• Ei tuloksia

5.1 HYALURONAN IN PLASMA MEMBRANE PROTRUSIONS (I)

5.1.1  Myosin-­‐‑X  localizes  in  the  tips  of  the  hyaluronan-­‐‑dependent  plasma  membrane   protrusions  

We  wanted  to  study  the  role  of  Myo10  in  HAS3-­‐‑dependent  plasma  membrane  protrusions.  

In   contrast   to   a   previous   study   (Watanabe   et   al.   2010),   Myo10   overexpression   did   not   induce  plasma  membrane  protrusions  or  hyaluronan  production  in  MCF-­‐‑7  cells.  However,   simultaneous   overexpression   of   GFP-­‐‑HAS3   and   mCherry-­‐‑Myo10,   by   double   transfection,   showed   that   Myo10   is   specifically   located   on   the   tips   of   the   HAS3-­‐‑dependent   plasma   membrane  protrusions  (Study  I,  Figure  3B  and  C).  Myo10  was  not  essential  for  the  HAS3-­‐‑

dependent   plasma   membrane   protrusions,   as   using   Myo10   constructs   with   the   deleted   pleckstrin  homology  domain,  previously  shown  to  prevent  the  protrusions  (Plantard  et  al.  

2010),   did   not   inhibit   the   formation   of   HAS3-­‐‑induced   plasma   membrane   protrusions   or   hyaluronan   synthesis.   In   addition,   GFP-­‐‑HAS3   transfection   of   MDA-­‐‑MB231   cells   with   a   stable   Myo10   knockout   did   not   show   any   change   in   the   protrusions.   These   experiments   demonstrate   that   although   Myo10   has   a   specific   location   in   HAS3-­‐‑dependent   plasma   membrane  protrusion,  it  is  not  essential  for  their  formation.  

5.1.2  Hyaluronan  has  a  supportive  role  in  plasma  membrane  protrusions  

Because  mCherry-­‐‑Myo10  was  found  to  specifically  localize  on  the  tips  of  HAS3-­‐‑dependent   protrusions,   it   was   further   utilized   to   visualize   the   tips   of   the   protrusions   to   study   the   significance   of   the   hyaluronan.   Treatment   of   GFP-­‐‑HAS3   and   mCherry-­‐‑Myo10   double   transfected   cells   with   Streptomyces   hyaluronidase   showed   that   while   GFP-­‐‑HAS3   disappeared  from  the  plasma  membrane  of  cell  protrusions,  the  mCherry  signal  remained   at   the   tips   of   the   protrusions   (Study   I,   figure   4A-­‐‑B).   4-­‐‑MU   and   glucose   starvation   (inhibitors  of  hyaluronan  synthesis)  were  utilized  to  study  the  role  of  hyaluronan  synthesis   in   the   growth   of   the   protrusions.   Both   treatments   resulted   in   the   disappearance   of   the   protrusions   and   relocation   of   the   mCherry-­‐‑Myo10   and   GFP-­‐‑HAS3   signal   to   the   cytosol   (Study  I,  Figure  4E-­‐‑F).  

LP9   is   a   human   mesothelial   cell   line   that   is   known   for   its   ability   to   produce   spontaneously   high   amounts   of   hyaluronan   and   hyaluronan-­‐‑dependent   cell   protrusions   (Rilla  et  al.  2008).  Also  in  LP9  cells,  hyaluronidase  treatment  did  not  induce  an  immediate   disappearance   of   the   cell   protrusions   (study   I,   figure   8C   and   D).   Instead,   overnight   treatment  with  4-­‐‑MU  resulted  in  the  disappearance  of  most  of  the  cell  protrusions  (Study  I,   Figure   8E-­‐‑F   and   Figure   9A   and   B).   Removal   of   4-­‐‑MU   resulted   in   quick   regrowth   of   the   protrusions   (Study   II,   Figure   8G-­‐‑H   and   Figure   9C)   indicating   that   spontaneous   cell   protrusions  are  requirements  for,  and  the  consequence  of,  active  hyaluronan  synthesis.  

Correlative  light  and  electron  microscopy  is  a  powerful  method  for  studying  the  living   cellular   structures   first   with   confocal   microscopy   and   to   compare   the   same   structures   in   scanning  electron  microscope  in  more  detail.  The  effect  of  Streptomyces  hyaluronidase  was   confirmed  by  using  correlative  light  and  electron  microscopy  as  hyaluronidase  treated  and   fixed  GFP-­‐‑HAS3  transfected  cells  showed  a  similar  collapsed  structure  of  cell  protrusions   like  controls  (Study  II,  figure  7)  while  4-­‐‑MU  treatment  induced  the  disappearance  of  the   protrusions  (Study  II,  figure  8  E-­‐‑F).  

These  experiments  showed  that  GFP-­‐‑HAS3  escapes  relatively  quickly  from  the  plasma   membrane   when   not   bound   to   the   hyaluronan.   Taking   into   account   that   the   hyaluronan   coat   in   the   HAS3-­‐‑positive   microvilli   is   not   dependent   on   CD44   (Kultti   et   al.   2006),   these   experiments  indicate  that  it  is  the  growing  hyaluronan  chain  that  retains  the  HAS3  enzyme   on  the  plasma  membrane  and  that  the  hyaluronan  coat  supports  the  protrusions.  

5.2 HAS-INDUCED CELL PROTRUSIONS ARE DYNAMIC STRUCTURES (I) 5.2.1  The  dynamics  of  the  hyaluronan-­‐‑dependent  cell  protrusions  

Given   that   mCherry-­‐‑Myo10   was   a   useful   tool   for   the   visualization   of   cell   protrusions,   mCherry-­‐‑Myo10  and  GFP-­‐‑HAS3  double  transfections  were  used  for  3D  time-­‐‑lapse  imaging   in   order   to   study   the   dynamics   of   the   protrusions.   Two   diverse   populations   of   the   protrusions   were   seen   according   to   their   dynamics.   Cell   protrusions   attached   to   the   substratum   were   relative   stable   (Study   I,   asterisks   in   figure   5).   However,   the   dorsally   localized   protrusions   showed   very   rapid   growth   and   retraction   dynamics.   In   addition,   intrafilopodial   movement   of   Myo10   deposits   was   occasionally   seen   along   the   HAS3   positive   cell   protrusions,   indicating   that   Myo10   may   have   a   functional   role   in   the   intrafilopodial  traffic.  

5.2.2  Lateral  mobility  of  GFP-­‐‑HAS3  molecules  on  the  cell  protrusions  is  restricted  

Fluorescence   recovery   after   photobleaching   (FRAP)   technique   was   used   to   study   the   dynamics  of  the  HAS3  movements  in  the  cell  protrusions,  as  compared  to  the  plain  plasma   membrane.  After  bleaching  the  GFP  tag,   the   recovery  rate  was  significantly  lower  in  cell   protrusions  than  in  the  plain  plasma  membrane,  with  half-­‐‑recovery  times  of  66,6  ±  16,5  s   and   9,17  ±   2,7   s,   respectively.   The   turnover   of   GFP-­‐‑HAS3   may   be   lower   in   the   cell   protrusions  because  more  hyaluronan  chains  are  attached  to  it  during  ongoing  synthesis.    

5.3 STUDIES ON THE STRUCTURE OF THE HYALURONAN DEPENDENT CELL PROTRUSIONS

5.3.1  Hyaluronan  exists  on  the  luminal  surface  of  the  mesothelium  (II)  

The  inner  surface  of  the  rat  parietal  peritoneum  contained  a  one  cell  layer  thick  squamous   mesothelial   lining   with   flattened   nuclei.   The   mesothelial   cells   were   attached   to   the   underlying  connective  tissue  containing  mainly  collagen  fibers.  The  mesothelium  of  the  rat   small   intestine   was   structurally   similar,   but   lay   on   two   layers   of   smooth   muscle   cells.  

Mesothelium   is   strongly   positive   for   the   mesothelial   marker   HBME-­‐‑1   that   recognizes   an   unknown  microvillar  epitope  in  mesothelial  cells  (Nga  et  al.  2008).  

The   mesothelium   in  the   parietal   peritoneum   showed  strong   hyaluronan   staining.   Both   the  epithelial  surface  and  the  connective  tissue  were  clearly  positive  for  hyaluronan,  which   was   also   located   between   the   striated   muscle   cell   boundaries.   In   the   small   intestine,   the   mesothelial   layer   showed   a   clear   positive   surface   pattern,   with   some   DAB   stain   in   the   smooth  muscle  layers.  However,  the  strongest  hyaluronan  stain  was  seen  in  the  submucosa   and   between   the   glands   of   the   small   intestine.   Hyaluronan   stain   was   absent   in   the   epithelium  of  the  small  intestine,  a  staining  pattern  similar  to  that  described  before  (Alho   and  Underhill  1989).  

Isolated   primary   mesothelial   cells   from   the   rat   anterior   parietal   peritoneum   showed   typical  cobblestone  morphology  in  cell  culture.  The  major  proportion  of  the  cell  population   expressed   the   mesothelial   marker   HBME-­‐‑1,   which   was   located   on   the   plasma   membrane  

and  its  protrusions.  The  cells  produced  high  amounts  of  hyaluronan,  which  was  shown  to   be  localized  on  plasma  membranes  and  cell  protrusions  as  previously  reported  (Rilla  et  al.  

2008).   The   protrusions   were   especially   numerous   when   EGF   was   present   in   the   culture   medium.  

The  mesothelial  cells,  rich  in  mitochondria  and  small  vesicles  near  the  plasma  membrane   of   the   luminal   surface,   were   decorated   with   long   and   numerous   plasma   membrane   protrusions.  Some  of  the  protrusions  were  perpendicular  to  the  sectional  plane.  Scanning   electron   micrographs   showed   that   the   mesothelial   plasma   membrane   protrusions   often   collapsed   on   the   cell   surface   during   sample   preparation   (Study   II,   Figure   4).   The   DAB   deposits   formed   an   electron   dense,   rather   uniform   layer   over   the   luminal   surface   of   the   mesothelial  cells  (Study  II,  Figure  5).  

5.3.2  Mesothelial  and  HAS3-­‐‑induced  cell  protrusions  are  structurally  similar  (I)  

Next,   the   structure   of   the   protrusions   on   the   mesothelium   was   compared   in   the   small   intestine  brush  border  and  in  the  HAS3  overexpressing  MCF-­‐‑7  cells  (Kultti  et  al.  2006).  The   ultrastructure   of   the   mesothelial   and   HAS3-­‐‑dependent   protrusions   was   similar   (Study   I,   Figure   1).   The   average   length   and   diameter   of   protrusions   were   also   comparable   in   the   mesothelium  and  the  HAS3  overexpressing  cell  cultures,  while  the  actin  filament  densities   in   both   were   lower   than   in   the   small   intestine   brush   border   (Study   I,   Table   1).  

Hyaluronidase  treatment  did  not  affect  the  ultrastructure  of  the  protrusions.  (I)  

The   cytoskeleton-­‐‑associated   proteins   between   HAS3-­‐‑dependent   cell   protrusions   and   those   found   in   the   LP9   mesothelial   cell   cultures   were   compared.   It   was   found   that   both   have  a  similar  immunostaining  pattern  and  contain  proteins  typically  found  in  filopodia,   such  as  ezrin  and  fascin,  but  not  microvillus-­‐‑specific  proteins,  like  villin  and  espin  (Study  I,   Table  2).  

5.3.3  HAS3  overexpression  relocates  actin  to  the  cell  cortex  and  to  the  bases  of  the  cell   protrusions  (I)  

The  localization  and  the  impact  of  HAS3  overexpression  on  actin  filaments  in  MCF7  cells   were   studied   in   more   detail,   by   using   double   transfections   in   live   cells.   A   cell   overexpressing   GFP-­‐‑HAS3   has   typical   “Hedgehog-­‐‑like”   morphology.   To   confirm   that   HAS3   expression   without   GFP-­‐‑tag   induces   protrusions,   HAS3   GFP-­‐‑actin   double   transfection   was   performed.   To   visualize   actin   filaments,   Lifeact,   a   17   amino   acid   actin   binding  compound  that  does  not  interfere  with  actin  dynamics  was  used  as  a  marker  (Riedl   et  al.  2008).  Transfection  with  Lifeact  linked  with  control  GFP  showed  that  actin  is  localized   rather  uniformly  in  the  cytoplasm.  Instead,  when  transfecting  the  MCF-­‐‑7  cells  with  GFP-­‐‑

HAS3   and   Lifeact,   actin   filaments   were   especially   concentrated   to   the   bases   of   the   cell   protrusions  and  the  signal  was  weakening  towards  the  tips.  GFP-­‐‑HAS3  signal  was  high  in   all  parts  of  the  protrusions  and  forms  a  knob-­‐‑like  structure  on  the  tip  (Study  I,  Figure  2).  

5.4 HYALURONAN SYNTHASES AND CD44 IN THE INTACT MESOTHELIUM (II)

5.4.1  HAS2  is  the  main  hyaluronan  producing  enzyme  in  mesothelium  

All  three  HAS  antibodies  showed  a  positive  staining  pattern  on  mesothelium  in  addition  to   the  smooth  muscle  layer,  stromal  cells,  glands  and  epithelium.  The  intensity  of  the  staining   with   each   HAS   antibodies   varied   between   different   tissue   blocks.   Comparison   of   the   staining  intensity  of  different  isoenzymes  was  not  relevant  because  the  affinities  of  different   HAS  antibodies  are  not  known,  (Study  II,  Figure  2).  Furthermore,  Has  mRNA  levels  have  

been   shown   to   correlate   fairly   well   with   hyaluronan   synthesis   (Jacobson   et   al.   2000;  

Karvinen   et   al.   2003;   Pienimäki   et   al.   2001;   Yamada   et   al.   2004b).   Therefore,   in   order   to   investigate  in  more  detail  which  of  the  three  HAS  isoforms  has  the  main  role  for  producing   hyaluronan   in   mesothelial   cells,   mRNA   was   isolated   from   the   confluent   primary   mesothelial   cell   culture   and   anterior   wall   of   the   parietal   peritoneum.   Has2   was   the   most   abundant  isoform  both  in  intact  mesothelium  and  in  cell  culture  comprising  approximately   60-­‐‑70  %  of  the  total  Has  mRNA  pool.  There  were  no  significant  differences  between  Has1   and   Has3   mRNA   levels   in   the   intact   mesothelium.   In   contrast,   in   cultured   primary   cells,   Has1  and  Has3  proportions  were  10  and  30  %  respectively  (Study  II,  Figure  7).  

5.4.2  Mesothelium  is  negative  for  CD44  

Hyaluronan   receptor   CD44   is   often   present   in   cells   producing   hyaluronan   (Alho   and   Underhill   1989).   Surprisingly,   CD44   was   absent   in   the   intact   rat   mesothelium   both   in   parietal  peritoneum  (Study  II,  Figure  1f)  and  in  small  intestine  mesothelial  cells  (Study  II,   Figure   2h).   Some   of   the   fibrocytes   in   sub-­‐‑mesothelium   showed   CD44   positivity.   In   the   small   intestine,   cells   with   round   nuclei   between   the   two   muscle   layers,   probably   tissue   macrophages,  expressed  CD44.  Some  cells  in  the  bottom  of  small  intestine  glands  showed  a   clear  plasma  membrane  pattern  of  CD44,  similar  to  a  previous  report  (Alho  and  Underhill   1989;  Hou  et  al.  2011),  probably  indicating  small  intestine  epithelial  stem  cells  (Hou  et  al.  

2011).  

5.5 EMT ACTIVATES HYALURONAN SYNTHESIS MACHINERY IN PRIMARY MESOTHELIAL CELLS (III)

5.5.1  EGF  and  wounding  induces  EMT  in  mesothelial  cells  

Epidermal  growth  factor  (Cheng  et  al.  2012)  and  wounding  (Arnoux  et  al.  2008)  are  capable   of  inducing  epithelial  to  mesenchymal  transition.  The  100%  confluent  primary  mesothelial   cells   showed   typical   cobblestone   morphology   with   short   microvilli   on   the   apical   surface   (Study  III,  Figure  2).  EGF  (10  nm/ml)  treatment  for  24  h  induced  a  spindle-­‐‑like  morphology   (Study   III,   Figure   2C),   as   reported   previously   (Leavesley   et   al.   1999).   The   number   and   average  length  of  cell  protrusions  was  increased,  especially  in  spindle-­‐‑shaped  cells  (Study   III,  Figure  2D).  In  wounding  experiments,  the  cells  exhibited  a  migratory  phenotype  with   prominent  lamellipodia  located  on  and  near  the  wound  edge  (Study  III,  Figure  2F).  In  both   treatments,  long  adhesive  tethers  were  seen  between  the  cells.  

The  gene  expression  levels  of  two  typical  molecular  markers  of  EMT  were  studied.  The   results  suggested  that  the  levels  of  mesenchymal  marker  alpha-­‐‑smooth  muscle  actin  raised   in   both   EGF-­‐‑treated   and   wounded   cultures;   however,   statistical   significance   was   not   reached  (Study  III,  Figure  3A).  The  relative  raise  was  smaller  when  cultured  in  20%  FBS.  In   immunostainings,  α-­‐‑SMA  was  clearly  upregulated  in  both  EGF  and  wounded  cell  cultures   (study  III,  Figures  3D  and  3E  respectively).  In  EGF  treated  cells,  the  most  intense  α-­‐‑SMA   staining  was  seen  in  the  spindle-­‐‑like  cells,  however,  in  wounded  cultures,  α-­‐‑SMA  positivity   was  restricted  to  the  cells  near  the  wound  edge.  As  expected,  the  E-­‐‑Cadherin  mRNA  levels   were  decreased  upon  EGF-­‐‑treatment  and  the  decrease  was  statiscically  significant  (P<0.05   when   cultured   in   2%   FBS).   Interestingly,   the   E-­‐‑cadherin   levels   seemed   to   be   raised   16   h   after  wounding.  

5.5.2  EGF  and  wounding  induce  a  marked  CD44  overexpression  

Messanger  RNA  levels  of  CD44  in  100  %  confluent  control  samples  were  low,  however,  24   h  EGF  treatment  increased  the  CD44  mRNA  levels  up  to  8.3-­‐‑  and  4.9-­‐‑fold  in  2%  and  20%  

FBS,  respectively,  and  the  changes  were  statistically  significant.  Likewise,  in  wounded  cell  

cultures,   the   changes   seemed   to   be   lower;   3.9-­‐‑   and   1.7-­‐‑fold   in   2%   and   20   %   FBS,   respectively,  which  were  not  statistically  significant  (Study  III,  Figure  4E).  

The   mRNA   results   were   in   line   with   those   produced   by   immunohistochemistry.   In   control  cultures,  staining  for  CD44  was  nearly  negative  (Study  III,  Figure  4B  and  F).  EGF   induced  CD44  protein  levels  especially  in  spindle-­‐‑like  cells  (Study  III,  Figure  4C  and  G).  In   wounded  cultures,  the  changes  were  rather  local.  CD44  staining  intensity  was  strong  in  3-­‐‑6     cell  layers  from  the  edge  of  the  wound  (Study  III,  Figure  4D  and  H).  

5.5.3  Hyaluronan  synthesis  is  increased  by  EGF  and  wounding  treatments  

Cell-­‐‑associated  hyaluronan  and  hyaluronan  secretion  to  culture  medium  was  quantitated   with   hyaluronan   assay.   Untreated   confluent   mesothelial   cells   showed   low   to   moderate   hyaluronan   secretion   rate.   Because   of   the   high   variance   between   cell   cultures   originating   from  different  individual  rats  in  basic  hyaluronan  secretion,  the  effects  of  EGF  or  wound   treatments  were  presented  as  relative  changes  compared  with  the  control.  EGF  induced  3.8-­‐‑  

and  1.7-­‐‑fold  increase  in  the  secreted  hyaluronan  levels  in  2  %  and  20  %  FBS  concentrations,   respectively  (Study  III,  Figure  5A).  The  changes  were  not  statistically  significant,  probably   because  of  the  high  variance.  The  cell-­‐‑associated  hyaluronan  increased  1.4-­‐‑  and  4-­‐‑fold  in  2  

%  and  20  %  FBS,  respectively  (Study  III,  Figure  5B).  Wounding  did  not  induce  hyaluronan   secretion   to   cell   culture   medium,   however   in   20   %   FBS   a   2-­‐‑fold   increase   was   observed.  

Confocal   microscopy   of   the   fluorescent   hyaluronan   binding   protein   confirmed   that   hyaluronan  staining  in  control  samples  was  rather  low  (Study  III,  Figure  5C),  but  higher   compared  to  CD44  staining  intensity.  In  the  EGF  samples,  the  cell  associated  hyaluronan   and  CD44  staining  intensity  were  increased  (Study  III,  Figure  5D  and  G).  Hyaluronan  and   CD44  staining  were  clearly  higher  in  the  wound  edge  (Study  III,  Figure  5E  and  H).  

5.5.4  Has2  is  overexpressed  during  EGF  or  wounding  treatments  

mRNA   levels   of   each   HAS   isoform   were   analyzed   with   qPCR   to   determine   whether   the   increased   hyaluronan   secretion   of   EGF   and   wound-­‐‑induced   mesothelial   cells   was   due   to   induced  HAS  levels.  In  EGF  treated  samples,  Has1  and  Has3  expression  increased  slightly   whereas  Has2  had  a  clear  4-­‐‑fold  raise.  In  wounded  cultures,  Has1  levels  remained  constant,   Has2  levels  raised  about  2-­‐‑fold  and  Has3  had  a  small  raise.  

Immunostainings  confirmed  the  qPCR  results.  EGF  or  wounding  had  no  evident  effect   on  HAS1  or  HAS3  protein  staining  intensity.  However,  in  HAS2  immunostainings  EGF  and   wounding  clearly  increased  HAS2  staining  intensity  (Study  III,  Figure  6).  These  results  are   in  line  with  previous  studies  on  the  effect  of  EGF  (Chow  et  al.  2010;  Erickson  and  Turley   1987;  Heldin  et  al.  1989;  Honda  et  al.  1991;  Pasonen-­‐‑Seppänen  et  al.  2003;  Saavalainen  et  al.  

2005;  Tirone  et  al.  1997;  Yamada  et  al.  2004a)  or  mesothelial  wounding  (Yung  et  al.  2000).  

5.6 STUDIES ON HYALURONAN-COATED MICROVESICLES

5.6.1  Active  hyaluronan  synthesis  induces  hyaluronan-­‐‑coated  microvesicles  (IV)  

Several   cell   types   including   immortalized   human   mesothelial   cells   (LP9),   rat   primary   mesothelial  cells  and  human  chondrosarcoma  cells  form  numerous  hyaluronan  coated  cell   protrusions.   When   these   structures   were   studied   with   confocal   microscopy   using   the   fluorescent   hyaluronan   binding   probe,   fHABR,   small   hyaluronan-­‐‑positive   particles   were   detected   around   the   cells,   (Study   IV,   Figure   1).   Using   melanoma   and   MCF-­‐‑7   cells   transfected   with   GFP-­‐‑HAS3,   the   deposits   also   showed   GFP   fluorescence,   indicating   that   these   structures   were   covered   with   plasma   membrane,   and   further   suggesting   that     they   may   represent   microvesicles   (Study   IV,   Figure   1f).   By   using   3D   time-­‐‑lapse   confocal   microscopy,   GFP-­‐‑HAS3-­‐‑positive   structures   were   found   to   detach   from   the   tips   of   the  

plasma   membrane   protrusions   (Study   IV,   Figure   2).   GFP-­‐‑HAS3-­‐‑transfected   MDCK   cells,   which   synthesize   high   levels   of   hyaluronan   and   form   long   hyaluronan-­‐‑positive   protrusions,  were  used  to  produce  microvesicles  for  further  studies.  Culture  medium  from   the  transfected  cells  was  collected  and  ultracentrifuged.  Confocal  microscopy  of  the  pellet   showed   numerous   GFP-­‐‑HAS3-­‐‑   and   hyaluronan-­‐‑positive   microvesicles.   Treating   these   vesicles  with  hyaluronan  hexasaccharides,  which  blocks  hyaluronan-­‐‑CD44  interaction,  did   not  diminish  the  hyaluronan  coat.  This  suggests  that  interaction  with  CD44  is  not  required   for  the  hyaluronan  coat  of  these  microvesicles  (Study  IV,  Figure  3D).  

5.6.2  Microvesicles  bud  off  from  the  apical  surface  of  the  cell  cultures  (IV)  

In   order   to   study   the   correlation   between   hyaluronan   production   and   microvesicle   secretion,  glucose  starvation  was  used  to  inhibit  hyaluronan  synthesis.  When  cultured  in  5   mM   glucose,   GFP-­‐‑HAS3-­‐‑transfected   cells   produced   30   ng   of   hyaluronan   per   10,000   cells   during  24  h,  but  in  the  absence  of  glucose,  hyaluronan  production  was  diminished  by  88%.  

Microvesicle   shedding   was   also   studied   in   a   3D   matrix   prepared   from   a   basement   membrane  extract,  where  MDCK  cells  differentiate  into  a  hollow  cysts.  Glucose  starvation   resulted   in   approximately   80%   decrease   in   the   shedding   of   the   GFP-­‐‑HAS3-­‐‑positive   microvesicles,  indicating  that  hyaluronan  production  correlates  well  with  the  shedding  of   microvesicles  (Study  IV,  Figures  4  and  5).  

5.6.3  Hyaluronan-­‐‑dependent  microvesicles  are  formed  by  two  distinct  ways  (IV)  

Transmission   electron   microscopy   revealed   that   the   microvesicles   were   formed   in   two   distinct   ways;   some   of   the   vesicles   seemed   to   bud   directly   from   the   plasma   membrane,   whereas   others   originated   from   the   tips   of   the   plasma   membrane   protrusions,   as   seen   already  in  the  time-­‐‑lapse  confocal  microscopy.  Numerous  globular  particles  on  the  plasma   membranes  of  LP9  and  GFP-­‐‑HAS3-­‐‑transfected  MDCK  cells  were  seen  in  scanning  electron   microscopy,   confirming   the   results   from   transmission   electron   microscopy   (Study   III,   Figures  6  and  7).  

5.6.4  EGF  and  wounding  enhance  the  production  of  extracellular  vesicles  (III)  

Next,   the   effect   of   EMT   on   microvesicle   production   was   investigated.   Scanning   electron   micrographs   showed   some   big   vesicles   in   control   cultures   (Study   III,   Figure   7A).   EGF   induced  variable  sized  vesicles  (Study  III,  Figure  7B).  Wounding,  however,  did  not  have   an  obvious  effect  on  vesicle  formation,  but  some  of  the  migrating  cells  had  a  high  number   of  budding  vesicles  (Study  III,  Figure  7C  and  H).  The  SEM  results  were  confirmed  by  using   nano   tracking   analysis   (NTA)   from   culture   media   of   different   treatments.   EGF   increased   extracellular   vesicles   in   the   culture   media   by   8.6-­‐‑fold,   and   wounding   by   4.6-­‐‑fold.   The   increases   were,   however,   not   statistically   significant   (Study   III,   Figure   7D).   The   mean   diameter  of  the  secreted  vesicle  population  was  equal  in  all  treatments,  approximately  150   nm  (Study  IV,  Figure  7E).  High  resolution  light  microscopy  imaging  was  used  to  study  if   the   cell-­‐‑associated   vesicles   were   positive   for   hyaluronan,   HASs   and   CD44.   Live   cell   imaging   using   fluorescent   HABC   confirmed   that   the   levels   of   the   cell-­‐‑associated   hyaluronan  were  relatively  low  in  control  samples  (Study  III,  Figure  8C).  An  increase  of   the  cell-­‐‑associated  hyaluronan  was  seen  in  the  EGF-­‐‑treated  and  wounded  samples  (Study   III,   Figure   8D-­‐‑E).   Interestingly,   the   immunostainings   showed   that   HAS3   protein   accumulated   on   the   plasma   membranes   of   extracellular   vesicles   in   the   EGF-­‐‑treated   cells,   while  HAS1  or  HAS2  were  not  detected  (data  not  shown).  CD44  accumulation  was  seen  on   the   membranes   of   the   vesicles   from   the   EGF   treated   cells   (Study   III,   Figure   8B).  

Superresolution  images  (Airyscan)  showed  budding  of  CD44-­‐‑positive  vesicles  (Study  III,   Figure  8F  and  I).  After  fixation  most  of  the  extracellular  vesicle-­‐‑associated  hyaluronan  coat   was  shed  away,  or  clustered  (Study  III,  Figure  8G-­‐‑H).