• Ei tuloksia

Tässä tutkielmassa tutkittiin hyvin pientaajuisten magneettikenttien ja diuronin vaikutuksia oksidatiiviseen stressiin ihmisen SH-SY5Y -neuroblastoomasoluissa. Tutkimuksessa saatiin muutamia tilastollisesti merkittäviä tuloksia hyvin pientaajuisten magneettikenttien ja diuronin vaikutuksista yleiseen happiradikaalituotantoon ja superoksidituotantoon SH-SY5Y -soluissa.

Tämän tutkimuksen tulosten perusteella ei kuitenkaan vielä voida tehdä lopullisia johtopäätöksiä hyvin pientaajuisten magneettikenttien ja diuronin vaikutuksista oksidatiiviseen stressiin

soluissa. Tutkimus olisi hyvä toistaa tulevaisuudessa, jotta nyt saaduista tuloksista saataisiin suurempi varmuus. Tämän tutkimuksen tulosten vertailu aiempiin tutkimuksiin on haasteellista vaihtelevien parametrien ja altistusmenetelmien takia. Jotta vertailu olisi helpompaa, tarvitaan lisää tutkimuksia yhdenmukaisilla parametreilla, esimerkiksi suorittamalla tutkimuksia samalla magneettikentän voimakkuudella ja taajuudella sekä samalla solulinjalla. Tutkimusta voitaisiin lisäksi laajentaa edelleen tutkimalla hyvin pientaajuisten magneettikenttien ja diuronin

vaikutusta solujen lipidiperoksidaatioon, DNA-vaurioihin ja ohjelmoituun solukuolemaan.

LÄHDELUETTELO

Abdollahi, M., Ranjbar, A., Shadnia, S., Nikfar, S. ja Rezaie, A. (2004). Pesticides and oxidative stress: a review. Medical Science Monitor 10;6: 141–147.

Adams, B., Sinayskiy, I. ja Petruccione, F. (2018). An open quantum system approach to the radical pair mechanism. Scientific Reports 8;15719: 1–6.

Akbarnejad, Z., Eskandry, H., Dini, L., Vergallo, C., Nermatolli-Mahani, S. N., Farsinejad, A., Abadi, M. F. S. ja Ahmadi, M. (2017). Cytotoxicity of temozolomide on human glioblastoma cells is enhanced by the concomitant exposure to an extremely low-frequency electromagnetic field (100 Hz, 100 G). Biomedicine & Pharmacotherapy 92: 254–264.

Australian Government: Australian Pesticides and Veterinary Medicines Authority (2011). Diuron.

Human Health Assessment. [online]

https://apvma.gov.au/sites/default/files/publication/15391-diuron-human-health.pdf Luettu 11.2.2020.

Barranger, A., Heude-Berthelin, C., Rouxel, J., Adeline, B., Benabdelmouna, A., Burgeot, T. ja Akcha, F. (2016). Parental exposure to the herbicide diuron results in oxidative DNA damage to germinal cells of the Pacific oyster Crassostrea gigas. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 180: 23–30.

Benassi, B., Filomeni, G., Montagna, C., Merla, C., Lopresto, V., Pinto, R., Marino, C. ja Consales, C.

(2015). Extremely Low Frequency Magnetic Field (ELF-MF) Exposure Sensitizes SH-SY5Y Cells to the Pro-Parkinson's Disease Toxin MPP+. Molecular Neurobiology 53;6: 4247–4260.

Buldak, R. J., Polaniak, R., Buldak, L., Żwirska‐Korczala, K., Skonieczna, M., Monsiol, A., Kukla, M., Dulawa-Buldak, A. ja Birkner, E. (2012). Short‐term exposure to 50 Hz ELF‐EMF alters the

cisplatin‐induced oxidative response in AT478 murine squamous cell carcinoma cells.

Bioelectromagnetics 33;8: 641–651.

Cadenas, E. ja Davies, K. J. A. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology and Medicine 29;3–4: 222–230.

Centers for Disease Control and Prevention. The National Institute for Occupational Safety and Health. Diuron. [online] https://www.cdc.gov/niosh/npg/npgd0247.html Luettu 20.4.2020.

Cho, S., Lee, Y., Lee, S., Choi, Y. ja Chung, H. W. (2014). Enhanced cytotoxic and genotoxic effects of gadolinium following ELF-EMF irradiation in human lymphocytes. Drug and Chemical

Toxicology 37;4: 440–447.

Da Rocha, M. S., Arnold, L. L., Dodmane, P. R., Pennington, K. L., Qiu, F., De Camargo, J. L. ja Cohen, S. M. (2013). Diuron metabolites and urothelial cytotoxicity: In vivo, in vitro and molecular approaches. Toxicology 314;2–3: 238–246.

Dikalov, S. I. ja Harrison, D. G. (2014). Methods for Detection of Mitochondrial and Cellular Reactive Oxygen Species. Antioxidants & Redox Signaling 20;2: 372–382.

Domingues, A., Barbisan, L. F., Martins, P. R., Lúcia, A. ja Spinardi-Barbisana, T. (2011). Diuron exposure induces systemic and organ-specific toxicity following acute and sub-chronic exposure in male Wistar rats. Environmental Toxicology & Pharmacology 31;3: 387–396.

Euroopan kemikaalivirasto. Diuroni. 2.4.2020 [online] https://echa.europa.eu/fi/substance-information/-/substanceinfo/100.005.778 Luettu 1.5.2020.

Falone, S., Grossi, M. R., Cinque, B., D’Angelo, B., Tettamanti, E., Cimini, A., Di Ilio, C. ja Amicarelli, F. (2007). Fifty hertz extremely low-frequency electromagnetic field causes changes in redox and differentiative status in neuroblastoma cells. The International Journal of Biochemistry & Cell Biology 39: 2093–2106.

Felicio A. A., Freitas J. S., Scarin J. B., de Souza Ondei, L., Teresa, F. B., Schlenk, D. ja de Almeida E.

A. (2018). Isolated and mixed effects of diuron and its metabolites on biotransformation

enzymes and oxidative stress response of Nile tilapia (Oreochromis niloticus). Ecotoxicology and Environmental Safety 149: 248–256.

Fernandes, G. S. A., Favareto, A. P. A., Fernandez, C. D. B., Bellentani, F. F., Arena, A. C., Grassi, T.

E., Kempinas, W. G. and Barbisan, L. F. (2012). Effects of Diuron on Male Rat Reproductive Organs: A Developmental and Postnatal Study. Journal of Toxicology and Environmental Health Part A 57;16–17: 1059–1069.

Forman, H. ja Boveris, A. (1982). CHAPTER 3 - Superoxide Radical and Hydrogen Peroxide in Mitochondria. Kirjassa Free Radicals in Biology V5 (pp. 65–90). Elsevier Inc.

Grassi, T. F., Rodrigues, M. A., de Camargo, J. L. ja Barbisan L. F. (2011). Evaluation of Carcinogenic Potential of Diuron in a Rat Mammary Two-Stage Carcinogenesis Model. Toxicologic Pathology 39: 486–495.

Guardiola, F. A., Cuesta, A. Meseguer, J. ja Esteban, M. A. (2012). Risks. of using antifouling biocides in aquaculture. International Journal of Molecular Sciences 13: 1541–1560.

Halliwell, B. (2006). Oxidative stress and neurodegeneration: where are we now? Journal of Neurochemistry 97;6: 1634–1658.

Hauptmann, N., Grimsby, J., Shih, J. C. ja Cadenas, E. (1996). The Metabolism of Tyramine by Monoamine Oxidase A/B Causes Oxidative Damage to Mitochondrial DNA. Archives of Biochemistry and Biophysics 335;2: 295–304.

Hong, M-N., Han, N-K., Lee, H-C., Ko, Y-K., Chi, S-G., Lee, Y.S., Gimm, Y-M., Myung, S-H. ja Lee, J-S.

(2012). Extremely Low Frequency Magnetic Fields Do Not Elicit Oxidative Stress in MCF10A Cells.

Journal of Radiation Research 53: 79–86.

Huovinen, M., Loikkanen, J., Naarala, J. ja Vähäkangas, K. (2015). Toxicity of diuron in human cancer cells. Toxicology in Vitro 29: 1577–1586.

Höytö, A., Herrala, M., Luukkonen, J., Juutilainen, J. ja Naarala, J. (2017). Cellular detection of 50 Hz magnetic fields and weak blue light: effects on superoxide levels and genotoxicity. International Journal of Radiation Biology 93;6: 646–652.

Ihlaseh, S. M., Bailey, K. A., Hester, S. D., Jones, C., Ren, H., Cardoso, A. P. F., Oliveria, M. L., Wolf, D. G., de Camargo, J. L. V. (2011). Transcriptional profile of diuron-induced toxicity on the urinary bladder of male Wistar rats to inform mode of action. Toxicological Sciences 122;2: 330–338.

Jokela K. (2006). Ionisoimaton säteily ja sähkömagneettiset kentät. Toim. Nyberg H. ja Jokela K.

Sähkömagneettiset kentät, Säteilyturvakeskus, Karisto Oy:n kirjapaino, Hämeenlinna. s. 11–23.

Juutilainen, J., Kumlin, T. ja Naarala, J. (2006). Do extremely low frequency magnetic fields enhance the effects of environmental carcinogens? A meta-analysis of experimental studies.

International Journal of Radiation Biology 82;1: 1–12.

Kansainvälinen syöväntutkimusjärjestö IARC ja maailman terveysjärjestö WHO (2002). IARC monographs on the evaluation of carcinogenic risks to humans, part 1: static and extremely low-frequency (elf) electric and magnetic fields. IARC press vol. 80 Non-ionizing radiation.

Kao, C. M., Ou, W-J, Lin, H-D., Eva, A-W., Wang, T-L. ja Chen S. C. (2019). Toxicity of diuron in HepG2 cells and zebrafish embryos. Ecotoxicology and Environmental Safety 172: 432–438.

Kesari, K. K., Luukkonen, J., Juutilainen, J. ja Naarala, J. 2(015.) Genomic instability induced by 50 Hz magnetic fields is a dynamically evolving process not blocked by antioxidant treatment.

Mutation Research/Genetic Toxicology and Environmental Mutagenesis 794: 46–51.

Kesari, K. K., Luukkonen, J., Juutilainen, J. ja Naarala, J. (2016). Induction of micronuclei and superoxide production in neuroblastoma and glioma cell lines exposed to weak 50 Hz magnetic field. Journal of The Royal Society Interface 13;114: p.20150995.

Lee, H. C., Hong, M-N., Jung, S. H., Kim, B. C., Suh, Y. J., Ko, Y-G., Lee, Y. S., Lee, B-Y. L., Cho, Y-G., Myung, S-H. ja Lee J-S. (2015). Effect of extremely low frequency magnetic fields on cell

proliferation and gene expression. Bioelectromagnetics 36;7: 506–516.

Liou, G-Y. ja Storz, P. (2010). Reactive oxygen species in cancer. Free Radical Research 44;5: 479–

496.

Lushchak, V. I. (2014). Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions 224: 164–175.

Luukkonen, J. (2011). Insights into Cancer-related Effects of Electromagnetic Fields.

Publications of the University of Eastern Finland. Dissertations in forestry and natural sciences, 1798-5668;55. University of Eastern Finland.

Luukkonen, J., Liimatainen, A., Höytö, A., Juutilainen, J. ja Naarala, J. (2011). Pre-Exposure to 50 Hz Magnetic Fields Modifies Menadione-Induced Genotoxic Effects in Human SH-SY5Y

Neuroblastoma Cells. PLoS One 6;3: 1–6: e18021.

Luukkonen, J., Liimatainen, A., Juutilainen, J. ja Naarala, J. (2014). Induction of genomic instability, oxidative processes, and mitochondrial activity by 50 Hz magnetic fields in human SH-SY5Y neuroblastoma cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 760: 33–41.

Mannerling, A-C., Simkó, M., Mild, K. H. ja Mattsson, M-O. (2010). Effects of 50 Hz magnetic field exposure on superoxide radical anion formation and HSP70 induction in human K562 cells.

Radiation and Environmental Biophysics 49: 731–741.

Markkanen, A., Juutilainen, J. ja Naarala, J. (2008). Pre-exposure to 50 Hz Magnetic Fields Modifies Menadione-Induced DNA Damage Response in Murine L929 Cells. International Journal of

Radiation Biology 9: 742–751.

Markkanen, A., Naarala, J. ja Juutilainen, J. (2010). A Study on the Effects of 50 Hz Magnetic Fields on UV-induced Radical Reactions in Murine Fibroblasts. Journal of Radiation Research 51: 609–

613.

Matés, J. M., Pérez-Goméz, C. ja Núnez De Castro, I. (1999). Antioxidant Enzymes and Human Diseases. Clinical Biochemistry 32;8: 595–603.

Mattsson, M-O. ja Simko, M. (2014). Grouping of experimental conditions as an approach to evaluate effects of extremely low-frequency magnetic fields on oxidative response in in vitro studies. Frontiers in Public Health 2;132: 1–11.

Mironczuk-Chodakowska, I., Witkowska, A. M. ja Zujko, M. E. (2018). Endogenous non-enzymatic antioxidants in the human body. Advances in Medival Sciences 63;11: 68–78.

National Center for Biotechnology Information. PubChem Compound Summary for CID 3120, Diuron. [online] https://pubchem.ncbi.nlm.nih.gov/compound/Diuron Luettu 11.2.2020.

Nordberg, J. ja Arnér, E. S. J. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biology & Medicine 31;11: 1287–1312.

Orton, F., Lutz, I., Kloas, W. ja Routledge, R. J. (2009). Endocrine Disrupting Effects of Herbicides and Pentachlorophenol: In Vitro and in Vivo Evidence. Environmental Science & Technology 43;6:

2144–2150.

Richter, C., Park, J-W. ja Ames, B. N. (1988). Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proceedings of the National Academy of Sciences of the United States of America 85;17: 6465–6467.

Sandström, J., Nilsson, P., Karlsson, K. ja Marklund, S. L. (1994). 10-Fold Increase in Human Plasma Extracellular Superoxide Dismutase Content Caused by a Mutation in Heparin-binding Domain. The Journal of Biological Chemistry 269;29: 19163–19166.

Sertan Copoglu, U, Virit, O, Hanifi Kokacya, M, Orkmez, M, Bulbul, F, Binnur Erbagci, A, Semiz, M, Alpak, G, Unal, A, Ari, M, Savas, Haluk A. (2015). Increased oxidative stress and oxidative DNA damage in non-remission schizophrenia patients. Psychiatry research 229;1-2: 200–205.

Sies, H. (1997). Physiological Society Symposium: Impareid Endothelial and Smooth Muscle Cell Function in Oxidative Stress. Oxidative Stress: Oxidants and Antioxidants. Experimental

Physiology 82: 291–295.

Sosiaali- ja terveysministeriön asetus (1045/2018) ionisoimattoman säteilyn väestölle aiheuttaman altistumisen rajoittamisesta [online]

https://www.finlex.fi/fi/laki/alkup/2018/20181045

Sosiaali- ja terveysministeriön julkaisu 23.7.2018 HTP-ARVOT 2018. Haitallisiksi tunnetut

pitoisuudet. Sosiaali- ja terveysministeriön julkaisuja 9/2018 [online] http://urn.fi/URN:ISBN:978-952-00-3937-0 Luettu 13.1.2020.

Sturtz, L. A., Diekert, K., Jensen, L. T., Lill, R. ja Cizewski Culotta, V. (2001). A fraction of yeast Cu/Zn superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria: a physiological role for SOD1 in guarding against mitochondrial oxidative damage.

The Journal of Biological Chemistry 276:41: 38084–38089.

Turrens J. F. (2003). Mitochondrial formation of reactive oxygen species. The Journal of physiology 552: 335–344.

Valko, M., Izakovic, M., Mazur, M., Rhodes, C. J. ja Telser, J. (2004). Role of oxygen radicals in DNA damage and cancer incidence. Molecular and Cellular Biochemistry 266: 37–56.

Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M. ja Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions 160: 1–40.

Vinggaard, A. M., Breinholt, V. ja Larsen, J.C. (1999). Screening of selected pesticides for oestrogen receptor activation in vitro. Food Additives and Contaminants 16;12: 533–542.

Wilking, M., Ndiaye, M., Mukhtar, H., ja Ahmad, N. (2013). Circadian rhythm connections to oxidative stress: implications for human health. Antioxidants & Redox Signaling 19;2: 192–208 Wolf, F. I., Torsello, A., Tedesco, B., Fasanella, S., Boninsegna, A., D’Ascenzo, M., Grassi, C., Azzena, G. B. ja Cittadini, A. (2005). 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochemica t Biophysica Acta – Molecular Cell Research 1743;1–2: 120–129.