   and   8,   respectively   (Spicer   and   McDonald   1998).   HAS3   knockout   mice   are   viable   and   have   no   specific   morphological  phenotype  (Bai  et  al.  2005),  but  they  have  epileptic  phenotype  (Arranz  et  al.  

2014).  Hyaluronan  produced  by  HAS3  is  usually  shorter  than  hyaluronan  made  by  HAS1   and  by  HAS2  (Brinck  and  Heldin  1999,  Itano  et  al.  1999).  The  promoter  area  of  HAS3  has   been   recently   characterized.   There   are   binding   sites   for   C/EBP   and   NFκB   and   Sp1,   which   seem   to   be   essential   for   promoter   activity   (Wang   et   al.   2015).   HAS3   is   abundant   on   the   plasma  membrane  (Rilla  et  al.  2005),  and  a  specific  feature  of  HAS3  is  its  accumulation  into   plasma   membrane   protrusions   that   collapse   after   hyaluronidase   digestion   or   inhibition   of   hyaluronan  synthesis  (Kultti  et  al.  2006).    This  suggests  that  the  protrusions  are  dependent   on  HAS3  activity.    

 

2.2.5  Regulation  of  hyaluronan  synthesis  

Hyaluronan   synthesis   is   stimulated   in   many   physiological   and   pathological   states,   like   in   inflammation,   after   tissue   injury   and   during   tumor   progression   (Cyphert   et   al.   2015).   The   HAS   expression   is   regulated   by   numerous   local   and   systemic   stimuli,   like   growth   factors,   cytokines  and  hormones.  

The  effects  of  growth  factors  on  HAS  activity  are  mainly  mediated  at  the  transcriptional   level,   since   they   induce   rapid   changes   in  HAS   mRNA   levels,   usually   associated   with   a   simultaneous  increase  in  hyaluronan  synthesis  (Jacobson  et  al.  2000,  Karvinen  et  al.  2003b,   Pienimäki  et  al.  2001,  Yamada  et  al.  2004).  For  example,  keratinocyte  growth  factor  (KGF)     (Karvinen  et  al.  2003b)  and  epidermal  growth  factor  (EGF)  (Pienimäki  et  al.  2001)  stimulate   the  expression  of  HAS2  and  HAS3  in  keratinocytes.  In  fact,  HAS2  is  one  of  the  direct  target   genes  for  EGF  signaling  (Saavalainen  et  al.  2005).  Examples  of  hormones  that  induce  HAS  

 

 

6  

expression  are  estrogen  (Tellbach  et  al.  2002)  and  progesterone  (Uchiyama  et  al.  2005).  Also   several   cytokines,   like   interleukin-­‐‑   1β   (IL-­‐‑1β)   upregulate  HAS   expression   and   hyaluronan   synthesis  in  many  cell  types,  like  fibroblasts  (Yamada  et  al.  2004),  endothelial  cells  (Vigetti   et   al.   2010)   and   lung   adenocarcinoma   cells   (Chow   et   al.   2010).     Hydrocortisone   inhibits   hyaluronan   synthesis   in   human   epidermis   (Ågren   et   al.   1995).   Glucocorticoids   almost   totally  block  HAS2  expression  in  dermal  fibroblasts  (Zhang  et  al.  2000)  

4-­‐‑methylumbelliferone   (4-­‐‑MU)   has   been   reported   to   specifically   inhibit   hyaluronan   synthesis  in  cultured  mammalian  cells  (Kosaki  et  al.  1999a,  Kultti  et  al.  2009,  Nakamura  et   al.   1995,   Nakamura   et   al.   1997,   Sohara   et   al.   2001)   and   in   Streptococcus   equi   FM100   cells   (Kakizaki  et  al.  2002).  It  inhibits  melanoma  cell  adhesion  and  locomotion  (Kudo  et  al.  2004),   and  metastasis  (Yoshihara  et  al.  2005).  4-­‐‑MU  also  reverses  the  effect  of  HAS2  transfection  on   hyaluronan  synthesis  and  colony  formation  of  tumor  cells  (Kosaki  et  al.  1999a).  Nowadays   4-­‐‑MU  is  widely  utilized  as  a  research  tool  to  inhibit  hyaluronan  synthesis.  

At   post-­‐‑transcriptional   level   the   availability   of   UDP-­‐‑sugar   precursors   is   a   potential   regulator   of   HAS   activity   (Itano   et   al.   1999).     This   hypothesis   is   supported   with   a   finding   that  depletion  of  the  UDP-­‐‑glucuronic  acid  pool  through  glucuronidation  of  4-­‐‑MU  (Kakizaki   et  al.  2004)  reduces  hyaluronan  synthesis  rate.  Also  reduction  of  UDP-­‐‑GlcNA  by  mannose   reduces   hyaluronan   synthesis   rate   (Jokela   et   al.   2011).   In   general,   the   availability   of   both   UDP-­‐‑sugars   regulates   the   activity   of   hyaluronan   synthesis   (Deen   et   al.   2016,   Jokela   et   al.  

2011,  Kakizaki  et  al.  2004,  Kultti  et  al.  2009,  Rilla  et  al.  2013a,  Vigetti  et  al.  2009).  

It   has   been   suggested   that   hyaluronan   synthases   can   form   homo-­‐‑   and   heteromers   in   plasma  membrane,  which  offers  one  more  possible  way  of  regulation  for  HAS  activity  (Bart   et  al.  2015,  Karousou  et  al.  2010).  Bart  and  coworkers  showed  reduced  hyaluronan  synthesis   in   HAS2   and   HAS3   overexpressing   cells   cotransfected   with  Has1   (Bart   et   al.   2015).   Other   putative   factors   regulating   HAS   activity   are   post-­‐‑transcriptional   modifications   in   HAS2   enzyme,  including  phosphorylation  (Goentzel  et  al.  2006,  Vigetti  et  al.  2011),  ubiquitination   (Karousou  et  al.  2010)  and  O-­‐‑GlcNAcylation  (Deen  et  al.  2016,  Vigetti  et  al.  2012).    

Because   HASs   are   known   to   be   active   only   in   the   plasma   membrane   (Rilla   et   al.   2005),   their   traffic   is   potentially   an   important   post-­‐‑transcriptional   factor   regulating   hyaluronan   synthesis   (Deen   et   al.   2014).   All   HAS   isoenzymes   follow   the   normal   route   for   transmembrane  proteins,  travelling  from  ER  to  Golgi  apparatus  and  further  to  the  plasma   membrane   (Müllegger   et   al.   2003).   Regulation   of   HAS   trafficking   is   not   fully   understood,   but   posttranslational   modifications   of   HAS   and   intracellular   UDP-­‐‑sugar   levels   affect   it   (Müllegger  et  al.  2003,  Siiskonen  et  al.  2014).  HAS1  seems  to  be  less  present  on  the  plasma   membrane   (Siiskonen   et   al.   2014)   than   HAS2   and   HAS3   (Rilla   et   al.   2005,   Siiskonen   et   al.  

2014).   Accordingly,   HAS2   and   especially   HAS3   are   more   active   in   inducing   plasma   membrane   protrusions   (Kultti   et   al.   2006,   Rilla   et   al.   2005)   and   secretion   of   extracellular   vesicles  (Rilla  et  al.  2013b,  Rilla  et  al.  2014).