• Ei tuloksia

Hyaluronan-positive cell protrusions and microvesicles : studies on their structure, function and existence in vivo

N/A
N/A
Info
Lataa
Protected

Academic year: 2022

Jaa "Hyaluronan-positive cell protrusions and microvesicles : studies on their structure, function and existence in vivo"

Copied!
130
0
0

Kokoteksti

(1)

VILLE KOISTINEN

HYALURONAN-POSITIVE CELL PROTRUSIONS AND MICROVESICLES

Dissertations in Health Sciences

(2)
(3)

         

Hyaluronan-­‐‑positive  cell  protrusions  and   microvesicles  

 

(4)
(5)

VILLE KOISTINEN

Hyaluronan-­‐‑positive  cell  protrusions  and   microvesicles  

 

 

Studies  on  their  structure,  function  and  existence  in  vivo  

   

         

To  be  presented  by  permission  of  the  Faculty  of  Health  Sciences,  University  of  Eastern  Finland  for   public  examination  in  lecture  hall  SN200,  Kuopio,  on  Wednesday,  June  21st  2017,  at  12  noon  

   

Publications  of  the  University  of  Eastern  Finland    Dissertations  in  Health  Sciences    

Number  425      

Department  of  Biomedicine,  School  of  Medicine,  Faculty  of  Health  Sciences,     University  of  Eastern  Finland  

Kuopio   2017

 

(6)

                       

 

Kiriprintti  OY   Helsinki,  2017  

 

Series  Editors:    

Professor  Tomi  Laitinen,  M.D.,  Ph.D.  

Institute  of  Clinical  Medicine,  Clinical  Physiology  and  Nuclear  Medicine   Faculty  of  Health  Sciences  

 

Professor  Hannele  Turunen,  Ph.D.  

Department  of  Nursing  Science   Faculty  of  Health  Sciences  

 

Professor  Kai  Kaarniranta,  M.D.,  Ph.D.  

Institute  of  Clinical  Medicine,  Ophthalmology   Faculty  of  Health  Sciences  

 

Associate  Professor  (Tenure  Track)  Tarja  Malm,  Ph.D.  

A.I.  Virtanen  Institute  for  Molecular  Sciences   Faculty  of  Health  Sciences  

 

Lecturer  Veli-­‐‑Pekka  Ranta,  Ph.D.  (pharmacy)   School  of  Pharmacy  

Faculty  of  Health  Sciences    

Distributor:    

University  of  Eastern  Finland   Kuopio  Campus  Library  

P.O.Box  1627   FI-­‐‑70211  Kuopio,  Finland   http://www.uef.fi/kirjasto  

 

ISBN  (print):  978-­‐‑952-­‐‑61-­‐‑2527-­‐‑5   ISBN  (pdf):  978-­‐‑952-­‐‑61-­‐‑2528-­‐‑2  

ISSN  (print):  1798-­‐‑5706,   ISSN  (pdf):  1798-­‐‑5714  

ISSN-­‐‑L:  1798-­‐‑5706

(7)

Author’s  address:   Department  of  Biomedicine/School  of  medicine/Anatomy   University  of  Eastern  Finland  

KUOPIO   FINLAND    

Supervisors:   Docent  Kirsi  Rilla,  Ph.D.  

Department  of  Biomedicine/School  of  medicine/Anatomy   University  of  Eastern  Finland  

KUOPIO   FINLAND    

Professor  Markku  Tammi,  M.D.  Ph.D.  

Department  of  Biomedicine/School  of  medicine/Anatomy   University  of  Eastern  Finland  

KUOPIO   FINLAND    

Reviewers:   Affiliate  Professor  Thomas  N.  Wight,  Ph.D.  

Institute  for  Stem  Cell  &  Regenerative  Medicine   University  of  Washington  

SEATTLE   USA    

Docent  Varpu  Marjomäki,  Ph.D.  

Department  of  Biological  and  Environmental  Science   University  of  Jyväskylä  

JYVÄSKYLÄ   FINLAND    

 

Opponent:   Professor  Pekka  Lappalainen  

  Institute  of  biotechnology  

  University  of  Helsinki  

HELSINKI   FINLAND  

   

(8)

   

(9)

Koistinen,  Ville  

Hyaluronan  positive  cell  protrusions  and  microvesicles,  Studies  on  their  structure,  function  and  existence  in   vivo  

University  of  Eastern  Finland,  Faculty  of  Health  Sciences  

Publications  of  the  University  of  Eastern  Finland.  Dissertations  in  Health  Sciences  425.  2017.  106  p.  

 

ISBN  (print):  978-­‐‑952-­‐‑61-­‐‑2527-­‐‑5   ISBN  (pdf):  978-­‐‑952-­‐‑61-­‐‑2528-­‐‑2   ISSN  (print):  1798-­‐‑5706,   ISSN  (pdf):  1798-­‐‑5714   ISSN-­‐‑L:  1798-­‐‑5706    ABSTRACT

Hyaluronan   is   a   large   unbranched   glycosaminoglycan.   The   molecular   mass   of   a   single   molecule  can  reach  10  million  daltons  and  a  stretched  length  of  up  to  25  µm.  Hyaluronan  is   very  hydrophilic  due  to  a  negative  charge  and  it  forms  a  highly  viscous  solution  in  water.    

While   hyaluronan   has   an   important   role   as   a   space   filler   in   tissues,   it   also   contributes   to   essential  cellular  processes,  including  embryonic  development,  cell  migration,  proliferation,   wound  healing  and  cancer  progression.  

Hyaluronan   is   synthesized   by   three   plasma   membrane   proteins,   called   hyaluronan   synthases  (HAS1-­‐‑3).  Previous  studies  on  cultured  cells  have  shown  that  overexpression  of   HAS2  and  HAS3  induce  the  formation  of  extensive  microvilli.  The  microvilli  are  covered   with   a   hyaluronan   coat   and   are   dependent   on   filamentous   actin.   Nevertheless,   several   questions  about  the  microvilli  remain;  do  these  structures  exist  in  vivo?  What  is  the  exact   role  of  hyaluronan  in  their  maintenance?  What  might  be  their  function?  Therefore,  the  aim   of  this  dissertation  was  to  study  the  ultrastructure  and  function  of  the  hyaluronan  coated   microvilli  in  more  detail,  and  to  investigate  if  these  special  structures  exist  in  vivo.  

The  results  show  that  HAS  overexpression  drives  the  assembly  of  actin  filaments  in  the   cell  cortex  and  into  the  protrusions.  The  core  of  the  HAS-­‐‑induced  microvilli  consist  of  only    

~8   actin   microfilaments   which   implies   that   in   order   to   maintain   such   long   and   slender   protrusions,   additional   support   is   needed.   Indeed,   the   hyaluronan   coat   around   the   microvilli   acts   as   an   extracellular   cytoskeleton.   Therefore,   active   hyaluronan   synthesis   is   required   for   the   growth   and   maintenance   of   the   microvilli.   The   activity   of   hyaluronan   synthesis   was   also   found   to   correlate   with   the   shedding   of   microvesicles,   covered   by   hyaluronan,  and  budded  off  from  the  tips  of  the  microvilli.    

The  HAS-­‐‑induced  microvilli  in  cultured  cells,  and  the  microvilli  on  mesothelial  surfaces   were  ultrastructurally  similar.  Mesothelium  was  also  positive  for  hyaluronan,  but  negative   for   the   main   hyaluronan   receptor   CD44.   However,   epithelial   to   mesenchymal   transition   induced   by   mesothelial   wounding   or   epidermal   growth   factor   increased   hyaluronan   synthesis,  the  expression  of  CD44  and  HASs,  the  formation  of  microvilli  and  the  shedding   of  microvesicles.  These  findings  suggest  that  the  HAS-­‐‑induced  microvilli  serve  as  a  source   of  microvesicles,  a  recently  discovered  vehicle  for  the  transport  of  signals  in  the  regulation   of  wound  healing  and  progression  of  cancer.  CD44  positive  microvesicles  could  serve  as  a   source  for  new  biomarkers  to  detect  EMT-­‐‑related  processes  in  tissue  injuries  and  cancer.  

In   the   future,   the   HAS-­‐‑induced   microvilli   and   microvesicles   may   prove   to   be   a   useful   tool  in  clinical  applications  such  as  cancer  diagnosis  and  therapy.  

 

National  Library  of  Medicine  Classification:  QU  83,  QU  107,  QU55.3,  QU135,  QU143,  QU350  

Medical  Subject  Headings:  CD44;  Cell  Culture;  Cell  movement;  Enzyme  activation,  Epidermal  growth  factor,   Extracellular  Matrix;  Glycosaminoglycans;  Hyaluronan;  Microvilli;  Rat  

(10)

   

(11)

Koistinen,  Ville    

Hyaluronaanipositiiviset   solu-­‐‑ulokkeet   ja   mikrovesikkelit.   Tutkimuksia   niiden   rakenteesta,   toiminnasta   ja   esiintymisestä  elävissä  organismeissa  

Itä-­‐‑Suomen  yliopisto,  terveystieteiden  tiedekunta  

Publications  of  the  University  of  Eastern  Finland.  Dissertations  in  Health  Sciences  425.  2017.  106  s.  

 

ISBN  (print):  978-­‐‑952-­‐‑61-­‐‑2527-­‐‑5   ISBN  (pdf):  978-­‐‑952-­‐‑61-­‐‑2528-­‐‑2   ISSN  (print):  1798-­‐‑5706,   ISSN  (pdf):  1798-­‐‑5714   ISSN-­‐‑L:  1798-­‐‑5706    TIIVISTELMÄ

Hyaluronaani   on   vuorottelevista   N-­‐‑asetyyli-­‐‑D-­‐‑glukosamiini-­‐‑   ja   D-­‐‑glukuronihappo-­‐‑

molekyyleistä  koostuva  suuri  sokeriketju.  Hyaluronaani  voi  olla  jopa  10  miljoonan  daltonin   kokoinen   ja   venytettynä   molekyyli   voi   olla   jopa   25   µm   pituinen.   Negatiivisen   kokonaisvarauksensa   takia   se   sitoo   runsaasti   vettä,   ja   muodostaakin   hyvin   viskoosin   vesiliuoksen.  Hyaluronaania  tuottaa  kolme  solukalvolla  toimivaa  entsyymiä,  hyaluronaani-­‐‑

syntaasia   (HAS1-­‐‑3).   Hyaluronaani   on   keskeinen   molekyyli   monissa   elimistön   tärkeissä   toiminnoissa,   kuten   yksilön   kehityksessä,   solujen   liikkumisessa,   haavan   paranemisessa   ja   syövän  etenemisessä.  Sillä  on  myös  tärkeä  rooli  soluvälitilan  täyttäjänä.  

Aikaisemmissa   tutkimuksissa   havaittiin,   että   hyaluronaanisyntaasien   HAS2   tai   HAS3   ylituotanto  aiheuttaa  pitkien  ja  ohuiden  hyaluronaanivaipallisten  solu-­‐‑ulokkeiden  muodos-­‐‑

tumisen.   Tällaisia   rakenteita   ei   ole   aikaisemmin   kuvattu   esiintyvän   elimistössä.   Tämän   väitöstutkimuksen   tarkoitus   oli   tutkia   näiden   solu-­‐‑ulokkeiden   rakennetta,   toimintaa   ja   hyaluronaanin   merkitystä   niiden   muodostumisessa.   Lisäksi   tavoitteena   oli   selvittää   esiintyykö  samanlaisia  solu-­‐‑ulokerakenteita  in  vivo.  

HAS3:n  ylituotannon  havaittiin  aiheuttavan  soluissa  aktiinitukirangan  uudelleen  järjes-­‐‑

täytymisen   solun   reunaosiin   sekä   solu-­‐‑ulokkeisiin.   Solu-­‐‑ulokkeet   sisältävät   keskimäärin   vain   8   aktiinisäiettä,   joten   ne   tarvitsevat   lisätukea   pysyäkseen   pystyasennossa.  

Hyaluronaanivaipan  havaittiin  toimivan  solu-­‐‑ulokkeiden  ulkoisena  tukirankana.  Käyttäen   tutkimusmateriaalina   runsaasti   hyaluronaania   tuottavia   soluviljelmiä   havaittiin,   että   aktiivinen  hyaluronaanin  tuotanto  on  sekä  solu-­‐‑ulokkeiden  muodostumisen  edellytys  että   seuraus.   Hyaluronaanin   tuotannon   havaittiin   myös   korreloivan   solunulkoisten   kalvo-­‐‑

rakkuloiden   muodostumiseen.   Tarkemmat   selvitykset   paljastivat,   että   solukalvorakkulat   irtautuvat  hyaluronaanivaipallisten  solu-­‐‑ulokkeiden  kärjistä.  

Hyaluronaanivaipallisten   solu-­‐‑ulokkeiden   ja   mesoteelisolujen   mikrovillusten   havaittiin   olevan   rakenteellisesti   samankaltaisia.   Mesoteelin   hyaluronaanivärjäys   osoitti,   että   rotan   vatsakalvon   mesoteelisolujen   apikaalisella,   solu-­‐‑ulokkeita   sisältävällä   pinnalla   on   hyaluronaania,   mutta   ei   CD44-­‐‑molekyyliä,   joka   on   hyaluronaanin   tärkein   reseptori   ja   ilmenee  yleensä  yhdessä  hyaluronaanin  kanssa.    

Epiteeli-­‐‑mesenkyymivaihdos  (EMT)  on  tärkeä  prosessi,  joka  liittyy  muun  muassa  haavan   paranemiseen   ja   syövän   etenemiseen.   Tässä   tutkimuksessa   havaittiin,   että   EMT:ssä   solut   alkavat   tuottaa   CD44:ä,   muodostaa   runsaasti   solu-­‐‑ulokkeita,   hyaluronaania   ja   solukalvorakkuloita.   Tulokset   osoittavat,   että   hyaluronaanivaipallisilla   solu-­‐‑ulokkeilla   voi   olla  tärkeä  merkitys  haavan  paranemisessa  ja  syövässä.  CD44  sisältävät  solukalvorakkulat   voivat  toimia  EMT:hen  liittyvän  kudovaurion  ja  syövän  uutena  biomarkkerina  

 

Luokitus:  QU  83,  QU  107,  QU55.3,  QU135,  QU143,  QU350  

Yleinen  Suomalainen  asiasanasto:  hyaluronaani;  solut;  soluväliaine,  rotta  

(12)

   

(13)

                                                                   

Elämäni valolle

(14)

 

(15)

Acknowledgements  

I  finally  did  it!  

   

 This   thesis   work   was   carried   out   in   the   Institute   of   Biomedicine/Anatomy,   School   of   Medicine  at  the  University  of  Eastern  Finland  during  the  years  2009-­‐‑2017.  I  want  to  thank   all  the  people  who  helped  me  with  my  thesis  work.  

First  of  all,  I  want  to  express  my  deep  gratitude  to  my  principal  supervisor,  docent  Kirsi     Rilla,  Ph.D.,  with  whom  we  share  a  similar  sense  of  humor  and  uttermost  interest  to  cell   protrusions.   I   admire   your   patience   and   help   during   these   years   and   your   skills   on   microscopy.  

My  warmest  thanks  go  to  my  second  supervisor,  professor  Markku  Tammi,  Ph.D.,  M.D.,  as     humble,  I  keep  marveling  your  expertise  on  hyaluronan  science.  I  also  thank  you  for  your   encouraging  attitude  towards  my  work.  

I   also   want   to   thank   professor   Raija   Tammi   Ph.D.,   M.D.   for   her   vast   knowledge   on     immunohistochemistry,  Sanna  Oikari,  Ph.D.  and  Tiina  Jokela  Ph.D.  for  their  generous  help   concerning  molecular  biological  and  statistical  methods.  

Very   warm   thanks   go   also   to   my   research   colleagues   Leena   Rauhala,   Ph.D.,   and   Lasse     Hämäläinen   M.Sc.   for   helping   diverse   methodological   issues.   I   want   to   express   my   gratitude  the  rest  of  the  members  of  extracellular  vesicle  research  group,  especially  to  Kai   Härkönen  M.Sc.  and  Uma  Thanigai  Arasu  M.Sc.  

I  am  deeply  grateful  to  my  official  reviewers  docent  Varpu  Marjomäki,  Ph.D.  and  professor     Thomas   Wight,   Ph.D.   for   their   careful   review   and   essential   suggestion   and   encouraging   comments,   which   made   this   thesis   considerable   more   readable   and   better.   My   sincere   thanks  go  also  to  Gina  Galli,  Ph.D.  for  her  detailed  revision  of  the  English  language.  

Special  thanks  go  to  the  technical  staff  members.  Virpi  Miettinen,  I  keep  wondering  your     exquisite  skills  on  electron  microscopy  sample  preparation,  I  asked  you  impossible,  but  still   you  did  it!  Riikka  Kärnä,  M.Sc.,  I  admire  your  technical  skills  and  precise  pipette  handling   and  Eija  Rahunen,  I  look  up  to  your  firm  expertise  on  immunohistochemical  methods.    

I   also   thank   rest   of   the   staff,   Kari   Kotikumpu,   Eija   Vartiainen,   Arja   Venäläinen,   Eija     Kettunen,  Arja  Winberg.  

Warm  thanks  goes  also  to  the  rest  of  my  co-­‐‑authors  Arto  Koistinen  Ph.D.,  Antti  Arjonen     Ph.D.,   Docent   Sanna   Pasonen-­‐‑Seppänen   Ph.D.,   Ashik   Jawahar   Deen   Ph.D.,   Sara   Wojciechowski  M.Sc.,  Genevieve  Bart  Ph.D.  and  Kari  Törrönen  Ph.D.  

 I   also   want   to   thank   all   other   members   in   hyaluronan   research   group   and   the   whole   personnel  in  the  Institute  of  Biomedicine.  

 

(16)

My  superiors  in  the  clinical  work  are  thanked  for  their  flexibility  concerning  my  scientific   work,   Riitta   Johannala-­‐‑Kemppainen,   Arja   Jukkola-­‐‑Vuorinen,   M.D.,   Ph.D,   Jussi   Männistö,   M.D.,   Ph.D.   and   Mika   Huuskonen,   M.D.   Special   and   warm   thanks   go   to   my   clinical   mentors  Sanna  Kosonen,  M.D.,  Laura  Pusa,  M.D.  and  docent  Timo  Muhonen,  Ph.D,  M.D.,   for  the  outstanding  guidance  for  the  fascinating  world  of  oncology.  

Lisäksi   haluan   kiittää   vanhempiani   Antti   ja   Seija   Koistista   heidän   antamastaan   tuesta   ja     rakkaudesta,  siskoani  Reeta  Koistista  sekä  perheemme  prinsessaa  Tyttiä  hauskoista  hetkistä   yhdessä.  Haluan  kiittää  rakasta  ystävääni  ja  kämppäkaveria  LL  Maija  Peippoa  tieteellisistä   keskusteluista   ja   käsikirjoitusten   tarkastamisesta   sekä   mukavista   ja   ei-­‐‑niin-­‐‑mukavista   hetkistä   kliinisen   työmme   alkutaipaleella.   Kiitokset   kuuluvat   myös   ystävilleni   Lauri   Jokiaiselle,   TM   Jonna   Ojalammille,   LL   Hanna   Jokelalle   ja   LL   Hannes   Holmalle.   Sekä   serkulleni  Sari  Hassiselle,  joka  tutustutti  minut  valokuvaukseen  ja  sai  välillä  unohtamaan   tämän  projektin.  

Lopuksi  kiitää  elämäni  valoa,  LL  Jukka  Viikaria.  Tämä  työ  vaati  paljon,  jaksoit  kuitenkin     aina  tukea  ja  pitää  minut  maan  pinnalla,  kiitos!  

 Academy  of  Finland,  Cancer  center  of  Eastern  finland,  Sigrid  Juselius  foundations,  North   Savo  cancer  foundation  are  thanked  for  the  financial  support  of  this  thesis  

           

Kotka,  May  2017  

   

           

Ville  Koistinen    

(17)

List  of  the  original  publications    

   

This  dissertation  is  based  on  the  following  original  publications:    

   

I Koistinen   V,   Kärnä   R,   Koistinen   A,   Arjonen   A,   Tammi   R,   Rilla   K.   Cell   protrusions   induced   by   hyaluronan   synthase   3   (HAS3)   resemble   mesothelial   microvilli  and  share  cytoskeletal  features  of  filopodia.  Exp  Cell  Res  337:  179-­‐‑191,   2015.  

II Koistinen  V,  Jokela  T,  Oikari  S,  Kärnä  R.  Tammi  M,  Rilla  K.  Hyaluronan  positive   plasma   membrane   protrusions   exist   on   mesothelial   cells   in   vivo.   Histochem   Cell   Biol  145(5):  531-­‐‑544,  2016.  

III Koistinen  V,  Härkönen  K,  Kärnä  R,  Arasu  Uma  Thanigai,  Oikari  S  Rilla  K.  EMT   induced   by   EGF   and   wounding   activates   hyaluronan   synthesis   machinery   and   EV   shedding   in   rat   primary   mesothelial   cells.   Matrix   Biol.,   DOI:  

10.1016/j.matbio.2016.12.00,  2016.  

IV Rilla  K,  Pasonen-­‐‑Seppänen  S,  Deen  AJ,  Koistinen  VV,  Wojciechowski  S,  Oikari  S,   Kärnä   R,   Bart   G,   Törrönen   K,   Tammi   RH,   Tammi   MI.   Hyaluronan   production   enchances   shedding   of   plasma   membrane-­‐‑derived   microvesicles.   Exp   Cell   Res,   319:  2006-­‐‑2018,  2013.  

   

The  publications  were  adapted  with  the  permission  of  the  copyright  owners.  

 

   

(18)

   

(19)

Contents  

1  INTRODUCTION  ...  1  

2  REVIEW  OF  THE  LITERATURE  ...  3  

2.1  Hyaluronan  –  History,  structure  and  properties  ...  3  

2.2  Synthesis  of  hyaluronan  ...  4  

2.2.1  The  vertebrate  hyaluronan  synthase  gene  family  ...  4  

2.2.2  The  structure  and  function  of  hyaluronan  synthases  ...  5  

2.3  Regulation  of  hyaluronan  synthesis  ...  9  

2.3.1  Precursor  availability  ...  9  

2.3.2  Transcriptional  regulation  ...  9  

2.3.3  Posttranslational  modifications  ...  10  

2.4  Catabolism  of  hyaluronan  ...  11  

2.4.1  Hyaluronidase  gene  family  ...  12  

2.4.2  Mammalian  hyaluronidases  ...  12  

2.4.3  Structure  and  function  of  hyaluronidases  ...  13  

2.4.4  Hyaluronan  degradation  pathway  ...  14  

2.4.5  Biological  functions  of  hyaluronidases  ...  14  

2.5  Hyaluronan  receptors  ...  14  

2.5.1  Link  module  family  ...  14  

2.5.2  Cluster  of  differentiation  44  (CD44)  ...  15  

2.5.3  Tumor  necrosis  factor  stimulated  gene  6  (TSG-­‐‑6)  ...  16  

2.5.4  Lymphatic  vessel  endothelial  hyaluronan  receptor  (LYVE-­‐‑1)  ...  16  

2.5.5  Hyaluronan  receptor  for  endocytosis  (HARE)  ...  17  

2.5.6  Layilin  ...  17  

2.5.7  Lecticans  ...  17  

2.5.8  Non-­‐‑link  module  hyaluronan  receptors  ...  18  

2.6  Functions  of  hyaluronan  ...  18  

2.6.1  Tissue  distribution  of  hyaluronan  ...  19  

2.6.2  Epithelial-­‐‑to-­‐‑mesenchymal  transition  and  hyaluronan  ...  19  

2.6.3  Hyaluronan  in  proliferation  and  migration  ...  20  

2.6.4  Hyaluronan  in  embryonic  development  ...  21  

2.6.5  Inflammation  and  hyaluronan  ...  21  

2.6.6  Hyaluronan  in  wound  healing  ...  22  

2.6.7  Hyaluronan  in  cancer  ...  22  

2.7  Filopodia  ...  23  

2.7.1  Introduction  ...  23  

2.7.2  The  role  of  fascin  in  filopodia  ...  24  

2.7.3  Ezrin  –  the  link  between  plasma  membrane  and  actin  cytoskeleton  ...  25  

2.7.4  Myosin-­‐‑X  ...  25  

2.7.5  Hyaluronan  in  finger-­‐‑like  protrusions  ...  26  

2.8  Extracellular  vesicles  ...  27  

2.9  Mesothelium  ...  28  

3  AIMS  OF  THE  STUDY  ...  31  

4  MATERIALS  AND  METHODS  ...  33  

4.1  Materials  ...  33  

4.1.1  Cell  lines  (I,  II,  III  and  IV)  ...  33  

4.2  Methods  ...  33  

4.2.1  Immunohistochemistry  (I,  II  III  and  IV)  ...  33  

4.2.2  Transfections  (I  and  IV)  ...  34  

4.2.3  Assays  of  hyaluronan  (I,  II,  III  and  IV)  ...  35  

(20)

4.2.4  Isolation  of  microvesicles  by  ultracentrifugation  (III  and  IV)  ...  35  

4.2.5  Flow  cytometric  analysis  of  microvesicles  (IV)  ...  35  

4.2.6  Transmission  electron  microscopy  (I,  II  and  IV)  ...  35  

4.2.7  Scanning  electron  microscopy  (II,  III  and  IV)  ...  36  

4.2.8  Confocal  microscopy  and  FRAP  analysis  (I,  II,  III  and  IV)  ...  36  

4.2.9  Correlative  light  and  electron  microscopy  (I)  ...  36  

4.2.10  Quantitative  real-­‐‑time  PCR  (qRT-­‐‑PCR)  (II  and  III)  ...  36  

4.2.11  EGF  and  wounding  experiments  (III)  ...  37  

4.2.12  Nanoparticle  tracking  analysis  (III)  ...  38  

4.2.13  Statistical  analysis  (III)  ...  38  

5  RESULTS  ...  39  

5.1  Hyaluronan  in  Plasma  membrane  protrusions  (I)  ...  39  

5.1.1  Myosin-­‐‑X  localizes  in  the  tips  of  the  hyaluronan-­‐‑dependent  plasma  membrane  protrusions  ...  39  

5.1.2  Hyaluronan  has  a  supportive  role  in  plasma  membrane  protrusions  ...  39  

5.2  HAS-­‐‑induced  cell  protrusions  are  dynamic  structures  (I)  ...  40  

5.2.1  The  dynamics  of  the  hyaluronan-­‐‑dependent  cell  protrusions  ...  40  

5.2.2  Lateral  mobility  of  GFP-­‐‑HAS3  molecules  on  the  cell  protrusions  is  restricted  ...  40  

5.3  Studies  on  the  structure  of  the  hyaluronan  dependent  cell  protrusions  ...  40  

5.3.1  Hyaluronan  exists  on  the  luminal  surface  of  the  mesothelium  (II)  ...  40  

5.3.2  Mesothelial  and  HAS3-­‐‑induced  cell  protrusions  are  structurally  similar  (I)  ...  41  

5.3.3  HAS3  overexpression  relocates  actin  to  the  cell  cortex  and  to  the  bases  of  the  cell  protrusions  (I)  41   5.4  Hyaluronan  synthases  and  CD44  in  the  intact  mesothelium  (II)  ...  41  

5.4.1  HAS2  is  the  main  hyaluronan  producing  enzyme  in  mesothelium  ...  41  

5.4.2  Mesothelium  is  negative  for  CD44  ...  42  

5.5  EMT  activates  hyaluronan  synthesis  machinery  in  primary  mesothelial  cells  (III)  ...  42  

5.5.1  EGF  and  wounding  induces  EMT  in  mesothelial  cells  ...  42  

5.5.2  EGF  and  wounding  induce  a  marked  CD44  overexpression  ...  42  

5.5.3  Hyaluronan  synthesis  is  increased  by  EGF  and  wounding  treatments  ...  43  

5.5.4  Has2  is  overexpressed  during  EGF  or  wounding  treatments  ...  43  

5.6  Studies  on  Hyaluronan-­‐‑coated  microvesicles  ...  43  

5.6.1  Active  hyaluronan  synthesis  induces  hyaluronan-­‐‑coated  microvesicles  (IV)  ...  43  

5.6.2  Microvesicles  bud  off  from  the  apical  surface  of  the  cell  cultures  (IV)  ...  44  

5.6.3  Hyaluronan-­‐‑dependent  microvesicles  are  formed  by  two  distinct  ways  (IV)  ...  44  

5.6.4  EGF  and  wounding  enhance  the  production  of  extracellular  vesicles  (III)  ...  44  

6  DISCUSSION  ...  45  

6.1  The  Role  of  Hyaluronan  in  the  cell  protrusions  ...  45  

6.1.1  Hyaluronan  synthesis  drives  the  formation  of  cell  protrusions  supported  by  actin  filaments  ...  45  

6.1.2  Hyaluronan  acts  like  an  extracellular  cytoskeleton  ...  45  

6.2  Functions  of  the  hyaluronan  coated  cell  protrusions  ...  46  

6.2.1  Surface  area  enlargement  ...  46  

6.2.2  Microvesicle  formation  ...  46  

6.2.3  Epithelial-­‐‑to-­‐‑mesenchymal  transition  ...  46  

6.3  Possible  functions  of  the  hyaluronan  coated  microvesicles  ...  47  

6.4  Myosin-­‐‑x  and  CD44  in  the  cell  protrusions  ...  47  

6.4.1  Possible  functions  of  Myosin-­‐‑X  ...  47  

6.4.2  CD44  in  mesothelial  cells  ...  48  

6.5  Mechanism  of  the  HAS-­‐‑induced  protrusion  formation  in  EMT  ...  48  

6.6  The  role  of  hyaluronan  in  mesothelium  ...  49  

6.7  CD44  and  hyaluronan  as  potential  markers  for  extracellular  vesicles  ...  50  

6.8  Nomenclature  of  the  HAS3-­‐‑induced  protrusions  ...  51  

7  SUMMARY  AND  CONCLUSIONS  ...  53  

8  REFERENCES  ...  55  

   

(21)

Abbreviations  

 

4-­‐‑MU   4-­‐‑methylumbelliferone   AC   adenylyl  cyclase  

AMPK   AMP-­‐‑activated  protein  kinase     atRA   all-­‐‑trans-­‐‑retinoic  acid    

BSA     Bovine  serum  albumin   BVHyal   Bee  venom  hyaluronidase     cAMP   cyclic  adenosine  mono  

phosphate  

CD44   Cluster  of  differentiation  44   CREB1   Cyclic  AMP-­‐‑responsive  

element  binding  protein  1   CTGF   connective  tissue  growth  

factor  

ECM   Extracellular  matrix   EGF   Epidermal  growth  factor   EGFR   Epidermal  growth  factor  

receptor  

EM     Electron  microscope  

EMT   Epithelial-­‐‑to-­‐‑mesenchymal   transition  

ER   Endoplastic  reticulum  

ErbB2   Receptor  tyrosine-­‐‑protein   kinase  2  

EV   Extracellular  vesicle   GFP   Green  fluorescent  protein   GT2   Glycosyltransferase  module  2   HA     Hyaluronan  

HABP   hyaluronan  binding  protein   HARE   Hyaluronan  receptor  for  

Endocytosis  

HAS-­‐‑rs   hyaluronan  synthase  related   sequence  

HB-­‐‑EGF   Heparin-­‐‑binding  epidermal   growth  factor  like  growth   factor  

HBSS     Hank’s  balanced  salt  solution     HGF   Hepatocyte  growth  factor   HRG   Heregulin  

HYAL   Hyaluronidase  

IαI   Inter-­‐‑alpha-­‐‑trypsin  inhibitor   IBD   inflammatory  bowel  disease   IL-­‐‑1b     Interleucin-­‐‑1-­‐‑beta  

(22)

LYVE-­‐‑1     Lymphatic  vessel  endothelial   hyaluronan  receptor  

 MTE   motif  ten  elements  

NF-­‐‑kb   Nuclear  factor  kappa-­‐‑beta   pathway    

OGT   O-­‐‑GlcNAc  transferase     p65   Protein  65  

PDGF-­‐‑D   Platelet  derived  growth   factor-­‐‑D  

PGE2   prostaglandin  E2  

PH-­‐‑20   Posterior  head  antibody   PMA   phorbol  12-­‐‑myristate  13-­‐‑

acetate    

PTC   renal  proximal  tubular   epithelial  cells  

RAR   nuclear  retinoic  acid  receptor    

RHAMM   Receptor  for  hyaluronan-­‐‑

mediated  motility  

SAP   shrimp  alkaline  phosphatase     Sp3   Secificity  protein  3  

STAT3   Signal  transducer  and   activator  of  transcription  3   TGF-­‐‑beta   Transforming  growth  factor  

beta  

TIS   transcription  initiation  site     TNF-­‐‑α/β     Tumor  necrosis  factor  

alfa/beta  

TSG-­‐‑6     Tumor  necrosis  factor   stimulated  gene  6     UDP   Uridine  diphosphate  

UGDH   UDP-­‐‑glucose  dehydrogenase   YY1   Yin-­‐‑Yang1  (transcription  

  factor)

 

 

(23)

1  Introduction  

Hyaluronan   is   a   linear   macromolecule   made   of   alternating   N-­‐‑acetyl-­‐‑D-­‐‑glucosamine   (GlcNAc)   and   D-­‐‑glucuronic   acid   (GlcUA),   linked   together   via  β-­‐‑1,4   and  β1,3   linkages.   In   mammals,  hyaluronan  is  produced  on  the  inner  surface  of  the  plasma  membrane  by  three   hyaluronan  synthases  (HAS1-­‐‑3).  Hyaluronan  is  bound  to  the  plasma  membrane  by  HASs   and   hyaluronan   receptors   including   CD44   and   RHAMM,   and   degraded   by   three   hyaluronidases  (HYAL1-­‐‑2  and  PH20)  (Itano  et  al.  1999;  Tien  and  Spicer  2005).  

Hyaluronan  has  several  functions.  In  many  cases  it  forms  a  pericellular  matrix  around   the   cells   (Evanko   et   al.   2007).   This   matrix   is   highly   organized,   can   be   cross-­‐‑linked,   and   further  extended  by  HA-­‐‑binding  proteins  including  versican  and  aggrecan  (Day  and  de  la   Motte  2005;  Evanko  et  al.  1999;  Morgelin  et  al.  1995).  Hyaluronan  coat  is  often  found  in  the   pericellular   matrices   of   dividing   cells,   and   has   been   hypothesized   to   take   part   in   the   separation   of   dividing   cells   (Evanko   et   al.   2007).   Additionally,   hyaluronan   synthesis   correlates   with   the   migration   rate   of   cells   (Lee   and   Spicer   2000;   Spicer   and   Tien   2004).  

Elevated   hyaluronan   production   has   been   observed   also   in   several   inflammational   processes  (de  La  Motte  et  al.  1999;  Majors  et  al.  2003;  Teder  et  al.  2002).  

Overexpression   of   GFP-­‐‑linked   HAS2-­‐‑3   was   observed   to   induce   actin-­‐‑dependent   formation  of  numerous  cell  protrusions,  that  are  coated  with  hyaluronan  (Kultti  et  al.  2006).  

Spontaneous   formation   of   hyaluronan   coat   containing   microvilli   have   been   observed   in   cultured   human   embryonic   lung   and   murine   fibrosarcoma   cells   (Bard   et   al.   1983),   chondrosarcoma  cells,  mesothelial  cells  (Rilla  et  al.  2008),  and  mesenchymal  stem  cells  (Qu   et  al.  2014).  These  findings  suggest  that  hyaluronan  coated  cell  protrusions  also  exist  in  cells   with  naturally  high  levels  of  hyaluronan  secretion.  

Mesothelial  cells  form  a  monolayer  in  pleural,  peritoneal  and  pericardial  cavities  and  on   the   parietal   surfaces   of   the   internal   organs.   They   lie   on   a   thin   basement   membrane   supported  by  sub-­‐‑serosal  connective  tissue  (Albertine  et  al.  1982;  Ishihara  et  al.  1980;  Wang   1974).   Even   though,   mesothelial   cells   originate   from   mesodermal   cells,   they   have   several   epithelial-­‐‑like   features,   including   a   cobblestone   polygonal   morphology   and   thick   microvillar   border   on   the   luminal   surface   (Czernobilsky   et   al.   1985;   Mutsaers   2002).   The   mesothelial   ultrastructure   varies   according   to   its   location   (Michailova   et   al.   1999).   The   microvillar   border   is   remarkably   dynamic   with   variable   numbers   and   lengths   of   the   microvilli  under  different  physiological  states  (Madison  et  al.  1979;  Mutsaers  et  al.  1996).  

Mesothelial   cells   are   capable   of   producing   a   hyaluronan-­‐‑rich   glycocalyx   in   vitro   (Breborowicz  et  al.  1996;  Breborowicz  et  al.  1998;  Heldin  and  Pertoft  1993;  Yung  et  al.  1994;  

Yung  et  al.  2000).  Some  reports  also  indicate  that  mesothelium  is  capable  of  synthesizing   hyaluronan  in  vivo  (Breborowicz  et  al.  1998;  Lai  et  al.  1999;  Wang  and  Lai-­‐‑Fook  1998;  Yung   et   al.   1994).   However,   ultra-­‐‑structural   localization   of   mesothelial   tissue   hyaluronan   and   hyaluronan  synthases  have  not  yet  been  shown.  

This   thesis   concentrated   on   the   structure   and   function   of   the   HAS-­‐‑induced   cell   protrusions.  The  results  show  that  the  hyaluronan  coat  acts  as  an  extracellular  cytoskeleton   to   support   the   long   and   slender   cell   protrusions.   This   work   also   shows   that   hyaluronan   coated   cell   protrusions   exist   in   vivo   on   mesothelial   cells,   and   may   act   as   microvesicle-­‐‑

forming  organelles.  

 

(24)
(25)

2  Review  of  the  literature  

2.1 HYALURONAN – HISTORY, STRUCTURE AND PROPERTIES

The  story  of  glycosaminoglycans  (GAGs),  a  family  of  animal  polysaccharides  which  contain   hyaluronan  (HA),  began  in  1841,  when  the  German  anatomist  Henle  described  the  ground   substance;  an  amorphous  material  between  cells  (Henle  1841).  One  of  the  main  constituents   of   the   ground   substance   was   first   identified   in   1934   as   a   carbohydrate   containing   uronic   acid  and  amino  sugar,  named  hyaluronic  acid  (Meyer  and  Palmer  1934).  It  took  a  further  20   years   before   the   chemical   structure   of   hyaluronic   acid   was   determined   (Weissmann   and   Meyer  1954).  The  term  “hyaluronan”  was  introduced  in  1986  to  cover  all  different  forms  of   the  molecule,  hyaluronic  acid  and  its  salts  such  as  sodium  hyaluronate  (Balazs  et  al.  1986).  

The   chemical   structure   of   hyaluronan   is   simple,   consisting   of   repeating   disaccharide   units  of  N-­‐‑acetyl  glucosamine  and  D-­‐‑glucuronic  acid  linked  with  alternating  β-­‐‑1,4  and  β-­‐‑1,3   glycosidic  bonds  (Figure  1).  The  molecular  weight  can  be  as  high  as  6000-­‐‑8000  kDa,  and  a   stretched  6000  kDa  hyaluronan  chain  would  have  an  approximate  length  of  15  µm  and  a   diameter   of   approximately   0.5   nm   (Cowman   and   Matsuoka   2005).   In   a   normal   physiological  state,  it  consists  of  2,000-­‐‑25,000  disaccharides  with  a  polymer  length  of  2-­‐‑25   µm   (Toole   2004).   Both   sugar   molecule   units   in   the   hyaluronan   chain   are   derivatives   of   glucose.   Because   they   are   in   the  β-­‐‑configuration,   the   hydroxyl   and   carboxyl   groups   in   addition  to  the  anomeric  carbon  are  in  a  sterically  favorable  equatorial  position,  while  the   hydrogen  atoms  occupy  the  less  sterically  favorable  axial  positions.  This  in  turn  makes  the   hyaluronan  molecule  very  stable  (Necas  et  al.  2008).  

 

Figure 1. The chemical structure of hyaluronan consisting of N-acetylglucosamine and D-glucuronic acid linked with alternating β-1,4 and β-1,3 glycosidic bonds.

 Hyaluronan  is  a  very  hydrophilic  substance;  it  can  trap  approximately  1000  times  its  weight   of   water.   Hyaluronan   chains   interact   with   each   other   at   very   low   concentrations,   which   may  contribute  to  its  unusual  rheological  properties.  For  instance,  1  %  solution  of  a  high   molecular  weight  hyaluronan  is  jelly-­‐‑like,  but  when  subjected  to  pressure,  it  moves  easily,   which  makes  it  an  ideal  lubricant  (Necas  et  al.  2008).  Hyaluronan  has  a  large  repertoire  of   biological   functions,   which   suggests   the   existence   of   a   large   number   of   different   conformations   and   binding   interactions   (Cowman   and   Matsuoka   2005).   Traditionally,  

(26)

hyaluronan   has   been   thought   to   take   an   expanded,   random   coil   form   stabilized   by   hydrogen   bonds   in   water   solutions   (Scott   1989).   However,   later   studies   have   shown   that   hyaluronan  takes  a  more  ordered  conformation  under  specific  conditions  (de  la  Motte  et  al.  

2003).  In  addition,  atomic  force  microscopy  of  hyaluronan  on  a  hydrated  mica  surface  has   suggested  relaxed  coil  and  partially  condensed  conformations  in  liquid  connective  tissues,   fully   condensed   rods   tethered   to   a   cell   surface   or   in   the   intracellular   space,   and   fibrous   forms  associated  with  proteins  (Cowman  et  al.  2005).  

Hyaluronan   differs   from   other   glycosaminoglycans   in   many   ways   (Table   1).   For   example,  it  is  synthesized  on  the  plasma  membrane  instead  of  the  Golgi  apparatus,  it  does   not  contain  sulfate  groups,  nor  is  it  covalently  bound  to  a  core  protein  during  synthesis,  like   other  GAGs  (Dicker  et  al.  2014;  Toole  2000).  

 

Table 1. Properties of glycosaminoglycans (Fraser et al. 1997)

Glycosaminoglycan Sugar units Sulphate Size (Mr) Proteoglycan

Hyaluronan Glucuronic acid + glucosamine - 105-107 -

Chondroitin 4-(6-) sulphates Glucuronic acid + galactosamine + 10-50x103 + Dermatan sulphate Iduronic acid + galactosamine + 10-50x103 +

Keratan sulphate Galactose + glucosamine + X5-15x103 +

Heparan sulphate Glucuronic and iduronic acid + glucosamine + 10-50x103 + Heparin Glucuronic and iduronic acid + glucosamine + 5-20x103 +

2.2 SYNTHESIS OF HYALURONAN

2.2.1  The  vertebrate  hyaluronan  synthase  gene  family  

Hyaluronan  is  synthesized  by  hyaluronan  synthases  (HAS).  The  first  Has  gene  was  cloned   in  group  A  Streptococcus  pyogenes  (DeAngelis  et  al.  1993).  In  mammalians,  three  hyaluronan   synthase  genes  have  been  isolated  and  identified:  HAS1  by  functional  expression  cloning   (Itano  and  Kimata  1996a;  Itano  and  Kimata  1996b;  Shyjan  et  al.  1996),  HAS2  (Spicer  et  al.  

1996;  Watanabe  and  Yamaguchi  1996)  and  HAS3  (Spicer  et  al.  1997a)  by  using  a  degenerate   RT-­‐‑PCR  protocol.  Further,  DG42  protein,  expressed  in  Xenopus  gastrulation,  was  found  to   be  a  hyaluronan  synthase  (Meyer  and  Kreil  1996)  and  was  later  identified  as  Has1  (Spicer   and  McDonald  1998).  Interestingly,  hyaluronan  synthase  is  also  found  in  the  PBCV-­‐‑1  virus   that   infects   chlorella-­‐‑like   green   algae   (DeAngelis   et   al.   1997),   but   not   in   invertebrates   although  HAS-­‐‑transfected  Drosophila  cells  can  produce  hyaluronan  (Takeo  et  al.  2004).    

The  Has  gene  family  is  highly  conserved.  Mammalian  Has1,  Has2  and  Has3  genes  share   55-­‐‑71%  sequence  identity  and   approximately  25  %  amino  acid  identity  with   Streptococcus   pyogenes   HasA   (Spicer   and   McDonald   1998).   The   three   Has   genes   are   located   in   different   chromosomes  in  both  human  and  mouse  genomes,  which  suggests  that  the  Has  gene  family   was  formed  quite  early  in  vertebrate  evolution.  In  humans,  HAS1  is  located  in  chromosome   19q13.3-­‐‑q13.4,  HAS2  in  chromosome  8q24.12  and  HAS3  in  chromosome  16q22.1,  while  in   the  mouse  they  reside  in  chromosomes  17,  15,  and  8,  respectively  (Spicer  et  al.  1997b).  

The  promoter  regions  for  human  HAS1  (Chen  et  al.  2012),  HAS2  (Monslow  et  al.  2004)   and  HAS3  (Wang  et  al.  2015)  have  now  been  analyzed.  All  HAS  genes  show  constitutive   basal  activity,  of  which  HAS2  has  the  lowest  basal  level,  suggesting  that  HAS2  is  the  main   candidate   modulating   hyaluronan   synthesis   rate   (Monslow   et   al.   2003).   Analysis   of   the   human  HAS1  promoter  region  has  revealed  that  the  upregulation  of  HAS1  transcription  by   TGF-­‐‑β1   is   mediated   via   the   mammalian   homolog   of   Drosophila   Mad   3   (Smad3),   a   key  

(27)

mediator  of  TGF-­‐‑β1  signaling,  and  that  induction  by  IL-­‐‑1β  is  dependent  on  the  transcription   activator  specificity  protein  3  (Sp3)  (Chen  et  al.  2012).    

Upstream  of  the  HAS2  transcription  initiation  site  (TIS)  are  located  the  putative  Sp1,  NF-­‐‑

Y/CCAAT   and   NF-­‐‑κB   sites,   common   to   all   Has2   orthologs,   suggesting   evolutionally   conserved   transcriptional   regulation   (Monslow   et   al.   2004).   Further   analysis   showed   Sp1   and   Sp3   binding   63   bp   upstream   of   HAS2   TIS.   siRNA   knockdown   of   either   Sp1   or   Sp3   caused  a  significant  decrease  in  HAS2  transcription  (Monslow  et  al.  2006).  

Human   HAS3   promoter,   which   is   highly   conserved   in   the   mouse   and   rat   Has3   promoters,   is   mainly   restricted   to   a   450   bp   region   upstream   of   the   major   TIS.   It   lacks   canonical   TATA   box,   but   contains   classical   CG   box   and   putative   transcription   factor   binding   sites   for   C/EBP   and   NFκB.   Mutagenesis   analysis   showed   that   Sp1   and   the   core   promoter  motif  ten  elements  (MTE)  are  required  for  HAS3  gene  activity.  Two  TISs  (Wang  et   al.   2015),   distinct   from   earlier   studies   (Liu   et   al.   2001),   were   also   observed,   indicating   complicated  regulation  of  HAS3  expression.  

All  Has  genes  share  at  least  one  exon-­‐‑intron  boundary,  suggesting  that  the  genes  have   evolved  from  a  common  ancestral  gene.  In  addition  to  Has1-­‐‑3,  non-­‐‑functional  Has-­‐‑related   sequences   (Has-­‐‑rs)   have   been   identified   in   Xenopus.   There   are   more   similarity   between   Has2  and  Has3  and  on  the  other  hand  between  mouse  Has1  and  Xenopus  DG42,  which  seem   to  be  orthologs  (Spicer  and  McDonald  1998).  Human  and  mouse  Has1  gene  comprises  of  5   exons   and   Has2-­‐‑3   of   4   exons   (Monslow   et   al.   2003).   HAS1   has   been   observed   to   have   multiple  aberrant  splice  variants  in  multiple  myeloma  (Adamia  et  al.  2005a;  Kriangkum  et   al.   2013),   Waldenström’s   macroglobulinemia   (Adamia   et   al.   2005b)   and   bladder   cancer   (Golshani   et   al.   2007).   Inherited   polymorphisms   in   HAS1   gene   have   been   observed   to   influence   aberrant   splicing   and   predict   the   risk   of   B-­‐‑cell   malignancies  (Kuppusamy   et   al.  

2014).  HAS3  has  been  observed  to  have  two  variants  of  mRNA  for  coding  proteins  (Sayo  et   al.  2002).  

Exon-­‐‑intron   comparison   suggests   that   the   Has   genes   are   divided   into   two   classes;  

Xenopus  DG42/Has1,  Has-­‐‑rs  and  mouse  Has1  comprises  the  first  class  and  mouse  Has2  and   Has3  comprises  the  second  class.  Gene  families  arise  usually  by  sequential  gene  duplication   and   divergence.   Based   on   the   genomic   structure,   comparisons   between   mammalian   and   xenopus  Has  genes  indicate  that  there  have  been  three  sequential  gene  duplications:  first  to   form   Has1   and   Has2   subfamilies,   then   to   generate   Has1   and   Has-­‐‑rs   and   Has2   and   Has3,   respectively  (Spicer  and  McDonald  1998).  

2.2.2  The  structure  and  function  of  hyaluronan  synthases  

Mammalian  and  bacterial  hyaluronan  synthases  are  plasma  membrane  proteins  (Markovitz   and   Dorfman   1962)   with   putative   transmembrane   and   membrane   associated   domains   (Weigel  et  al.  1997).  HASs  are  divided  into  two  or  three  categories  based  on  their  structure   and  function.  Mammalian  and  Gram-­‐‑positive  HASs  belong  to  Class  I-­‐‑R  and  Xenopus  HAS   to  Class  I-­‐‑N  and  the  HAS  from  the  Gram-­‐‑negative  Pastorella  multocida  belongs  to  Class  II.  

Class   I   enzymes   have   one   glycosyltransferase   (GT2)   module,   and   I-­‐‑N   enzymes   add   new   sugar   to   the   nonreducing   end   and   I-­‐‑R   to   the   reducing   end.   Class   II   HAS   has   two   GT2   modules,  is  membrane  peripheral  or  soluble,  and  adds  new  sugars  to  the  nonreducing  end   (Weigel   and   DeAngelis   2007).   HASs   have   many   unusual   characteristics   compared   with   other  glycosyltransferases;  they  do  not  need  a  primer  to  start  the  synthesis  (Markovitz  et  al.  

1959;   Stoolmiller   and   Dorfman   1969):   1)   hyaluronan   synthesis   takes   place   in   the   plasma   membrane,  in  contrast  to  the  Golgi  apparatus  for  other  glycosyltransferases  (Markovitz  and   Dorfman  1962;  Prehm  1984),  2)  the  initiation  of  the  hyaluronan  polymer  does  not  need  a   core   protein   attachment   (Prehm   1983),   and,   in   contrast   to   the   “one   enzyme   -­‐‑   one   sugar   linkage”  dogma  in  glycobiology,  3)  HASs  catalyze  two  different  linkages.  Additionally,  this   relatively  small  enzyme  (417-­‐‑972  amino  acid  residues)  has  other  functions  as  well  (Table  2).  

(28)

 

Table 2. Synthesis of hyaluronan requires multiple steps, that have been established within hyaluronan synthase Class I, modified from (Weigel et al. 2015).

Established activities within hyaluronan synthase Class I  

1. GlcUA(α1→)UDP acceptor binding site 2. GlcNAc(α1→)UDP acceptor binding site

3. Hyaluronyl-GlcNAc(α1→)UDP donor binding site [for HA-GlcUA(β1,3)GlcNAc(α1→)UDP]

4. Hyaluronyl-GlcUA(α1→)UDP donor binding site [for HA-GlcNAc(β1,4)GlcUA(α1→)UDP]

5. Hyaluronyl-GlcNAc(α1→)UDP: GlcUA(α1→)UDP, hyaluronyl-GlcNAc(β1,4) transferase activity 6. Hyaluronyl-GlcUA(α1→)UDP: GlcNAc(α1→)UDP, hyaluronyl-GlcUA(β1,3) transferase activity

Because  crystallographic  data  is  yet  not  available,  little  is  known  about  the  exact  structure     of  HASs,  and  thus,  existing  information  is  based  on  in  silico  analysis  (Vigetti  et  al.  2014).  

Mammalian  HASs  are  predicted  to  contain  4-­‐‑6  transmembrane  domains  and  1-­‐‑2  membrane   associated  domains  (Figure  2)  (Heldermon  et  al.  2001a;  Weigel  and  DeAngelis  2007).  HASs   are   lipid-­‐‑dependent  (Tlapak-­‐‑Simmons   et   al.   1998;   Weigel   and   DeAngelis   2007)   and   in   addition  to  the  precursors  UDP-­‐‑glucuronic  acid  and  UDP-­‐‑N-­‐‑acetylglucosamine,  they  need   Mg++,  Mn++  or  Co++  to  be  functional  (Markovitz  et  al.  1959).  Cysteine  has  catalytic,  structural   and  functional  roles  in  many  enzymes  (Carugo  et  al.  2003;  Jose-­‐‑Estanyol  et  al.  2004;  Saito   1989).   In   fact,   Streptococcus   equisimilis   HAS   (seHAS),   which   is   the   smallest   class   I   HAS,   contains   four   cysteine   residues   (C226,   C262,   C281   and   C367)   that   are   conserved   in   the   mammalian  HAS  family.  Although  Cysteine  null  mutants  of  seHAS  are  active  (Heldermon   et  al.  2001b;  Kumari  et  al.  2002),  modifying  individually  or  with  specific  combinations  of   Cys   residues   influence   the   rate   and   hyaluronan   size   independently   (Weigel   and   Baggenstoss  2012).  Although  they  are  not  directly  involved  in  the  catalysis  (Kumari  et  al.  

2002),  Cys262,   Cys281,   and   Cys367   cluster   at   the   membrane-­‐‑enzyme   interface   close   to   the   substrate  binding  site  (Kumari  and  Weigel  2005)  and  are  functionally  important.  

 

Figure 2. Proposed structure and plasma membrane topology of Bacterial and eukaryotic HAS. Modified from (Kumari and Weigel 2005; Weigel 2002).

 

(29)

Transfection  studies  with  N-­‐‑terminally  GFP-­‐‑tagged  mammalian  HAS1-­‐‑3  have  shown  that   HASs  travel  through  endoplasmic  reticulum  (ER)  and  via  Golgi  apparatus  to  their  location   of  action,  the  plasma  membrane.  However,  HASs  do  not  have  the  typical  N-­‐‑terminal  signal   sequence,  which  would  suggest  that  they  are  not  processed  via  the  usual  secretory  pathway   (Rilla  et  al.  2005).  Residence  at  the  plasma  membrane  is  imperative  for  all  three  HASs  to   activate   hyaluronan   synthesis.   Although   hyaluronan   synthesis   is   thought   to   start   at   the   plasma  membrane  (Rilla  et  al.  2005),  in  vitro  incubations  of  membrane  fractions  show  that   HAS   activity   also   exists   in   intracellular   compartments  (Vigetti   et   al.   2009a).   O-­‐‑GlcNAc   modification   of   at   least   HAS2   and   HAS3   enhance   plasma   membrane   targeting   and   residence  (Deen  et  al.  2016;  Tammi  et  al.  2011;  Vigetti  et  al.  2012).  

Figure 3. Synthesis of the precursors of hyaluronan (modified from (Tammi et al. 2011)).

Hyaluronan  is  synthesized  from  UDP-­‐‑N-­‐‑acetylglucosamine  and  UDP-­‐‑glucuronic  acid.  The   precursors  are  formed  from  glucose  via  several  steps  (Figure  3).  Although  primers  are  not   needed   in   hyaluronan   synthesis   (Prehm   1983;   Stoolmiller   and   Dorfman   1969)   there   is   a   kinetic   lag   in   the   beginning   of   hyaluronan   synthesis   indicating   that   HAS   assembly   initiation   is   a   rate   limiting   step   (Baggenstoss   and   Weigel   2006).   Class   I   HASs   are   able   to   produce   chitin   oligomers   which   have   been   suggested   to   act   as   self-­‐‑primers   initiating   hyaluronan  synthesis  (Weigel,  West  et  al.  2015).  After  initiation,  class  I-­‐‑R  enzymes  add  the   alternating   monosacharides   to   the   reducing   end   of   growing   hyaluronan   (see   equation   1)   (Asplund  et  al.  1998;  Prehm  1983;  Prehm  2006).  Class  I-­‐‑N  and  Class  II  hyaluronan  synthases   use   a   non-­‐‑reducing   end   of   the   growing   hyaluronan   (equation   2)   (Bodevin-­‐‑Authelet   et   al.  

2005).  

 

Equation 1. UDP-GLCNAc-HA + UDP-GlcUa+UDP-GlcNAc 2xUDP + UDP-GlcNAc(ββ1,4)GlcUA(ββ1,3)GlcNAc-HA Equation 2. UDP-GlcUA + UDP-GlcNAc + HA 2xUDP+ GlcUA(β1,3)GlcNAc(β1,4)-HA

 Hyaluronan  is  mainly  an  extracellular  molecule  and  its  polymerization  occurs  on  the  inner   surface  of  the  plasma  membrane  (Prehm  1984).  Therefore,  hyaluronan  must  somehow  be   translocated   outside   of   the   cell.   Two   types   of   translocation   mechanisms   have   been   suggested;   1)   ABC   transporters   and   2)   HASs   intrinsic   translocase   activity.   The   ABC   transporter   gene   is   located   upstream   of   the   Streptococcus   pyogenes   Has   gene.   Capsular  

(30)

hyaluronan  was  reduced  when  the  ABC  gene  was  mutated  (Ouskova  et  al.  2004).  Further,   inhibitors   of   multidrug   resistance   transporters   decreased   hyaluronan   production   (Prehm   and   Schumacher   2004).  It   is   however   possible   that   the   reduced   hyaluronan   synthesis   observed   with   ABC   transporter   inhibition   is   caused   by   an   alteration   of   UDP   sugar   metabolism  (Medina   et   al.   2012).   In   contrast,   the   ABC   transporter   was   not   shown   to   contribute  to  hyaluronan  translocation  in  human  breast  cancer  cells  in  vitro  (Thomas  and   Brown   2010).   Glycosyltransferase   and   translocation   activities   are   coupled   spatially   (Hubbard  et  al.  2012).  HAS2  activity  is  coupled  to  dimerization  (Karousou  et  al.  2010)  and   all  three  HASs  can  form  hetero-­‐‑  or  homomers  (Bart  et  al.  2015).  Therefore,  it  is  possible  that   a  transmembrane  pore  is  formed  in  the  interface  of  two  or  more  HAS  proteins  (Bart  et  al.  

2015)  and  the  extrusion  is  energized  by  glycosyltransferase  activity  (Hubbard  et  al.  2012).  

However,  a  conventional  view  suggests  that  a  single  HAS  monomer  forms  an  intraprotein   pore   (Weigel   and   Baggenstoss   2012).   The   intraprotein   pore   hypothesis   is   based   on   following   aspects:   1)   HAS   protein   contain   several   membrane   domains  (Heldermon   et   al.  

2001a;   Weigel   and   DeAngelis   2007)   and   2)   Streptococcal   HAS   is   active   as   a   monomere   (Tlapak-­‐‑Simmons  et  al.  1998)..    

What  controls  the  size  of  hyaluronan?  Weigel  and  Baggenstoss  showed  that  the  size  of   hyaluronan   is   not   coupled   to,   or   dependent   on,   the   specific   polymerizing   activity   of   hyaluronan   synthase.   They  proposed   a   retain-­‐‑release   model,   which   explains   why   HAS   makes  a  large  polymer  and  does  not  release  it  into  the  extracellular  space  until  a  certain  size   is   attained.   Multiple   hyaluronan-­‐‑UDP   and   HAS   interactions   within   the   intraprotein   pore   could  provide  a  relatively  constant  retention  force.  As  the  hyaluronan  polymer  increases  in   size,  multiple  interactions  such  as  Brownian  motion,  fluid  currents  and  matrix  proteins  in   the   extracellular   environment   can   act   to   pull   hyaluronan   off   the   enzyme  (Weigel   and   Baggenstoss  2012).  Because  the  estimated  lifetime  of  a  single  HAS  protein  is  relatively  short   (4-­‐‑6   hours),   it   has   been   suggested   that   one   HAS   protein   produces   only   one   hyaluronan   molecule   (Kitchen   and   Cysyk   1995).   The   estimated   hyaluronan   synthesis   rate   is   3   monosaccharides  per  second  (Pummill  and  DeAngelis  2003)  implying  that  the  time  for  the   synthesis   of   one   6x106   Da   hyaluronan   chain   is   approximately   3   hours   in   rat   epidermal   keratinocytes  (Karvinen  et  al.  2003).  

The  structural  differences  between  the  three  mammalian  Has  genes  are  correlated  with   their   properties.   Has2   and   Has3   genes   share   more   similarities   between   each   other   than   either  one  with  Has1  (Spicer  and  McDonald  1998).  Transfection  studies  with  mouse  Has1-­‐‑3   showed  that  the  pericellular  coat  produced  by  Has1  in  COS-­‐‑1  cells  or  rat  fibroblasts  was   significantly   smaller   than   those   produced   by   Has2   and   Has3   (Itano   et   al.   1999).   Further,   hyaluronan  produced  by  HAS2  and  HAS3  is  concentrated  on  membrane  protrusions  (Kultti   et  al.  2006;  Rilla  et  al.  2005),  whereas  the  hyaluronan  coat  of  HAS1  is  more  diffuse  and  not   located   on   cell   protrusions   (Rilla   et   al.   2013).   The   Km   values   for   both   precursors   were   significantly  higher  for  Has1  than  for  Has2  and  Has3  (Rilla  et  al.  2013).  On  the  other  hand,   hyaluronan   produced   by   Has1   and   Has2   is   larger   than   that   produced   by   Has3   and   the   synthesis  rate  of  Has3  is  slower  (Itano  et  al.  1999;  Spicer  and  McDonald  1998;  Wilkinson  et   al.   2006).   In   contrast,   Brink   and   co-­‐‑workers   found   that   Has1   and   Has3   transfected   CHO   cells  produced  smaller  hyaluronan  than  Has2  transfected  cells  and  that  Has3  synthesis  rate   was  the  highest  (Brinck  and  Heldin  1999).  These  inconsistencies  suggest  that  the  size  and   synthesis  rate  of  hyaluronan  are  not  solely  dependent  on  a  specific  HAS  isoenzyme.  

Why  are  three  distinct  enzymes  involved  in  the  production  of  a  fairly  simple  polymer?  

Functional   differences   suggest   that   the   HAS   isoenzymes   may   be   involved   in   different   physiological   states.   Has2   knockout   mice   die   as   a   result   of   cardiovascular   defects   (Camenisch   et   al.   2000)   but   Has1   (Kobayashi   et   al.   2010),   Has3   (Bai   et   al.   2005)   and   Has1/Has3  double  knockout  mice  (Mack  et  al.  2012)  are  viable  and  fertile.  HAS  isoenzymes   are   differentially   expressed   in   developing   mice   embryos.   HAS2   showed   the   most  

Viittaukset

LIITTYVÄT TIEDOSTOT

Jos valaisimet sijoitetaan hihnan yläpuolelle, ne eivät yleensä valaise kuljettimen alustaa riittävästi, jolloin esimerkiksi karisteen poisto hankaloituu.. Hihnan

Mansikan kauppakestävyyden parantaminen -tutkimushankkeessa kesän 1995 kokeissa erot jäähdytettyjen ja jäähdyttämättömien mansikoiden vaurioitumisessa kuljetusta

Tornin värähtelyt ovat kasvaneet jäätyneessä tilanteessa sekä ominaistaajuudella että 1P- taajuudella erittäin voimakkaiksi 1P muutos aiheutunee roottorin massaepätasapainosta,

Ana- lyysin tuloksena kiteytän, että sarjassa hyvätuloisten suomalaisten ansaitsevuutta vahvistetaan representoimalla hyvätuloiset kovaan työhön ja vastavuoroisuuden

Työn merkityksellisyyden rakentamista ohjaa moraalinen kehys; se auttaa ihmistä valitsemaan asioita, joihin hän sitoutuu. Yksilön moraaliseen kehyk- seen voi kytkeytyä

Poliittinen kiinnittyminen ero- tetaan tässä tutkimuksessa kuitenkin yhteiskunnallisesta kiinnittymisestä, joka voidaan nähdä laajempana, erilaisia yhteiskunnallisen osallistumisen

The new European Border and Coast Guard com- prises the European Border and Coast Guard Agency, namely Frontex, and all the national border control authorities in the member

The Canadian focus during its two-year chairmanship has been primarily on economy, on “responsible Arctic resource development, safe Arctic shipping and sustainable circumpo-