• Ei tuloksia

4   M ATERIALS  AND  METHODS

4.2   Methods

4.2.1  Immunohistochemistry  (I,  II  III  and  IV)  

For   immunocytochemistry   the   cells   were   fixed   in   100   %   methanol   10   min   in   room   temperature   for   smooth   muscle   actin   staining   and   4   %   paraformaldehyde   in   0,1   M   phosphate  buffer  (PB)  for  other  stainings  for  60  min  in  room  temperature  and  washed  with   PB.   Tissue   samples   were   fixed   in   buffered   4%   paraformaldehyde   or   Histochoice®  

(Amresco,  Solon,  OH),  embedded  in  paraffin  and  cut  into  5  µm  sections.  The  sections  were   rehydrated  and  incubated  in  1  %  H2O2  to  block  the  endogenous  peroxidases,  washed  with   water  and  blocked  with  1  %  BSA  in  (PB)  at  37°C  for  30  min.    

For  hyaluronan  stainings  the  samples  were  incubated  overnight  at  4°C  with  biotinylated   hyaluronan   binding   complex   (bHABC),   isolated   from   bovine   articular   cartilage   and   containing  the  biotinylated  complex  of  link  protein  and  G1  domain  of  aggrecan  (Tammi  et   al.   1994).   To   control   the   specificity   of   the   staining,   hyaluronan   was   removed   by   preincubating   the   sections   with   Streptomyces   hyaluronidase   (Seikagaku,   Kogyo,   Tokyo,   Japan).  

For  immunostainings  the  antibodies  (Table  3)  were  diluted  in  1  %  BSA.  The  sections  and   cells  were  then  washed  in  PB  and  incubated  with  biotinylated  secondary  antibodies  diluted   in   1:1000.   After   washing   with   PB,   the   sections   were   incubated   with   avidin–biotin   peroxidase   (Vector,   1:200)   for   1   h.   The   color   was   developed   with   0.05   %   3,3′-­‐‑

diaminobenzidine  (DAB;  Sigma,  St.  Louis,  MO)  containing  0.03  %  H2O2.  The  cells  and  tissue   sections   were   then   counterstained   with   Mayer’s   hematoxylin   for   1   min,   washed,   dehydrated,   and   mounted   in   DePex   (BDH   Laboratory   Supplies,   Poole,   UK).   The   sections   were  photographed  with  Zeiss  Axio  Imager  M2  light  microscope  (Carl  Zeiss  Microimaging   GmbH,  Jena,  Germany).    

 

Table 3. Used antibodies

Antibody dilution Company

HAS1  (sc-­‐34021)   1:100     Santa  Cruz  Biotechnology,  Santa  Cruz,  CA  

HAS2  (sc-­‐34067),   1:100   Santa  Cruz  Biotechnology,  Santa  Cruz,  CA  

HAS3  (sc-­‐34204),   1:100   Santa  Cruz  Biotechnology,  Santa  Cruz,  CA  

CD44   1:100   Chemicon/Millipore,  Billerica,  MA  

CD44  (Hermes  3)   1:100   A  gift  from  Dr.  Sirpa  Jalkanen,  Turku,  Finland  

Anti-­‐CD44S  (clone  A020)   10  μg/ml   Chemicon,  Temecula,  CA)  

HBME-­‐1   1:50   Dako,  Carpinteria,  CA  

Villin   1:100   BD  Biosciences,  Bedford,  MA  

Ezrin   1:200   Thermo  Scientific,  Rockford,  IL  

Espin   1:10   A  gift  from  Dr.  Jim  Bartles,  Chicago,  IL  

Fascin 1:200 Dako,  Glostrup,  Denmark

Anti-­‐β-­‐tubulin 1:500 Roche  Diagnostics  GmbH,  Mannheim,  Germany

α-­‐SMA  (ab5694)   1:100   Abcam,  Cambridge,  MA  

Caspase-­‐3  (Asp175)   1:100   Cell  Signaling  technology,  Danvers,  MA  

 

4.2.2  Transfections  (I  and  IV)  

Cell   cultures   grown   on   8-­‐‑well   Ibidi   chamber   slides   (Ibidi   GmbH,   Martinsried,   Germany)   were  transfected  with  ExGen  500  transfection  reagent  (Fermentas,  Helsinki,  Finland).  The   constructs  used  were  human  Has3  cDNA  in-­‐‑frame  with  an  N-­‐‑terminal  GFP  fusion  protein   in   the   pCIneo   vector   (Rilla   et   al.   2012),   HAS   alone   in   the   pCIneo   vector   (Törrönen   et   al.  

2014),  WT  mCherry-­‐‑Myo10,  and  Pleckstrin  homology  (PH)  domain  deleted  Myo10  (Myo10   WT,  Myo10ΔPH123,  Myo10ΔPH2,  and  Myo10ΔPH2pm)  as  described  (Plantard  et  al.  2010),  

GFP-­‐‑actin   (Molecular   Probes,   Eugene,   OR,   USA)   and   Lifeact   (pLifeact-­‐‑TagRFP,   Ibidi   GmbH,   Martinsried,   Germany)   (Riedl   et   al.   2008).   The   cells   were   examined   16–24   h   after   transfections   with   confocal   imaging,   either   live   for   the   GFP   signal   only,   or   after  fixation   with  4%  (w/v)  paraformaldehyde  for  1  h  at  room  temperature  for  both  immunostainings   and  GFP.  

4.2.3  Assays  of  hyaluronan  (I,  II,  III  and  IV)  

Cell   cultures   on   24-­‐‑well   plates   were   used   to   measure   the   secretion   of   hyaluronan.   Cells   were  cultured  for  24  h  before  counting  the  cells  and  harvesting  the  media  for  the  sandwich   type  hyaluronan  ELSA  assay,  as  described  (Hiltunen  et  al.  2002).  

4.2.4  Isolation  of  microvesicles  by  ultracentrifugation  (III  and  IV)  

Microvesicles   were   isolated   as   described   by   (Kubikova   et   al.   2009).  The   growth   medium   was  centrifuged  at  100,000  x  g  for  1  h  at  4  °C,  the  supernatant  collected  and  sterile  filtered   with  a  0.2  µμm  filter  (Minisart,  Sartorius  Stedim  Biotech,  Goettingen,  Germany).  Ten  ml  of   the  conditioned  culture  medium  was  centrifuged  at  4000  x  g  for  20  min.  The  supernatant   was   collected   and   centrifuged   at   100,000×g   for   90  min.   The   pelleted   microvesicles   were   washed  with  PBS  and  finally  suspended  into  PBS  or  culture  medium.  For  the  staining  of   hyaluronan,   the   microvesicle   suspension   was   incubated   for   2  h   at   37  °C   with   fluorescent   HABC  as  described  above,  and  imaged  on  a  coverglass.  The  specificity  of  the  staining  was   controlled   by   removing   hyaluronan   by   preincubating   the   suspension   with   Streptomyces   hyaluronidase   (Seikagaku,   Kogyo,   Tokyo,   Japan).   To   remove   hyaluronan   bound   to   receptors   on   plasma   membrane,   the   suspension   was   treated   with   hyaluronan   hexasaccharides   (HA6,   0.2  mg/ml,   kindly   provided   by   Seikagaku).   To   measure   the   hyaluronan  secreted  on  the  microvesicles,  the  microvesicle  suspension  and  its  supernatant   were  subjected  to  ELSA  as  described  above.  

4.2.5  Flow  cytometric  analysis  of  microvesicles  (IV)  

Isolated  microvesicles  from  MDCK  cells  stably  overexpressing  GFP  (mock)  and  GFP-­‐‑HAS3   were  labeled  with  fluorescent  HABC  (Alexa  Fluor®647)  in  culture  media  and  analyzed  with   a   BD   FACSCanto   II   flow   cytometer   (Becton   Dickinson,   NJ,   USA).   Polysyterene   beads   of   four   different   sizes,   i.e.   0.25  µμm,   0.53  µμm,   0.79  µμm   and   1.3  µμm   (Catalog   no.   NPPS-­‐‑4K,   Spherotech,  Lake  Forest,  IL  60045,  USA)  with  a  known  concentration  of  1×106  particles/ml   were  used  to  calibrate  the  flow  cytometer  and  detect  the  microvesicles.  Equal  amounts  of   the  beads  were  mixed  with  the  microvesicle  samples  and  5000  events  were  recorded  using   0.79  µμm   beads   as   a   reference.   The   microvesicles   were   gated   between   0.25-­‐‑-­‐‑-­‐‑0.79  µμm   size   range   of   the   beads   and,   using   488  nm   and   633  nm   lasers,   GFP   and   Alexa   Fluor   647   fluorescences  were  measured  from  the  analyzed  microvesicles.  Data  processing  was  done   with  FCS4  Express  (De  NOVO,  Los  Angeles,  CA,  USA)  and  the  results  were  expressed  as  a   percentage  of  total  population  analyzed  within  the  events.  

4.2.6  Transmission  electron  microscopy  (I,  II  and  IV)  

For   ultrastructural   analysis   the   tissue   samples   were   cut   into   approximately   1x1x1   mm   pieces.   The   pieces   were   immediately   fixed   with   2%   paraformaldehyde   and   0.5%  

glutaraldehyde  in  PBS,  pH  7.4,  for  1  h.  After  fixation,  the  sections  were  washed  with  PBS  at   room  temperature.  The  tissue  blocks  were  stained  for  hyaluronan  as  described  above.  To   control   the   specificity   of   the   hyaluronan   staining,   hyaluronan   was   removed   by   preincubating   the   sections   with   Streptomyces   hyaluronidase   (Seikagaku)   for   60   min   and   washed   with   PBS.   The   pieces   were   then   postfixed   with   1%   osmium   tetraoxide   and   contrasted  with  1%  uranyl  acetate.  For  the  analysis  of  microvesicles  in  MDCK  cultures,  7-­‐‑

day-­‐‑old  Matrigel™  cultures  were  prefixed  with  2.5%  glutaraldehyde  in  PB  for  4  h  at  room  

temperature.  After  an  overnight  wash  in  PBS  and  1  h  wash  in  water,  the  gels  were  postfixed   in  1%  osmium  tetraoxide  and  2.22%  CaCl2  in  H2O  and  stained  with  1%  uranyl  acetate.  The   pieces   were   dehydrated   and   embedded   in   LX-­‐‑112   resin   (Ladd   Research   industries,   Burlington,  VT)  and  polymerized  at  60°C  for  48  h.  The  70  nm  sections  were  stained  with  1  

%   uranyl   acetate   and   imaged   with   an   JEOL   JEM-­‐‑2100F   electron   microscope  (Jeol,   Tokyo,   Japan)  at  80  kV.  

4.2.7  Scanning  electron  microscopy  (II,  III  and  IV)  

For  SEM,  cells  were  grown  on  13  mm  coverslips.  After  48  h,  the  cultures  were  washed  and   fixed   with   2%   paraformaldehyde   and   0.5   %   glutaraldehyde   at   room   temperature   and   dehydrated  through  a  graded  series  of  ethanol.  After  critical  point  drying  by  using  Emitech   K850  Critical  point  drier (Quorum  Technologies  England),  cells  were  shadowed  with  gold,   and   imaged   with   an   XL30   TMP   environmental   SEM   (FEI   Company,   The   Netherlands)   at   15  kV.  

4.2.8  Confocal  microscopy  and  FRAP  analysis  (I,  II,  III  and  IV)  

For   confocal   microscopy,   20,000   cells   per   well  were   seeded   in  eight-­‐‑well   chamber   slides   (Ibidi   GmbH,   Martinsried,   Germany).   After   two   days   incubation,   hyaluronan   was   visualized  using  HABC  (Tammi  et  al.  1994)  coupled  directly  to  fluorescent  group(Rilla  et  al.  

2008).   The   nuclei   were   stained   with   DRAQ5   (Biostatus   Ltd.,   UK).   The   micrographs   were   obtained   with   a   Zeiss   LSM   700   confocal   scanner   on   a   Zeiss   Axio   Observer   inverted   microscope  with  a  63x  oil  objective.  

4.2.9  Correlative  light  and  electron  microscopy  (I)  

In  addition  to  the  conventional  confocal  microscopy  and  SEM,  correlative  light  and  electron   microscopy  (CLEM)  was  utilized,  as  previously  described  (Rilla  and  Koistinen  2015).  One   day   after   transient   transfection   the   cells   were   fixed   with   2%   (v/v)   glutaraldehyde   and   fluorescent  images  were  obtained  with  a  Zeiss  LSM  700  confocal  module  and  an  external   DIC-­‐‑capable   transmitted-­‐‑light   channel.   After   routine   processing   for   scanning   electron   microscopy,   including   dehydration   and   coating   with   gold,   the   cells   were   imaged   with   a   Zeiss  Sigma  HD|VP  (Zeiss,  Oberkochen,  Germany)  at  3  kV.  

4.2.10  Quantitative  real-­‐‑time  PCR  (qRT-­‐‑PCR)  (II  and  III)  

The  mRNA  levels  of  Has1-­‐‑3  were  measured  using  quantitative  real-­‐‑time  PCR  (qRT-­‐‑PCR).  

Primary  mesothelial  cells  were  seeded  on  6-­‐‑well  plates  at  500,000  cells/well.  The  cells  were   allowed   to   grow   nearly   100   %   confluent.   The   RNA   was   extracted   with   TRI   Reagent©  

(Molecular   Research   Center   Inc.,   Cinnati,   OH)   according   to   protocol   provided   by   the   manufacturer.  For  the  isolation  of  RNA  from  intact  rat  mesothelium,  parietal  peritoneum   from  freshly  killed  rats  was  opened.  The  peritoneal  lining  was  gently  scraped  with  a  scalpel   and  the  material  suspended  into  TRI  Reagent©.  RNA  extraction  proceeded  as  instructed.    

The   cDNAs   were   synthesized   using   the   Verso   cDNA   kit   (Thermo   Scientific)   and   the   qRT-­‐‑PCR   was   performed   with   Fast   Start   Universal   SYBR   Green   mix   (Roche   Applied   Science)   using   a   Stratagene   Mx300P   real-­‐‑time   PCR   system   (Agilent   Technologies).   The   HAS1-­‐‑3   primers   used   were   designed   so   that   they   recognize   both   rat   and   human   Has1-­‐‑3   mRNA.   The   primer   sequences   used   are   shown   in   Table   1.   Has1-­‐‑3   copy   numbers   were   calculated   by   using   serial   dilutions   of   dendra-­‐‑HAS1-­‐‑3   plasmids   (Bart   et   al.   2015)   as   a   standard   curve.   The   main   impurity   source   in   mesothelial   cell   samples   is   the   underlying   striated   muscle   layer.   In   order   to   check   the   sample   purity,   the   cDNA   samples   were   analyzed  for  mesothelium  specific  (MSLN,  NM  031658.1)(Kanamori-­‐‑Katayama  et  al.  2011;  

Uhlen  et  al.  2010)  and  muscle  specific  (TNNI2,  NM  017185.1  and  NEB,  XM  229925.4)  (Joo  et   al.  2004;  Liu  et  al.  2008;  Mullen  and  Barton  2000;  Pappas  et  al.  2011;  Stefancsik  et  al.  2003;  

Uhlen  et  al.  2010)  mRNA  (their  primers  in  Table  4).  The  PCR  products  of  MSLN;  TNNI2   and   NEB   were   run   in   an   agarose   gel   and   visualized   with   ethidium   bromide.   In   the   IV   study,  control,  Has1-­‐‑3  mRNA  levels  of  EGF  and  wound  treatments  were  compared  and  the   ribosomal  protein  LPO  was  used  as  a  reference  gene.  

 

Table 4. The primers used in the amplification of cDNA.

Gene Primer sequences Product size

Hyaluronan synthase 1 HAS1 Forward 5’ ACTACGTGCAGGTCTGTGACTC

179 bp Reverse 5’ ATTGAAGGCTACCCAGTATCG

Hyaluronan synthase 2 HAS2 Forward 5’ GTTGCATGAGTTTGTGGAAGA

210 bp Reverse 5’ TCTCGGAAGTAGGACTTGCTC

Hyaluronan synthase 3 HAS3 Forward 5’ CCTCACAGAGACCCCCACTA

111 bp Reverse 5’ TGGTGCTTATGGAACCACAG

Mesothelin MSLN Forward 5’ TATCTTCGGGGAGGAGGCAA

135 bp Reverse 5’ GAGCCCAACCAGCCACATAA

Troponin I, type 2 TNNI2 Forward 5’ AGCAAGGAGCTGGAAGACAT

242 bp Reverse 5’ CCATGCCAGACTTCTCCTCA

Nebulin NEB Forward 5’ ACTGTCTTCCATCCCGTCAC

151 bp Reverse 5’ GCCATACATCCAGCCTTCAT

Cluster of differentiation 44 CD44 Forward 5’ TAGCCCTGAGAAAGGGGTTT

100 bp Reverse 5’ TTGTTGGCTGCACAGATAGC

E-Cadherin CAD Forward 5’ GCAGGATTACAAGTTCCCGC

138 bp Reverse 5’ GGTATCGTCATCTGGTGGCA

αα Smooth muscle actin ααSMA Forward 5’ ATCCGACCTTGCTAACGGAG

151 bp Reverse 5’ GAAGGAATAGCCACGCTCAG

4.2.11  EGF  and  wounding  experiments  (III)  

The   primary   cells   were   seeded   and   grown   to   100%   confluency,   the   growth   media   was   changed  to  DME/F12  (1:1)  with  2%  FBS  (PAA  Laboratories),  Penicillin-­‐‑G  100  U/ml  (Sigma),   Streptomycin   100   U/ml   (Sigma)   and   cells   were   incubated   for   72   h.   After   incubation,   the   medium  containing  20  %  FBS  was  changed,  and  followed  with  either  a  24  h  incubation  or   EGF  (Sigma,  10  ng/ml)  was  added  to  the  media  containing  20%  or  2  %  FBS,  followed  by  24   h  incubation.  Some  of  the  confluent  cell  cultures  were  wounded  with  a  pipette  tip  followed   by  a  wash  with  HBSS  and  a  16  h  incubation  in  a  growth  medium  containing  2%  or  20  %   FBS.  

4.2.12  Nanoparticle  tracking  analysis  (III)  

The  quantitative  analysis  of  extracellular  vesicles  secreted  by  primary  mesothelial  cells  was   performed  using  Nanoparticle  Tracking  Analyzer  (Malvern  Instruments  Ltd,  Malvern,  UK)   with   a   NS300   view   unit.   The   culture   media   collected   from   mesothelial   cells   were   centrifuged   at   1000xg   for   10   min   to   remove   cell   debris,   followed   by   pelleting   of  

“microvesicles”  at  20,000xg  for  90  min.  The  pellets  were  then  suspended  in  PBS  and  diluted   1:10   or   1:20   in   PBS   before   the   analysis.   The   data   acquisition   was   achieved   with     the   following   settings;   camera   level   13,   acquisition   time   40   s,   and   threshold   3.   Triplicate   measurements  were  performed  for  each  sample  and  the  data  analysis  was  performed  with   NTA  3.1  software  (NanoSight,  Amesbury,  UK).  

4.2.13  Statistical  analysis  (III)  

Univariate  analysis  of  variance  was  used  to  test  the  significances  of  the  differences  between   the  groups  in  hyaluronan  assays  and  mRNA  expression  levels.  The  tests  were  performed   using   GraphPad   Prism   version   5.00   for   Windows,  (GraphPad   Software,   San   Diego,   CA   USA).  The  differences  were  considered  significant  as  follows:  ***  =  p<0.001,  **  =  p<0.01,  *  =   p<0.05.