• Ei tuloksia

Yritetyt syklisaatioreaktiot

12.4.1 Radikaalisyklisaatio

Vinyylihalogeeni 8.12 (0,5 mmol) liuotettiin 50 ml:aan kuivaa tolueenia argonkaasukehän alla.

Liuos lämmitettiin refluksoitumispisteeseen asti, jonka jälkeen liuokseen lisättiin tipoittain tributyylitinahydridi (0,20 ml, 98 %, 0,6 mmol, 1,2 ekviv.), ja AIBN (17,1 mg, 0,1mmol, 0,2 ekviv.) liuotettuna pieneen määrään tolueenia. Reaktioseoksen annettiin refluksoitua, kunnes lähtöainetta ei ollut enää jäljellä. Reaktioseoksen annettiin jäähtyä huoneenlämpöön, jonka jälkeen alipaineessa konsentroitu raakatuote puhdistettiin flash-kromatografisesti (EtOAc/n-heksaani 0:100 → 30:70). Tuotteita sisältäneet fraktiot yhdistettiin, konsentroitiin alipaineessa ja karakterisoitiin NMR-spektroskopian avulla.

12.4.2 Ru-katalysoitu syklisaatio

Vinyylienyyni 8.13 (0,2 mmol) liuotettiin kuivaan tolueeniin (80 ml) ja lämmitettiin 50 °C, jonka jälkeen seokseen lisättiin [CpRu(MeCN)3]PF6 (4,9 mg, 0,01 mmol, 0,1 ekviv.). Reaktio sammutettiin trietyyliamiinilla (0,25 ml), kun reaktioseos oli jäähtynyt huoneenlämpöiseksi.

Seos suodatettiin ohuen celite-kerroksen läpi, konsentroitiin alipaineessa ja karakterisoitiin NMR-spektroskopian avulla.

12.4.3 Pd-katalysoitu syklisaatio

Vinyylihalogeeni 8.12 (0,06 mmol) liuotettiin kuivaan asetonitriiliin (4 ml), jonne lisättiin palladium(II)asetaattia (1,8 mg, 0,01 mmol, 0,1 ekviv.), trifenyylifosfiinia (10,8 mg, 0,04 mmol, 0,7 ekviv,) ja kaliumkarbonaattia (23,5 mg, 0,2 mmol, 3,0 ekviv.). Seoksen annettiin olla huoneenlämmössä vuorokausi ja vuorokausi 60 °C. Reaktio sammutettiin ionivaihdetulla vedellä (10 ml). Vesifaasia pestiin DCM:llä (35 ml). Yhdistetyt orgaaniset faasit pestiin kylläisellä suolaliuoksella (15 ml) ja kuivattiin kidevedettömällä Na2SO4:lla. Alipaineessa kuivattu raakatuote karakterisoitiin NMR-spektroskopian avulla.

Kirjallisuusluettelo

1. Williams, D. H.; Stone, M. J.; Hauck, P. R. and Rahman, S. K., Why are secondary metabolites (Natural Products) biosynthesized, J. Nat. Prod., 1989, 52, 1189–1208.

2. Yudin, A. K., Chem. Sci., 2015, 6, 30–49.

3. Saridakis, I.; Kaiser, D. and Maulide, N., Unconventional Macrocyclizations in Natural Product Synthesis, ACS Cent. Sci., 2020, 6, 1869–1889.

4. Martí-Centelles, V.; Pandey, M. D.; Burguete, M. I. and Luis, S. V., Macrocyclization reactions: The importance of conformational, configurational, and template-induced preorganization, Chem. Rev., 2015, 115, 8736–8834.

5. Frank, A. T.; Farina, N. S.; Sawwan, N.; Wauchope, O. R.; Qi, M.; Brzostowska, E. M.;

Chan, W.; Grasso, F. W.; Haberfield, P. and Greer, A., Natural macrocyclic molecules have a possible limited structural diversity, Mol. Divers., 2007, 11, 115–118.

6. Brockmann, H. and Henkel, W., Pikromycin, ein bitter schmeckendes Antibioticum aus Actinomyceten (Antibiotica aus Actinomyceten, VI. Mitteil, Chem. Ber., 1951, 84, 284–

288.

7. Kittendorf, J. D. and Sherman, D. H., The methymycin/pikromycin pathway: A model for metabolic diversity in natural product biosynthesis, Bioorganic Med. Chem., 2009, 17, 2137–2146.

8. Carreira, E. M. and Kvaerno, L., in Classics in Stereoselective Synthesis, Wiley-VCH, 2009, pp. 1–16.

9. Woodward, R. B.; Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.; Au-Yeung, B.

W.; Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H.; Chenevert, R. B.; Fliri, A.;

Frobel, K.; Gals, H. J.; Garratt, D. G.; Hayakawa, K.; Heggie, W.; Hesson, D. P.; Hoppe, D.; Hoppe, I.; Hyatt, J. A.; Ikeda, D.; Jacobi, P. A.; Kim, K. S.; Kobuke, Y.; Kojima, K.;

Krowicki, K.; Lee, V. J.; Leutert, T.; Malchenko, S.; Martens, J.; Matthews, R. S.; Ong, B. S.; Press, J. B.; Rajan Babu, T. V.; Rousseau, G.; Sauter, H. M.; Suzuki, M.; Tatsuta, K.; Tolbert, L. M.; Truesdale, E. A.; Uchida, I.; Ueda, Y.; Uyehara, T.; Vasella, A. T.;

Vladuchick, W. C.; Wade, P. A.; Williams, R. M. and Wong, H. N. C., Asymmetric Total Synthesis of Erythromycin. 1. Synthesis of an Erythronolide A Seco Acid Derivative via Asymmetric Induction, J. Am. Chem. Soc., 1981, 103, 3210–3213.

10. Still, W. C. and Galynker, I., Chemical consequences of conformation in macrocyclic compounds, Tetrahedron, 1981, 37, 3981–3996.

11. Engler, E. M.; Andose, J. D. and von Schleyer, P. R., Critical Evaluation of Molecular Mechanics, J. Am. Chem. Soc., 1973, 95, 8005–8025.

12. Rubenstein, L. A.; Zauhar, R. J. and Lanzara, R. G., Molecular dynamics of a biophysical model for β2-adrenergic and G protein-coupled receptor activation, J. Mol. Graph.

Model., 2006, 25, 396–409.

13. Cramer, C. J., Essentials of computational chemistry : theories and models, Wiley, 2nd edition., 2004.

14. Eliel, E. L.; Wilen, S. H. and Mander, L. N., Stereochemistry of organic compounds,

Wiley, 1994.

15. MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M.

J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.;

Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, Ring Formation from o-ω-Bromoalkylphenoxides. Influence of the O-Heteroatom, J.

Am. Chem. Soc., 1975, 97, 4960–4966.

17. DeTar, D. L. F. and Luthra, N. P., Quantitative Evaluation of Steric Effects in SN2 Ring Closure Reactions, J. Am. Chem. Soc., 1980, 102, 4505–4512.

18. Galli, C.; Illuminati, G.; Mandolini, L. and Tamborra, P., Kinetics and Activation Parameters of Lactone Formation in the Range of 3- to 23-Membered Rings, J. Am.

Chem. Soc., 1977, 99, 2591–2597.

19. Casadei, M. A.; Galli, C. and Mandolini, L., Kinetics of Cyclization of Diethyl (⍵-Bromoalkyl)malonates in the Range of 4-to 21-Membered Rings. Role of Ring Strain, J.

Am. Chem. Soc., 1984, 106, 1051–1056.

20. Kirby, A. J. and Lloyd, G. J., Structure and efficiency in intramolecular and enzymic catalysis: Intramolecular general base catalysis. Hydrolysis of monoaryl malonates, J.

Chem. Soc. Perkin Trans. 2, 1976, 1753–1761.

21. Galli, C.; Giovannelli, G.; Illuminati, G. and Mandolini, L., Gem-dimethyl effect in some medium and large rings, J. Org. Chem., 1979, 44, 1258–1261.

22. Illuminati, G.; Mandolini, L. and Masci, B., Kinetics of Ring Formation from o-ω-Bromoalkoxy Phenoxides and 0-ω-Bromoalkyl Phenoxides in the Range of 11- to 24-Membered Rings. A Comparison with Related Cyclization Series, J. Am. Chem. Soc., 1977, 99, 6308–6312.

23. Liau, B. B.; Gnanadesikan, V. and Corey, E. J., A study of the effect of zand e-olefinic geometry on the rates of ring closure of 13-membered dienes, Org. Lett., 2008, 10, 1055–

1057.

24. Petasis, N. A. and Patane, M. A., The synthesis of carbocyclic eight-membered rings, Tetrahedron, 1992, 48, 5757–5821.

25. Pawar, D. M.; Moody, E. M. and Noe, E. A., Conformational study of oxacyclooctan-2-one by dynamic NMR spectroscopy and computational methods, J. Org. Chem., 1999, 64, 4586–4589.

26. Burevschi, E.; Penã, I. and Sanz, M. E., Medium-sized rings: Conformational preferences in cyclooctanone driven by transannular repulsive interactions, Phys. Chem.

Chem. Phys., 2019, 21, 4331–4338.

27. Dunitz, J. D. and Prelog, V., Röntgenographisch bestimmte Konformationen und Reaktivität mittlerer Ringe, Angew. Chemie, 1960, 72, 896–902.

28. Fyvie, W. S. and Peczuh, M. W., Remote induction of asymmetry in [13]-macro-dilactone topology by a single stereogenic center, Chem. Commun., 2008, 4028–4030.

29. Woodward, R. B.; Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.; Au-Yeung, B.

W.; Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H.; Chenevert, R. B.; Fliri, A.;

Frobel, K.; Gais, H. J.; Garratt, D. G.; Hayakawa, K.; Heggie, W.; Hesson, D. P.; Hoppe, D.; Hoppe, I.; Hyatt, J. A.; Ikeda, D.; Jacobi, P. A.; Kim, K. S.; Kobuke, Y.; Kojima, K.;

Krowicki, K.; Lee, V. J.; Leutert, T.; Malchenko, S.; Martens, J.; Matthews, R. S.; Ong, B. S.; Press, J. B.; Rajan Babu, T. V.; Rousseau, G.; Sauter, H. M.; Suzuki, M.; Tatsuta, K.; Tolbert, L. M.; Truesdale, E. A.; Uchida, I.; Ueda, Y.; Uyehara, T.; Vasella, A. T.;

Vladuchick, W. C.; Wade, P. A.; Williams, R. M. and Wong, H. N. C., Asymmetric Total Synthesis of Erythromycin. 2. Synthesis of an Erythronolide A Lactone System, J. Am.

Chem. Soc., 1981, 103, 3213–3215.

30. Fürstner, A.; Kattnig, E.; Kelter, G. and Fiebig, H. H., Molecular editing and biological evaluation of amphidinolide X and Y, Chem. - A Eur. J., 2009, 15, 4030–4043.

31. Magpusao, A. N.; Rutledge, K.; Mercado, B. Q. and Peczuh, M. W., Stereogenic α-carbons determine the shape and topology of [13]-macrodilactones, Org. Biomol. Chem., 2015, 13, 5086–5089.

32. Paquette, L. A.; Vilotijevic, I.; Hilmey, D. and Yang, J., Divergent regioselectivity in the base-promoted reactions of cyclic eight-membered α-ketols with activated halides, Org.

Lett., 2003, 5, 463–466.

33. Chamberland, S. and Woerpel, K. A., Using nucleophilic substitution reactions to understand how a remote alkyl or alkoxy substituent influences the conformation of eight-membered ring oxocarbenium ions, Org. Lett., 2004, 6, 4739–4741.

34. Huber, T.; Wildermuth, R. E. and Magauer, T., 9-Membered Carbocycles: Strategies and Tactics for their Synthesis, Chem. - A Eur. J., 2018, 24, 12107–12120.

35. Uchida, I.; Ando, T.; Fukami, N.; Yoshida, K.; Hashimoto, M.; Tada, T.; Koda, S. and Morimoto, Y., The Structure of Vinigrol, a Novel Diterpenoid with Antihypertensive and Platelet Aggregation-Inhibitory Activities, J. Org. Chem., 1987, 52, 5292–5293.

36. Yu, X.; Xiao, L.; Wang, Z. and Luo, T., Scalable Total Synthesis of (-)-Vinigrol, J. Am.

Chem. Soc., 2019, 141, 3440–3443.

37. Poulin, J.; Grisé-Bard, C. M. and Barriault, L., A formal synthesis of vinigrol, Angew.

Chemie - Int. Ed., 2012, 51, 2111–2114.

38. Kavanagh, F.; Hervey, A. and Robbins, W. J., Antibiotic Substances From Basidiomycetes: VIII. Pleurotus Multilus (Fr.) Sacc. and Pleurotus Passeckerianus Pilat, Proc. Natl. Acad. Sci., 1951, 37, 570–574.

39. Poulsen, S. M.; Karlsson, M.; Johansson, L. B. and Vester, B., The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome, Mol. Microbiol., 2001, 41, 1091–1099.

40. Farney, E. P.; Feng, S. S.; Schäfers, F. and Reisman, S. E., Total Synthesis of (+)-Pleuromutilin, J. Am. Chem. Soc., 2018, 140, 1267–1270.

41. Shevick, S. L.; Wilson, C. V.; Kotesova, S.; Kim, D.; Holland, P. L. and Shenvi, R. A.,

Chem. Sci., 2020, 11, 12401–12422.

42. San Feliciano, A.; Barrero, A. F.; Medarde, M.; Miguel del Corral, J. M.; Aramburu, A.;

Perales, A. and Fayos, J., Asteriscanolide. A sesquiterpene lactone with a new natural skeleton., Tetrahedron Lett., 1985, 26, 2369–2372.

43. Liang, Y.; Jiang, X. and Yu, Z. X., Enantioselective total synthesis of (+)-asteriscanolid e via Rh(i)-catalyzed [(5+2)+1] reaction, Chem. Commun., 2011, 47, 6659–6661.

44. Liang, Y.; Jiang, X.; Fu, X. F.; Ye, S.; Wang, T.; Yuan, J.; Wang, Y. and Yu, Z. X., Total synthesis of (+)-asteriscanolide: Further exploration of the rhodium(I)-catalyzed [(5+2)+1] reaction of ene-vinylcyclopropanes and CO, Chem. - An Asian J., 2012, 7, 593–604.

45. Han, J. C.; Li, F. and Li, C. C., Collective synthesis of humulanolides using a metathesis cascade reaction, J. Am. Chem. Soc., 2014, 136, 13610–13613.

46. Llàcer, E.; Urpí, F. and Vilarrasa, J., Efficient approach to fluvirucins B2-B5, Sch 38518, and Sch 39185. First synthesis of their aglycon, via CM and RCM reactions, Org. Lett., 2009, 11, 3198–3201.

47. Guignard, G.; Llor, N.; Molins, E.; Bosch, J. and Amat, M., Enantioselective Total Synthesis of Fluvirucinin B1, Org. Lett., 2016, 18, 1788–1791.

48. Hegde, V. R.; Patel, M. G.; Gullo, V. P.; Ganguly, A. K.; Sarre, O.; Puarlc, M. S. and McPhai, A. T., Macrolactams: A New Class of Antifungal Agents, J. Am. Chem. Soc., 1990, 112, 6403–6405.

49. Xu, Z.; Johannes, C. W.; Houri, A. F.; La, D. S.; Cogan, D. A.; Hofilena, G. E. and Hoveyda, A. H., Applications of Zr-catalyzed carbomagnesation and Mo-catalyzed macrocyclic ring closing metathesis in asymmetric synthesis, enantioselective total synthesis of Sch 38516 (fluvirucin B 1), J. Am. Chem. Soc., 1997, 119, 10302–10316.

50. Wright, A. E.; Botelho, J. C.; Guzmán, E.; Harmody, D.; Linley, P.; McCarthy, P. J.;

Pitts, T. P.; Pomponi, S. A. and Reed, J. K., Neopeltolide, a macrolide from a lithistid sponge of the family neopeltidae, J. Nat. Prod., 2007, 70, 412–416.

51. Tu, W. and Floreancig, P. E., Oxidative carbocation formation in macrocycles: Synthesis of the neopeltolide macrocycle, Angew. Chemie - Int. Ed., 2009, 48, 4567–4571.

52. Pereira, A. R.; Cao, Z.; Engene, N.; Soria-Mercado, I. E.; Murray, T. F. and Gerwick, W. H., Palmyrolide A, an unusually stabilized neuroactive macrolide from palmyra atoll cyanobacteria, Org. Lett., 2010, 12, 4490–4493.

53. Tello-Aburto, R.; Johnson, E. M.; Valdez, C. K. and Maio, W. A., Asymmetric total synthesis and absolute stereochemistry of the neuroactive marine macrolide palmyrolide A, Org. Lett., 2012, 14, 2150–2153.

54. Mehrotra, S.; Duggan, B. M.; Tello-Aburto, R.; Newar, T. D.; Gerwick, W. H.; Murray, T. F. and Maio, W. A., Detailed analysis of (-)-palmyrolide A and some synthetic derivatives as voltage-gated sodium channel antagonists, J. Nat. Prod., 2014, 77, 2553–

2560.

55. Philkhana, S. C.; Mehrotra, S.; Murray, T. F. and Reddy, D. S., Synthesis and biological

evaluation of palmyrolide A macrocycles as sodium channel blockers towards neuroprotection, Org. Biomol. Chem., 2016, 14, 8457–8473.

56. Wadsworth, A. D.; Furkert, D. P. and Brimble, M. A., Total synthesis of the macrocyclic n -methyl enamides palmyrolide a and 2 s -sanctolide a, J. Org. Chem., 2014, 79, 11179–

11193.

57. Tello-Aburto, R.; Newar, T. D. and Maio, W. A., Evolution of a protecting-group-free total synthesis: Studies en route to the neuroactive marine macrolide (-)-palmyrolide A, J. Org. Chem., 2012, 77, 6271–6289.

58. Wadsworth, A. D.; Furkert, D. P.; Sperry, J. and Brimble, M. A., Total synthesis of the initially reported and revised structures of the neuroprotective agent palmyrolide A, Org.

Lett., 2012, 14, 5374–5377.

59. Sudhakar, G.; Reddy, K. J. and Nanubolu, J. B., Total synthesis of palmyrolide A and its 5,7-epi isomers, Tetrahedron, 2013, 69, 2419–2429.

60. Philkhana, S. C.; Seetharamsingh, B.; Dangat, Y. B.; Vanka, K. and Reddy, D. S., Synthesis of palmyrolide A and its cis-isomer and mechanistic insight into trans-cis isomerisation of the enamide macrocycle, Chem. Commun., 2013, 49, 3342–3344.

61. Yadav, J. S.; Suresh, B. and Srihari, P., Expedient Synthesis of Large-Ring trans-Enamide Macrolides by CuI-Mediated Intramolecular Coupling of Vinyl Iodide with Amide: Total Synthesis of Palmyrolide A, European J. Org. Chem., 2016, 2016, 2509–

2513.

62. Borra, S.; Amrutapu, S. K.; Pabbaraja, S. and Singh, Y. J., Stereoselective total synthesis of palmyrolide A via intramolecular trans N-methyl enamide formation, Tetrahedron Lett., 2016, 57, 4456–4459.

63. Lai, Y. and Dai, W. M., Modular Total Synthesis of (–)-Palmyrolide A and (+)-(5S,7S)-Palmyrolide A via Ring-Closing Metathesis and Alkene Isomerization†, Chinese J.

Chem., 2021, 39, 69–74.

64. Lai, Y.; Sun, L.; Sit, M. K.; Wang, Y. and Dai, W. M., Diastereoselective synthesis of trans-3,5-disubstituted dihydrofuran-2(3H)-ones via SmI2-mediated reductive coupling of 2-alkylacrylates of N,N-diisopropyl-2-hydroxybenzamide with aldehydes, Tetrahedron, 2016, 72, 664–673.

65. Holmsted, S., Palmyrolidi A:n kokonaissynteesi, Jyväskylän yliopisto, Jyväskylä, 2015.

66. Taskinen, A., Makrolaktaamien syklisaatiomenetelmät luonnonainesynteesissä ja Palmyrolidi A:n kokonaissynteesi, Jyväskylän yliopisto, Jyväskylä, 2019.

67. Xu, Y.; Yin, Z.; Lin, X.; Gan, Z.; He, Y.; Gao, L. and Song, Z., 1,4-hydroiodination of dienyl alcohols with tmsi to form homoallylic alcohols containing a multisubstituted Z -alkene and application to prins cyclization, Org. Lett., 2015, 17, 1846–1849.

68. Sherwood, A. M.; Williamson, S. E.; Johnson, S. N.; Yilmaz, A.; Day, V. W. and Prisinzano, T. E., Scalable Regioselective and Stereoselective Synthesis of Functionalized (E)-4-Iodobut-3-en-1-ols: Gram-Scale Total Synthesis of Fungal Decanolides and Derivatives, J. Org. Chem., 2018, 83, 980–992.

69. Knight, J. and Parsons, P. J., New approaches to the synthesis of β-lactam antibiotics, J.

Chem. Soc. Perkin Trans. 1, 1987, 1237–1242.

70. Marco-Contelles, J.; Pozuelo, C.; Jimeno, M. L.; Martínez, L. and Martinez-Grau, A., 6-Exo Free Radical Cyclization of Acyclic Carbohydrate Intermediates: A New Synthetic Route to Enantiomerically Pure Polyhydroxylated Cyclohexane Derivatives, J. Org.

Chem., 1992, 57, 2625–2631.

71. Nakamura, S.; Kikuchi, F. and Hashimoto, S., Total synthesis of pinnatoxin A, Angew.

Chemie - Int. Ed., 2008, 47, 7091–7094.

72. Henniges, H.; Meyer, F. E.; Schick, U.; Funke, F.; Parsons, P. J. and De Meijere, A., Palladium-catalysed oligocyclisations of 2-bromododeca-1,11-diene-6-ynes, Tetrahedron, 1996, 52, 11545–11578.

73. Halgren, T. A., Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94, J. Comput. Chem., 1996, 17, 490–519.

74. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F. and Frisch, M. J., Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem., 1994, 98, 11623–11627.

75. Enkovaara, J.; Rostgaard, C.; Mortensen, J. J.; Chen, J.; Dułak, M.; Ferrighi, L.;

Gavnholt, J.; Glinsvad, C.; Haikola, V.; Hansen, H. A.; Kristoffersen, H. H.; Kuisma, M.; Larsen, A. H.; Lehtovaara, L.; Ljungberg, M.; Lopez-Acevedo, O.; Moses, P. G.;

Ojanen, J.; Olsen, T.; Petzold, V.; Romero, N. A.; Stausholm-Møller, J.; Strange, M.;

Tritsaris, G. A.; Vanin, M.; Walter, M.; Hammer, B.; Häkkinen, H.; Madsen, G. K. H.;

Nieminen, R. M.; Nørskov, J. K.; Puska, M.; Rantala, T. T.; Schiøtz, J.; Thygesen, K. S.

and Jacobsen, K. W., Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method, J. Phys. Condens. Matter, , DOI:10.1088/0953-8984/22/25/253202.

76. Hjorth Larsen, A.; JØrgen Mortensen, J.; Blomqvist, J.; Castelli, I. E.; Christensen, R.;

Dułak, M.; Friis, J.; Groves, M. N.; Hammer, B.; Hargus, C.; Hermes, E. D.; Jennings, P. C.; Bjerre Jensen, P.; Kermode, J.; Kitchin, J. R.; Leonhard Kolsbjerg, E.; Kubal, J.;

Kaasbjerg, K.; Lysgaard, S.; Bergmann Maronsson, J.; Maxson, T.; Olsen, T.; Pastewka, L.; Peterson, A.; Rostgaard, C.; SchiØtz, J.; Schütt, O.; Strange, M.; Thygesen, K. S.;

Vegge, T.; Vilhelmsen, L.; Walter, M.; Zeng, Z. and Jacobsen, K. W., The atomic simulation environment - A Python library for working with atoms, J. Phys. Condens.

Matter, , DOI:10.1088/1361-648X/aa680e.

77. Wellendorff, J.; Lundgaard, K. T.; Møgelhøj, A.; Petzold, V.; Landis, D. D.; Nørskov, J.

K.; Bligaard, T. and Jacobsen, K. W., Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation, Phys. Rev. B - Condens.

Matter Mater. Phys., 2012, 85, 235149.

78. Larsen, A. H.; Vanin, M.; Mortensen, J. J.; Thygesen, K. S. and Jacobsen, K. W., Localized atomic basis set in the projector augmented wave method, Phys. Rev. B - Condens. Matter Mater. Phys., , DOI:10.1103/PhysRevB.80.195112.

79. Navarro-Ruiz, J.; Cornu, D. and López, N., Prevalence of trans-Alkenes in Hydrogenation Processes on Metal Surfaces: A Density Functional Theory Study, J.

Phys. Chem. C, 2018, 122, 25339–25348.

80. Uyanik, M.; Akakura, M. and Ishihara, K., 2-iodoxybenzenesulfonic acid as an extremely active catalyst for the selective oxidation of alcohols to aldehydes, ketones, carboxylic acids, and enones with oxone, J. Am. Chem. Soc., 2009, 131, 251–262.

81. Singh, N.; Pulukuri, K. K. and Chakraborty, T. K., Formal synthesis of degraded sterol (+)-aplykurodinone-1, Tetrahedron, 2015, 71, 4608–4615.

82. Pattabiraman, V. R.; Stymiest, J. L.; Derksen, D. J.; Martin, N. I. and Vederas, J. C., Multiple on-resin olefin metathesis to form ring-expanded analogues of the lantibiotic peptide, Lacticin 3147 A2, Org. Lett., 2007, 9, 699–702.

83. Tummatorn, J. and Dudley, G. B., Ring opening/fragmentation of dihydropyrones for the synthesis of homopropargyl alcohols, J. Am. Chem. Soc., 2008, 130, 5050–5051.

Liitteet

LIITE 1: TBS-suojattu δ-valerolaktonin 8.3 1H NMR-spektri LIITE 2: TBS-suojattu δ-valerolaktonin 8.3 13C NMR-spektri LIITE 3: TBS-suojattu γ-valerolaktonin 8.2 1H NMR-spektri LIITE 4: TBS-suojattu γ-valerolaktonin 8.2 13C NMR-spektri LIITE 5: TIPS-suojattu γ-valerolaktonin 8.6 1H NMR-spektri LIITE 6: TIPS-suojattu γ-valerolaktonin 8.6 13C NMR-spektri LIITE 7: TPSH 8.8 1H NMR-spektri

LIITE 8: TPSH 8.8 13C NMR-spektri

LIITE 9: Halogeenialkoholin 7.13 1H NMR-spektri LIITE 10: Halogeenialkoholin 7.13 13C NMR-spektri LIITE 11: Vinyylihalogeenin 8.14 1H NMR-spektri LIITE 12: Vinyylihalogeenin 8.14 13C NMR-spektri LIITE 13: Vinyylihalogeenin 8.12 1H NMR-spektri LIITE 14: Vinyylihalogeenin 8.12 13C NMR-spektri LIITE 15: Enyynialkoholin 8.10 1H NMR-spektri LIITE 16: Enyynialkoholin 8.10 13C NMR-spektri LIITE 17: Vinyylienyynin 8.13 1H NMR-spektri LIITE 18: Vinyylienyynin 8.13 13C NMR-spektri

LIITE 19: Karteesinen koordinaatisto: makrolaktoni 7.6, konformeerit 1 ja 2 LIITE 20: Karteesinen koordinaatisto: makrolaktoni 10.1, konformeerit 1–4 LIITE 21: Karteesinen koordinaatisto: makrolaktoni 10.2, konformeerit 1 ja 2

1H-NMR 300 MHz

8.3

13C-NMR 75 MHz

8.3

1H-NMR 300 MHz

8.2

13C-NMR 75 MHz

8.2

1H-NMR 300 MHz

8.6

13C-NMR 75 MHz

8.6

1H-NMR 300 MHz

8.8

13C-NMR 75 MHz

8.8

1H-NMR 300 MHz

7.13

13C-NMR 75 MHz

7.13

1H-NMR 300 MHz

8.14

13C-NMR 75 MHz

8.14

1H-NMR 300 MHz

8.12

13C-NMR 75 MHz

8.12

1H-NMR 300 MHz

8.10

13C-NMR 75 MHz

8.10

1H-NMR 300 MHz

8.13

13C-NMR 75 MHz

8.13

Karteesinen koordinaatisto: Makrolaktoni 7.6

Konformeeri 1

H 6.97527054 5.47418658 8.35025287 C 7.88240427 6.08339996 6.49044376 C 9.64398462 7.71499083 6.65086405 H 10.97827090 5.28982446 6.90560897 C 11.13531860 7.48659420 7.02431611 C 6.57676382 8.36773288 7.90469785 H 6.05319213 4.99752183 6.86718755 H 7.56464410 10.08092145 4.98119446 O 8.82804029 6.68932887 7.30139794 H 9.42904992 9.86945079 6.45030434 O 8.00522352 5.91777028 5.28217129 C 8.98378411 9.05685011 7.05906539 C 7.47167260 9.02981218 6.84411200 C 5.80964874 7.09565706 7.45351907 H 7.17797351 8.13265404 8.80714476 H 12.41004591 7.24300477 8.78651304 H 4.99022130 6.90026235 8.17923677 H 5.81028552 9.11105485 8.21756452 H 9.19955836 9.27681275 8.12679108 H 10.70998579 6.73089598 9.04403352 H 11.13392005 8.47393938 9.00527534 H 9.53622126 7.58250693 5.55326163 C 11.35351404 7.48670037 8.55296375 H 11.81562708 8.63798371 5.27066023 H 11.79175578 9.58831087 6.79471808 C 11.99604786 8.58826064 6.36461914 H 13.07248485 8.37083611 6.51926155 H 11.41335607 6.07158266 5.35534659 C 11.56308009 6.11344868 6.45315086 H 12.63570425 5.92777592 6.66427719 H 5.32860067 7.28822643 6.47231542 C 6.65565478 5.79742409 7.33796734 C 6.93423974 9.59588947 5.74356437 H 5.84696190 9.59857146 5.56248149

Konformeeri 2

H 6.16939363 9.18828828 9.27400023 C 6.89914758 7.17933968 8.99208389 C 9.28581471 6.89117574 9.16127243 H 8.40788468 6.52725123 11.76557603 C 10.15247867 6.76279168 10.44114205 C 7.98800748 9.09491456 6.96222123 H 4.96848528 8.04022953 8.55117471 H 9.46382457 6.15234215 5.68212960 O 8.09395849 7.67930731 9.48612068 H 10.74054750 6.96151361 7.54704978 O 6.64793346 5.98908071 8.84678134 C 9.92541464 7.60049856 7.94186250 C 8.90482084 7.86727426 6.84091189 C 6.47320161 8.79508841 7.13662003 H 8.33472972 9.74354342 7.79341707 H 11.17506448 8.72496392 10.32420692 H 5.89388621 9.70661321 6.87297945 H 8.10097164 9.69384305 6.03217259 H 10.38169477 8.55947121 8.26698351 H 11.07220607 8.03566868 11.96623106 H 9.61632884 8.75553851 11.20499290 H 8.94073163 5.88047700 8.85565004 C 10.52273239 8.15026343 11.01069802 H 11.18681062 4.99338303 9.63568358 H 12.08836864 6.52523358 9.40239194 C 11.43263429 5.97007202 10.10083306 H 12.02230069 5.76914527 11.01794474 H 9.03438680 4.98524012 11.11238462 C 9.33248753 5.98222357 11.49474700 H 9.92871517 5.83614860 12.41786406 H 6.17497204 8.00684508 6.41392950 C 6.03307553 8.34925137 8.56012492 C 8.81104103 7.03489391 5.78227182 H 8.07973478 7.20290661 4.97473649

Karteesinen koordinaatisto: Makrolaktoni 10.1

Konformeeri 1

C 6.56102494 6.63169502 10.15146950 C 7.85886004 5.94884148 10.54977261 C 9.04382249 8.08274496 8.58305203 O 6.63302637 7.63129710 9.19469564 H 6.13931715 9.99666017 8.45120400 C 7.65442841 7.65816991 8.15060975 H 7.79518009 10.44532348 7.93453820 H 9.75489710 8.11142365 7.73782031 C 8.58015896 6.85057651 11.58426801 H 7.59814869 4.97601970 11.00653302 H 8.52016465 5.76859889 9.68101610 C 8.75700891 8.31497719 11.10887688 H 9.57230925 6.40179697 11.80626100 H 7.99630102 6.84488367 12.52940913 C 9.53942727 8.39311924 9.80436637 H 9.30240543 8.87605133 11.89727744 H 7.76424599 8.79634639 11.00795401 H 11.54213950 8.71507221 8.99036987 C 11.00083796 8.75479002 9.95456690 H 11.11011907 9.77722040 10.37706921 H 11.50843720 8.06730250 10.66701355 H 5.23772183 8.60719631 5.79882072 O 5.49985307 6.45649141 10.73635659 C 7.04485131 8.57947708 7.03569381 H 6.41474297 10.66536548 6.81049645 H 7.72308573 6.63025935 7.71567922 C 6.83753281 10.00414219 7.59257074 H 8.92919735 9.17319323 6.03250902 H 8.26240238 7.60118676 5.47618572 C 7.99332205 8.62290051 5.81736842 H 7.49460483 9.14006320 4.97391040 H 5.82885544 6.95705232 6.18021607 C 5.69215175 7.97946637 6.59085786 H 4.98239991 7.91581871 7.43550939

Konformeeri 2

C 10.07006594 5.77021076 6.25668822 C 11.21518676 5.68308122 7.24435822 C 9.01669678 8.47560180 5.86598596 O 8.96146722 6.29494675 6.90805309 H 7.58057991 7.22283407 8.89016497 C 8.17990217 7.23175509 6.10539783 H 7.61045381 8.91316901 8.27699168 H 8.68941190 9.07803209 4.99896409 C 11.82062848 7.10459397 7.40172925 H 10.84121513 5.32315827 8.22441380 H 11.97639294 4.98003788 6.85579123 C 10.78846219 8.21994133 7.74016200 H 12.36324073 7.36345306 6.46661605 H 12.57861481 7.05519499 8.21267763 C 10.12917348 8.88656565 6.52592288 H 11.33447871 9.01512275 8.29262220 H 10.03093106 7.81786338 8.43893472 H 10.40827658 10.57083348 5.15043407 C 10.85902541 10.13096692 6.06068345 H 10.86198589 10.90195809 6.86276097 H 11.92726922 9.90615419 5.84467744 H 6.63963631 5.32766006 7.41616166 O 10.13858068 5.55011656 5.05586649 C 6.81701179 7.44734450 6.83882496 H 6.05708337 8.15902727 8.76266748 H 7.97204620 6.76298524 5.11620123 C 7.03503512 7.96572645 8.27644715 H 6.43325132 9.48321030 6.06987817 H 5.84784408 8.17101956 4.99010714 C 5.97444065 8.47493408 6.05022479 H 4.96514717 8.55362332 6.50382091 H 5.08876696 6.23176455 7.40307380 C 6.05799045 6.10285588 6.88123135 H 5.84750110 5.72667201 5.85853870

Konformeeri 3

C 6.61597854 8.27822232 8.95571687 C 6.06612179 6.86646016 9.03979954 C 9.10152840 8.51939162 7.45328523 O 7.88049546 8.28021023 9.53239888 H 9.98488169 7.25773301 10.64762098 C 8.84757885 9.11659331 8.82380432 H 10.98460921 7.32876525 9.15840255 H 9.50220829 9.23972729 6.71695471 C 6.72334194 6.03331022 7.90161017 H 6.33065947 6.42351332 10.02241031 H 4.96422818 6.88453147 8.92442154 C 8.27933800 6.09437271 7.85005759 H 6.30592382 6.37672568 6.93087523 H 6.40568994 4.97706977 8.03375048 C 8.84734160 7.25731131 7.02489190 H 8.63660168 5.15393810 7.37644361 H 8.68171290 6.09273859 8.88020062 H 9.44132583 7.77525650 4.98276103 C 9.09252105 6.90542172 5.57108302 H 9.84727256 6.09434205 5.47938483 H 8.16300936 6.51912278 5.09695669 H 8.89812417 9.39549631 11.57744085 O 6.11383650 9.22496351 8.36343404 C 10.10005815 9.26024219 9.74147516 H 11.61429700 7.99602844 10.69657391 H 8.39910433 10.12736900 8.68964130 C 10.70228820 7.87883078 10.07761065 H 11.53715245 9.60491568 8.10127414 H 10.72340518 11.09458015 8.68601033 C 11.14979644 10.11961383 9.00239490 H 12.01140906 10.32444843 9.66916344 H 10.54098355 10.10764813 11.72009660 C 9.67336446 9.97618871 11.04131722 H 9.25344021 10.97967757 10.82377793

Konformeeri 4

C 5.73817152 8.19197092 8.76064113 C 5.98077246 6.84290171 8.07460434 C 8.66048456 8.95731779 8.43969565 O 6.28927427 9.33812890 8.21822080 H 6.79293913 11.81445867 8.20309518 C 7.55146199 9.24283994 7.45747554 H 8.58730976 11.82268254 8.22223439 H 9.06337774 9.81760069 8.99990933 C 7.17780994 6.02691397 8.61910937 H 5.05628293 6.27075695 8.28500018 H 6.05711521 6.95990431 6.97183587 C 8.57543031 6.44978037 8.10281985 H 7.00900794 4.96717726 8.32802200 H 7.15914936 6.05981585 9.73114771 C 9.11383141 7.72020575 8.75101980 H 9.28212967 5.61900146 8.31066818 H 8.54184602 6.55473893 6.99560860 H 11.06050993 7.01566809 9.41991840 C 10.15579123 7.51685140 9.82850763 H 10.46533895 8.47173934 10.29546843 H 9.76462438 6.85082159 10.62868636 H 6.58474521 11.56323134 5.03088585 O 5.00322380 8.29235807 9.73644403 C 7.69284701 10.56208407 6.63960600 H 7.71011188 12.72927851 6.95616011 H 7.46615278 8.41095208 6.72695459 C 7.69650964 11.80172732 7.56341312 H 9.89635063 10.41536888 6.50750079 H 9.02932730 9.60331376 5.16542140 C 9.01474265 10.48551674 5.83935308 H 9.13661447 11.38910723 5.20928941 H 6.47357844 9.77788003 4.97904506 C 6.50126430 10.65474083 5.65936905 H 5.53939574 10.69864486 6.20525067

Karteesinen koordinaatisto: Makrolaktoni 10.2

Konformeeri 1

C 9.13299969 6.20737439 8.11855263 C 10.49155398 5.75974933 8.65165878 C 10.47381419 8.76297946 7.04195200 O 8.69217606 7.26780145 8.89817657 H 6.45636806 9.82614958 10.85351667 C 8.19029442 8.42016712 8.13752362 H 9.84912154 9.51620420 8.99194072 H 9.09905832 10.33383349 7.59549207 C 11.41162163 7.01972861 8.69171286 H 10.37504668 5.33900854 9.67436175 H 10.89619768 4.97248375 7.98481642 C 11.34794196 7.77996061 7.37885360 H 11.09076877 7.66060809 9.53700707 H 12.45362385 6.69761698 8.90097457 H 12.02845938 7.41498019 6.58697353 C 9.42275115 9.34642946 7.98284957 H 7.83119318 8.67232141 10.87190542 H 9.43816069 9.19439881 5.18044891 O 8.54213031 5.78979404 7.13194494 H 11.18827887 8.84050581 4.98057543 C 6.96238423 9.00806371 8.88225022 H 8.06017879 10.34096754 10.26281242 H 7.85534182 8.04729800 7.14545097 C 7.35292526 9.48880605 10.29693445 H 6.14631258 9.87384955 7.02494616 H 5.44671040 10.55013360 8.53040822 C 6.38321767 10.18447451 8.06354031 H 7.07950001 11.04440656 8.01239366 H 5.61096088 7.50840430 7.98928983 C 5.89257162 7.89604495 8.98973782 H 6.26456344 7.04261969 9.58765676 H 4.97812307 8.28859415 9.47783225 C 10.44445727 9.32772706 5.63864808 H 10.64408030 10.42182726 5.64385344

Konformeeri 2

C 10.25046531 5.86793361 6.93470845 C 11.12642553 5.76217983 8.16630119 C 9.38379981 8.74263532 8.45041982 O 8.95404704 6.13220028 7.32591370 H 6.38461328 6.07164198 4.98137418 C 8.31992053 7.22859079 6.59167144 H 10.05773175 8.47250944 6.40759440 H 8.55954016 9.40382026 6.54662236 C 11.49674107 7.23312326 8.55191127 H 10.57509344 5.27377895 8.99484320 H 12.04685386 5.19425732 7.92652982 C 10.39119264 8.11643324 9.11519974 H 11.94042465 7.70760724 7.64836272 H 12.30948714 7.17832762 9.30495183 H 10.48011656 8.33251625 10.19592551 C 9.09796128 8.53084947 6.96583938 H 6.82976606 4.98581493 6.33701158 H 8.73637504 10.78386937 8.75170091 O 10.63907025 5.89976272 5.77405414 H 8.73851245 9.79828933 10.25291768 C 6.79471445 7.11634218 6.88203356 H 5.19727070 5.72760822 6.28264494 H 8.47776248 7.05804167 5.50334682 C 6.27106282 5.90490828 6.07217283 H 6.89759949 7.65223854 9.03646127 H 5.39702752 6.82123247 8.54031849 C 6.49342192 6.86398045 8.37844937 H 6.92801856 5.90427067 8.71452531 H 6.31200725 9.27575511 7.01491244 C 6.07308063 8.39104232 6.39430531 H 6.34092410 8.63032000 5.34429023 H 4.97580503 8.24339137 6.43624422 C 8.52859213 9.77208459 9.16588017 H 7.44087642 9.60639259 9.02925585