• Ei tuloksia

 

 

25  

6  Discussion  

6.1 Function and localization of HAS proteins

It   has   been   challenging   to   detect   hyaluronan   synthases   at   protein   levels,   because   the   expression  levels  of  HAS  genes  are  normally  relatively  low  in  many  cell  types  (Pienimäki  et   al.   2001,   Recklies   et   al.   2001).   In   the   first   studies   the   antibodies   utilized   to   detect   HAS   proteins   were   non-­‐‑commercial   (Jacobson   et   al.   2000,   Kanomata   et   al.   2005,   Spicer   and   McDonald  1998).  In  later  studies  also  commercially  available  antibodies  against  hyaluronan   synthases   have   been   used   (Miyake   et   al.   2009,   Nykopp   et   al.   2009).   In   the   study   I   of   this   thesis  a  set  of  commercial  antibodies  against  different  HAS  isoenzymes  was  characterized.  

At  tissue  level  the  immunostainings  were  compared  to  earlier  results  on  mRNA  expression   levels   in   mouse   embryonic   tissues   (Tien   and   Spicer   2005).   Subcellular   localization   of   endogenous   HASs   was   detected   and   compared   to   earlier   results   gained   with   GFP-­‐‑tagged   recombinant   proteins.   In   essence,   the   results   were   in   line   with   earlier  HAS   mRNA  in   situ   hybridizations   and   in   vitro   studies   on   hyaluronan   synthases.   The   several   controls   performed   to   ensure   the   specificity   of   antibodies   suggest   that   the   antibodies   used   in   this   study  are  specific  for  each  HAS  isoenzyme  and  can  be  reliably  utilized  both  in  mouse  and   human  tissues  and  cell  cultures.  

We   observed   immunostaining   of   all   HASs   both   in   intracellular   locations   and   on   the   plasma   membrane   (I).   Intracellular   staining   was   found   especially   in   ER   and   Golgi   areas.  

These  findings  support  our  model  for  the  synthesis  and  transport  of  the  HAS  proteins  from   ER  via  Golgi  to  the  plasma  membrane,  followed  by  uptake  into  endosomes  and  transport  to   lysosomes   for   degradation,   or   recycling   to   the   plasma   membrane   (Deen   et   al.   2016).   The   model  was  established  using  GFP-­‐‑tagged  HASs  (Müllegger  et  al.  2003,  Rilla  et  al.  2005).  The   use   of   the   GFP-­‐‑tagged   fusion   proteins   have   shown   that   the   transport   to   the   plasma   membrane  is  essential  for  the  activity  of  HAS2  and  HAS3  (Rilla  et  al.  2005),  and  a  similar   regulation   was   later   shown   for   HAS1   (Siiskonen   et   al.   2014).   However,   the   localization   of   HAS1  is  mainly  intracellular  (Siiskonen  et  al.  2014),  and  studies  on  HAS1  have  suggested   also  intracellular  activity  (Ghosh  et  al.  2009).  Additionally,  HAS2  and  HAS3  have  different   cellular  distribution,  the  relative  amount  of  HAS3  being  higher  in  plasma  membrane  than   HAS2.  Different  turnover  rates  or  stabilities  of  the  HAS  enzymes  may  affect  their  relative   levels   on   the   plasma   membrane.   HAS3   has   remained   active   in   the   plasma   membrane   preparations  in  vitro  for  8h,  HAS2  3h  and  HAS1  1h  (Itano  et  al.  1999).  On  the  other  hand,   Deen  et  al.  showed  in  live  cells  a  rapid  endocytosis  of  HAS3  and  recycling  back  to  plasma   membrane  (Deen  et  al.  2016).  The  overall  turnover  time  of  the  HAS  enzymes  is  dependent   on   the   cell   culture   conditions   (Bansal   and   Mason   1986,   Kitchen   and   Cysyk   1995).   The   different   lifetimes   of   HASs   may   also   be   explained   by   their   different   subcellular   localizations.  

The  immunostainings  and  the  GFP-­‐‑tagged  fusion  proteins  used  in  this  study  showed  a   large   intracellular   pool   of   HAS2   in   the   ER/Golgi   area   (I).   This   pool   is   assumed   to   act   as   a   reservoir,   and   may   be   rapidly   transported   to   the   plasma   membrane   and   activated   as   a   result  of  acute  response  for  wounding  (Tammi  et  al.  2005),  inflammation  (Mack  et  al.  2012),   or  other  external  stimuli  (Jacobson  et  al.  2000).  HAS3  had  a  less  prominent  accumulation  in   the   Golgi   area   than   HAS2,   which   suggests   that   HAS3   may   be   constitutively   active   under   basal   conditions   (Rilla   et   al.   2005).   There   are   potential   phosphorylation   and   O-­‐‑

GlcNAcylation  sites  in  HAS2  (Vigetti  et  al.  2011,  Vigetti  et  al.  2012)  and  HAS3  (Deen  et  al.  

2016,   Goentzel   et   al.   2006),   suggesting   that   post-­‐‑transcriptional   modifications   may   be  

 

 

26  

important   regulators   of   the   HAS   activity.   There   is   also   ubiquitinylation   site   in   HAS2   (Karousou  et  al.  2010).  

Cells  overexpressing  mouse  HAS3  or  HAS2  produce  long  plasma  membrane  protrusions   (Kultti   et   al.   2006).   The   present   study   shows   the   same   phenomenon   with   human  HAS   constructs.   These   microvillus-­‐‑like   protrusions   are   dependent   on   hyaluronan   synthase   activity.   Both   HAS2   and   HAS3   produce   high   amount   of   hyaluronan,   but   the   number   of   plasma  membrane  protrusions  is  higher  in  HAS3  overexpressing  cells  (Rilla  and  Koistinen   2015).   HAS1   has   lower   hyaluronan   production   activity   and   is   also   unable   to   induce   the   protrusions,   even   after   induction   with   cytokines   (Siiskonen   et   al.   2014).   This   indicates   unknown   differences   in   the   regulation   mechanisms   of   the   different   HAS   isoforms.   Except   for  acting  as  hyaluronan  producing  sites,  the  functional  role  of  these  protrusions  has  been   unknown,  but  Rilla  et  al.  showed  that  these  protrusions  act  as  a  platform  for  the  shedding   of   extracellular   vesicles   (Rilla   et   al.   2013b).   Our   immunostainings   of   mouse   embryos   showed  HAS-­‐‑positive  protrusions  also  in  vivo,  findings  in  line  with  those  of  Koistinen  et  al   who   investigated   the   structure   and   regulation   of   these   protrusions   in   more   detail   in   vitro   (Koistinen   et   al.   2015),   and   showed   that   they   exist   also  in   vivo  in   rat   mesothelial   tissues   (Koistinen  et  al.  2016).      

 

6.2 Role of hyaluronan in cancer and development 6.2.1  Hyaluronan  role  in  cancer  

Hyaluronan   accumulation   is   a   typical   feature   of   several   malignant   tumors   such   as   lung,   breast,   ovarian   and   prostate   cancers   (Tammi   et   al.   2008).   There   are   several   possible   mechanisms   behind   the   accumulation   of   hyaluronan.   Induction   of  HAS   transcription,   followed  by  increased  HAS  protein  expression  is  one  possible  explanation.  Auvinen  et  al.  

showed   HAS1-­‐‑3   upregulation   in   breast   cancer   (Auvinen   et   al.   2014),   and   poor   patient   survival   correlated   with   increased   HAS1   and   HAS3   protein   levels   detected   by   their   immunostainings.    Fibroblast  growth  factor  receptor  (FGFR)  activation  has  been  shown  to   induce  HAS2  activation  and  hyaluronan  accumulation  in  breast  cancer  (Bohrer  et  al.  2014).  

As   discussed   above,   enhanced   hyaluronan   synthesis   is   associated   with   the   formation   of   long   cell   surface   protrusions   (Kultti   et   al.   2006)   and   enhanced   formation   of   extracellular   vesicles  (Rilla  et  al.  2013b).  These  protrusions  and  vesicles  might  have  an  important  role  in   cancer  progression  by  creating  a  favourable  microenvironment  for  tumor  progression  and   facilitating   tumor   cell   invasion.   On   the   other   hand,   in   some   cancers,   like   squamous   cell   carcinomas   (Karvinen   et   al.   2003a)   and   melanomas   (Siiskonen   et   al.   2013),   hyaluronan   content  decreases  during  the  progression  of  the  cancer.  The  content  of  HAS2  decreases  in   higher   grade   melanomas   (Siiskonen   et   al.   2013),   and   decreased   hyaluronan   is   actually   a   prognostic  factor  in  mouth  squamous  cell  carcinoma  (Kosunen  et  al.  2004)  and  melanoma   (Karjalainen  et  al.  2000).    

Another   factor   that   regulates   hyaluronan   content   and   accumulation   in   tumor   tissues   is   the   rate   of   its   degradation   by   hyaluronidases,   or   by   non-­‐‑enzymatic   degradation   through   free  radicals.  Hyaluronidase  activity  can  inhibit  hyaluronan  accumulation  and  regulate  the   effects   of   hyaluronan   in   cancer   progression.   In   an   experimental   colon   carcinoma   model   HYAL1  overexpression  has  been  shown  to  suppress  the  tumorigenenicity  of  cells  (Jacobson   et   al.   2002).   On   the   other   hand,   Bouga   et   al.   showed   increased  HYAL1   and  HYAL2   expression   in   colorectal   cancer   (Bouga   et   al.   2010).  HYAL1   and  HYAL2   mRNA   levels   are   lower  in  the  endometrial  cancer,  compared  to  the  normal  endometrial  tissue  (Nykopp  et  al.  

2010).  HYAL1   expression   correlates   with   microvessel   density   and   capillary   growth   in   bladder  and  prostate  cancers  (Lokeshwar  et  al.  2005)      

   

 

27  

The   balance   between   the   relative   activities   of   the   hyaluronan   synthases   and   hyaluronidases  might  play  a  key  role  in  the  growth  and  progression  of  various  tumors.  In  a   prostate  cancer  cell  model  hyaluronan  synthase  and  hyaluronidase  co-­‐‑operation  is  needed   for   significant   tumorigenecity   (Simpson   2006).   Production   of   hyaluronan   fragments   by   hyaluronidases  may  enhance  tumor  growth  and  neovascularization  due  to  distinct  signals   triggered   by   them   in   hyaluronan   receptors,   as   compared   to   the   signals   induced   by   high   molecular   weight   hyaluronan   (Cyphert   et   al.   2015).   Fragmented   hyaluronan   might   disengage  high  molecular  weight  hyaluronan  from  its  receptors,  and  lead  to  an  inhibition   of  the  normal  signaling  activity  of  the  receptor.    

The   present   study   showed   hyaluronan   accumulation   especially   in   the   cancer   cells   of   mesotheliomas   (III).   There   was   a   significantly   higher   amount   of   hyaluronan   in   the   mesothelial  cells  as  compared  to  adenocarcinoma  cells.  The  same  phenomenon  was  seen  in   earlier  studies  (Afify  et  al.  2005,  Kanomata  et  al.  2005,  Welker  et  al.  2007).  Higher  content  of   hyaluronan  in  pleural  fluid  with  mesothelioma  patients  has  also  been  shown  (Thylen  et  al.  

1999,  Thylen  et  al.  2001).  It  has  been  suggested  that  hyaluronan  content  with  mesothelioma   cells  work  as  marker  for  mesothelioma  (Afify  et  al.  2005,  Azumi  et  al.  1992),  and  findings  in   this   study   supports   this   idea.   Combined   with   other   mesothelioma   marker   hyaluronan   staining   could   increase   precision   of   diagnosis.   In   our   study   there   was   no   difference   in   stromal   hyaluronan   content   of   these   two   cancers.   Increased   hyaluronan   synthesis   has   shown  to  increase  the  malignancy  of  mesothelioma  cells  (Li  and  Heldin  2001).  

 There  were  no  differences  in  CD44  staining  between  adenocarcinoma  and  mesothelioma   cells.   The   stromal   cells   of   mesotheliomas   had   a   tendency   for   a   weak   immunostaining   of   CD44,  as  compared  with  the  stromal  cells  of  lung  adenocarcinoma.  Binding  of  hyaluronan   to   CD44   can   activate   signaling   for   tumor   progression   (Heldin   et   al.   2008).   On   the   other   hand,   CD44   could   reduce   the   effects   of   hyaluronan   by   contributing   to   hyaluronan   endocytosis  and  degradation  (Tammi  et  al.  1998).  

6.2.2  Hyaluronan  in  development  

Tien   and   Spicer   have   shown   the   spatial   and   temporal   changes   in   hyaluronan   synthase   expression   at   mRNA   level   during   embryonic   development   (Tien   and   Spicer   2005).   The   present   results   with   HAS   immunostainings   are   mostly   in   line   with   those   findings.   We   showed  a  clear  HAS2  staining  in  the  developing  heart  valves  during  the  E9  and  11  stages,   as  noted  earlier  at  mRNA  level.  These  results  further  confirm  the  key  role  of  HAS2  during   the  development  of  the  heart  valves.  Furthermore,  the  loss  of  HAS2  function  is  lethal  in  an   early   phase   of   the   embryonic   development   and   the   expression   of   other   HASs   cannot   compensate  it  (Camenisch  et  al.  2000).  Interestingly,  HAS2  expression  during  the  formation   of  the  endocardial  cushions  in  zebrafish  is  downregulated  by  a  specific  microRNA  (MIR-­‐‑23)   (Lagendijk   et   al.   2011).   There   is   excessive   endocardial   cushion   growth   without   restricted   HAS2   expression   and   HA   production.     Brain   tissue   showed   low  HAS2   expression   both   at   mRNA  (Tien  and  Spicer  2005)  and  in  protein  levels.  

   However,   the   mRNA   levels   of   the  HAS   genes   did   not   always   correlate   with   the   HAS   proteins,   like   in   the   follicles   of   the   vibrissa   (Tien   and   Spicer   2005).   Similar   contradictions   have   been   detected   in   human   tumors   such   as   endometrial   and   ovarian   carcinomas   (Nykopp   et   al.   2009,   Nykopp   et   al.   2010).   Hyaluronan   levels   and   HAS   protein   immunoreactivity  were  well  correlated  in  tissues  like  developing  heart  and  cartilage  (I).  On   the   other   hand,   hyaluronan-­‐‑rich   tissues   like   the   vitreous   body   and   the   stromal   compartment   of   the   developing   kidney   had   low   levels   of   HASs.   Rapid   turnover   rate   of   HAS   protein   in   tissues   is   a   possible   explanation   for   this   inconsistency   between   synthase   proteins   and   hyaluronan   (Tammi   et   al.   2011,   Vigetti   et   al.   2012),   or   it   may   arise   from   temporal  changes  in  hyaluronan  synthase  activity,  for  example  due  to  a  fluctuation  of  the   precursor  sugar  levels,  or  different  rates  of  hyaluronan  turnover.  Diffusion  of  hyaluronan   from   adjacent   tissues   may   also   explain   these   discrepancies.   There   was   an   overlapping  

 

 

28  

expression  of  HASs  in  many  tissues  of  mesodermal  origin,  cartilage  one  of  them.  However,   there   were   no   skeletal   malformations   in  HAS1   KO,  HAS3   KO   or  HAS1/HAS3   douple   KO   (Bai   et   al.   2005,   Camenisch   et   al.   2000,   Tien   and   Spicer   2005),   suggesting   that   HAS2   can   compensate   for   the   hyaluronan   synthesis   of   missing   HAS1   and   HAS3   during   bone   formation.   Nevertheless,  HAS3   KO   mice   have   chronic   inflammation   in   joints   (Chan   et   al.  

2015).  Interestingly,  mice  with  HYAL2  deficiency  have  congenital  disorders  in  frontonasal   and   vertebral   bone   formations   (Jadin   et   al.   2008),   while  HYAL1   deficiency   results   in   mild   abnormalities  of  the  articular  cartilage  (Martin  et  al.  2008).  

     

6.3 Effects of UV radiation on hyaluronan metabolism

Long-­‐‑term  and  high-­‐‑dose  UV  exposure  is  the  main  the  risk  factor  of  the  epithelial  tumors  of   the   skin.   UV   radiation   is   also   known   to   influence   the   hyaluronan   content   of   the   skin.  

However,   little   specific   information   about   epidermal   hyaluronan   metabolism   associated   with   UV-­‐‑induced   hyperplasia   and   malignancy   has   been   available.   This   study   showed   for   the  first  time  the  gross  changes  in  the  metabolism  of  epidermal  hyaluronan  caused  by  long-­‐‑

term  UV  radiation  (II).  The  results  showed  an  increased  content  of  hyaluronan  both  in  the   epidermis  and  dermis  in  skin  after  UV  radiation,  and  with  concomitant  rise  of  all  HASs  and   CD44.  There  was  a  positive  correlation  between  hyaluronan  content  and  skin  hyperplasia,   indicating   that   hyaluronan   accumulates   in   the   early   stages   of   skin   squamous   cell   carcinomas.  Karvinen  et  al.  described  similar  observations  in  human  samples  (Karvinen  et   al.   2003a)   and   Koshiishi   et   al   showed   in   mice   that   UV-­‐‑dosage   associated   with   epidermal   hyperplasia   lead   to   accumulation   of   hyaluronan   in   the   dermis   (Koshiishi   et   al.   1999).  

However,  contradictory  reports  exist.  Thus,  short  term  exposure  of  UVA/UVB  was  shown   to  decrease  hyaluronan  content  in  mouse  skin,  being  reconstituted  within  24  h  (Calikoglu  et   al.   2006),   while   in   human   skin   it   was   shown   to   increase   epidermal   hyaluronan,   but   a   temporarily   decreased   dermal   hyaluronan   content   was   observed   (Werth   et   al.   2011).   Dai   and   coworkers   experiments   suggest   that   long-­‐‑term   UV   irradiation   of   mouse   skin   causes   loss   of   hyaluronan   and   downregulation   of   the   hyaluronan   synthases   in   the   dermis,   while   epidermal   hyaluronan   does   not   change   (Dai   et   al.   2007).   In   line,   Werth   and   coworkers,   showed   in   human   skin   that   repeated   UVB   irradiation   does   not   alter   the   content   of   hyaluronan  in  the  epidermis,  and  repeated  UVA  irradiation  may  even  decrease  it  (Werth  et   al.   2011).   On   the   other   hand,   studies   on   cultured   keratinocytes   showed   an   increased   hyaluronan   content   in   the   culture   medium,   and   increased   expression   of   hyaluronan   synthases   (Averbeck   et   al.   2007,   Kakizaki   et   al.   2008,   Rauhala   et   al.   2013).   Cultured   fibroblasts  respond  to  UVB  radiation  by  elevated  HA-­‐‑synthesis  and  HAS  levels  (Dai  et  al.  

2007).     Opposite   responses   in   vivo   and   in   vitro   might   be   due   to   UVB-­‐‑induced   signaling   from  keratinocytes  to  dermal  fibroblasts    

There   might   be   several   reasons   for   these   contradictory   results   between   the   different   studies.  The  spectral  types  of  irradiation  used  in  the  different  studies  are  not  comparable,   being   in   some   cases   UVB,   UVA   or   combination   of   both.   Furthermore,   the   doses   and   exposure  times  are  also  different.  Moderate  dose  of  UVB  increases  hyaluronan,  but  a  higher   dose  of  UV  radiation  appears  to  result  in  a  reduced  content  of  hyaluronan  (Calikoglu  et  al.  

2006,  Kakizaki  et  al.  2008).  The  wavelength  is  apparently  important  since  (Werth  et  al.  2011)   reported   that   UVA   decreases   the   content   of   hyaluronan   in   the   epidermis,   while   UVB,   although  has  no  effect  on  the  total  epidermal  hyaluronan,  increases  it  in  the  basal  layer  of   the   epidermis.   A   narrower   spectrum   lamp   used   in   earlier   studies,   especially   those   with  

   

 

29  

UVA,  had  no  effect  (Kakizaki  et  al.  2008),  or  even  inhibited  hyaluronan  synthesis  (Calikoglu   et  al.  2006).  The  cell  culture  conditions  between  the  separate  studies  vary,  and  likely  lead  to   different   responses   to   the   UV   radiation.   Our   study   on   mouse   was   a   controlled,   long-­‐‑term   experiment  which  lasted  for  10,5  months,  using  UVA  and  UVB  transmitting  lamp  (Kumlin   et   al.   1998),   however   most   of   biological   effects   come   from   UVB.   Dai   et   al.   used   UVB   transmitting  lamp  and  the  mice  were  exposed  three  times  in  a  week  during  26  weeks  (Dai   et   al.   2007).     Biological   effects   were   different   between   our   study   and   Dai   et   al   (Dai   et   al.  

2007).   There   was   no   accumulation   of   hyaluronan   or   development   of   hyperplasia   in   epidermis   according   to   Dai   et   al,   although   in   both   models   squamous   cell   carcinoma   developed  in  20  %of  exposed  animals.  Similar  data  on  humans  are  not  available  since  those   by  Averbeck  et  al.  (Averbeck  et  al.  2007)  and  Werth  et  al.  (Werth  et  al.  2011)  just  spanned   from  hours  to  days.    

Direct   comparison  of  in   vivo  and  in   vitro   results   is   difficult.   Normal   skin   has   protective   elements  like  melanocytes  and  a  thick  stratum  corneum.  The  lack  of  these  elements  makes   keratinocytes  in  cell  cultures  more  responsive  to  the  UV  radiation  than  the  keratinocytes  in   an   intact   skin.   The   thickness   of   the   stratum   corneum   differs   between   species,   which   may   contribute   to   the   differences   between   the   results,   and   the   levels   of   the   epidermal   hyaluronan  also  differ  between  the  species.  Normal  human  skin  contains  hyaluronan  both   in   the   epidermis   and   dermis.   Especially   the   extracellular   space   between   keratinocytes   is   rich   in   hyaluronan   in   human   skin   (Tammi   et   al.   1988,   Werth   et   al.   2011).   Both   monolayer   and  organotypic  cultures  of  rat  keratinocytes  also  produce  hyaluronan  (Rauhala  et  al.  2013).  

However,  normal  mouse  epidermis  is  almost  negative  for  hyaluronan  (II,  Figure  1a).  

The   exact   role   of   hyaluronan   in   the   UV   radiated   skin   is   still   under   investigation.   The   studies  in  vivo  have  shown  that  hyaluronan  treatment  may  reduce  the  detrimental  effects  of   UVR   in   keratinocytes   (Hasova   et   al.   2011).   Hyaluronan   synthesis   induced   by   HAS2   or   HAS3  has  been  shown  to  protect  against  the  apoptosis  induced  by  UVR  (Wang  et  al.  2014).  

An  association  between  protein  kinase  p38  function  and  skin  tumor  development  has  been   shown   (Schindler   et   al.   2009).   Accordingly,   acute   UVB   irradiation   triggers   p38   activation   and  Has  upregulation  in  keratinocytes  (Rauhala  et  al.  2013).  These  findings  are  in  line  with   earlier  studies  on  humans  (Karvinen  et  al.  2003a,  Pirinen  et  al.  1998)  indicating  hyaluronan   accumulation   in   hyperplastic   epidermis   and   early   phases   of   the   squamous   cell   carcinoma   lesions.   Hyaluronan   accumulation   is   thus   likely   to   contribute   to   the   development   of   the   malignant  growth  in  the  epidermis  during  the  early  stages  of  the  malignancy.    Hyaluronan   thus   seems   to   have   a   dual   role   in   the   UVradiated   skin.   It   helps   to   maintain   homeostasis   through   the   inflammatory   response   to   irritation   by   shielding   the   cells,   while   a   longer   duration  or  a  higher  dose  of  the  exposure  might  result  in  the  development  of  a  malignancy.  

However,   once   initiated,   the   squamocellular   cancers   proceeds   into   the   next   steps   that   do   not  need  hyaluronan  which  can  actually  retard  the  development  of  the  tumor,  and  must  be   reduced,  as  seen  in  the  high  grade  squamocellular  cancers  and  melanomas  (Karjalainen  et   al.  2000,  Kosunen  et  al.  2004).  

The   main   hyaluronan   receptor   CD44   was   elevated   in   the   UVR   treated   epidermis   (II).  

There  was  a  correlation  between  hyaluronan  and  CD44,  as  seen  also  in  the  earlier  studies   (Karvinen  et  al.  2003a).  On  the  other  hand,  a  reduction  of  CD44  has  been  reported  after  an   acute  high  dose  UVR  exposure  (Calikoglu  et  al.  2006,  Rauhala  et  al.  2013).  Hyaluronan  and   CD44   accumulation   during   epidermal   hyperplasia   was   also   seen   during   wound   healing   (Tammi   et   al.   2005)   and   in   psoriasis   (Tammi   et   al.   1994a).   Hyaluronan   and   CD44   accumulation  might  be  required  during  epidermal  activation  in  hyperplasia  caused  by  an   injury  and  inflammation,  and  in  the  early  phases  of  squamous  cell  carcinomas.  

 

 

 

30  

6.4 Putative role of hyaluronan and hyaluronan synthases as tools for diagnostics and treatment of cancer

The  results  of  this  study  support  the  idea  that  the  detection  of  hyaluronan  and  hyaluronan   synthases   from   tissues   or   tissue   fluids   are   prospective   tools   for   diagnostics.   Hyaluronan   accumulation   and   hyaluronan   synthase   activity   have   an   important   role   in   several   pathological   conditions,   including   tumor   growth   (Sironen   et   al.   2011)   and   inflammation   (Litwiniuk  et  al.  2016).  Hyaluronan  content  in  the  tumor  cells  or  their  stroma  have  a  strong   potential   for   prognostic   factors   (Anttila   et   al.   2000).   The   correlation   between   the   levels   of   hyaluronan  synthases  and  hyaluronan  contents  with  breast  cancer  aggressiveness  and  poor   patient   outcome   has   been   established   (Auvinen   et   al.   2014).   Changes   in   HAS1   and   HAS2   were  detected  in  oral  lichen  planus  compared  to  normal  oral  mucosa  (Siponen  et  al.  2015).  

Hyaluronan   and   hyaluronan   synthases,   perhaps   combined   with   other   markers,   are   operable   tools   for   diagnostics   of   the   malignant   situations.   These   can   be   investigated   in   tissues   from   resection   or   needle   biopsy,   and   from   body   fluids   like   ascites,   plasma,   and   urine.  The  extracellular  vesicles  positive  for  hyaluronan  and  hyaluronan  synthases  are  also   promising  targets  for  the  detection  of  malignancies  (Rilla  et  al.  2013b,  Rilla  et  al.  2014).  

An  early  detection  of  possible  changes  in  the  content  of  hyaluronan  during  a  malignant   process   would   enable   blocking   the   accumulation   of   hyaluronan,   and   thus   progression   of   the   disease.   Hyaluronan   content   can   fluctuate,   like   in   the   squamous   cell   carcinomas   (Karvinen   et   al.   2003a,   Pirinen   et   al.   1998)   and   melanomas   (Siiskonen   et   al.   2013),   where   hyaluronan   first   increases   and   then   decreases   in   the   more   advanced   disease.   Therefore,   accurate  timing  of  the  interference  in  hyaluronan  metabolism  would  be  needed.  There  are   several   possible   tools   for   the   inhibition   of   the   accumulation   of   hyaluronan.    HAS   gene   expression  can  be  inhibited  by  siRNA  or  microRNA  (Lagendijk  et  al.  2011,  Röck  et  al.  2015)   and  by  altering  DNA  methylation  (Kohi  et  al.  2016).  One  of  the  key  elements  in  hyaluronan   production   is   the   level   of   the   precursor   sugars,   and   more   generally   the   supply   of   glucose   (Rilla   et   al.   2013a).   Mannose   inhibits   hyaluronan   synthesis   by   reducing   cellular   pool   of   UDP-­‐‑GlcNAc  (Jokela  et  al.  2008),  and  4-­‐‑MU  affects  the  availability  of  UDP-­‐‑  GlcUA  acid,  the   hyaluronan  precursor  sugars,  and  substrates  of  the  HAS  enzymes  (Kultti  et  al.  2009).  It  is   also  possible  to  use  hyaluronidase  to  reduce  the  content  of  hyaluronan  in  cells  and  tissues.  

It   has   been   described   recently,   that   systemically   administered   pegylated   PH20   hyaluronidase  depletes  tumor  hyaluronan  (Jiang  et  al.  2012a,  Thompson  et  al.  2010).  There   are  ongoing  phase  II  clinical  trials  with  with  a  combination  of  PEGPH20  and  gemcitabine   for   the   treatment   of   stage   IV   metastatic   pancreatic   ductal   adenocarcinoma   patients  

It   has   been   described   recently,   that   systemically   administered   pegylated   PH20   hyaluronidase  depletes  tumor  hyaluronan  (Jiang  et  al.  2012a,  Thompson  et  al.  2010).  There   are  ongoing  phase  II  clinical  trials  with  with  a  combination  of  PEGPH20  and  gemcitabine   for   the   treatment   of   stage   IV   metastatic   pancreatic   ductal   adenocarcinoma   patients