• Ei tuloksia

1   INTRODUCTION

2.2   Novel  drugs  in  multiple  myeloma

2.2.5   Description  of  novel  drugs

2.2.5.6   Other  new  proteasome  inhibitors

2.2.5.6  Other  new  proteasome  inhibitors  

Ixazomib   is   the   first   oral   PI   offering   the   possibility   of   first   all-­‐‑oral   combination   regimen   including   PIs   and   IMiDs.   In   phase   1   trials   the   once   weekly   administration   proved   to   be   feasible  due  to  the  long  terminal  half-­‐‑life  (215,  216).  A  phase  1/2  study  including  ixazomib,   lenalidomide  and  dexamethasone  (IRd)  for  newly  diagnosed  (ND)  MM  gave  the  basis  for  a   fixed  dose  of  4  mg  for  phase  2,  with  which  dose  IRd  produced  ≥  VGPR  rate  of  58%  and  PN   grade  ≥  3  of  only  6%  (217).  The  first  analysis  of  the  TOURMALINE-­‐‑MM  1  phase  3  study  

(NCT01564537)   demonstrated   a   35%   improvement   in   PFS   with   the   combination   of   IRd   (n=360)   compared   to   placebo-­‐‑Rd   (n=362)   for   patients   with   RRMM   (218).  The   median   PFS   was   20.6   and   14.7   months,   respectively.   TTP   and   response   rates   were   also   significantly   improved  with  the  IRd  combination.  The  addition  of  ixazomib  combined  to  Rd  increased   median   PFS   without   a   substantial   increase   in   overall   toxicity.   In   patients   with   high-­‐‑risk   cytogenetics,   the   PFS   hazard   ratio   was   0.543   with   IRd   vs   Rd   (hr   0.596   in   patients   with   del(17)),  with  a  median  PFS  similar  to  the  overall  IRd  group,  indicating  that  ixazomib  may   overcome  the  negative  impact  of  cytogenetic  alterations  (218).  Ixazomib  has  now  proceded   to   a   phase   3   trial   for   NDMM   transplant   non-­‐‑eligible   patients   (IRd   vs   placebo   +   Rd,   NCT01850524)  (219)  and  studies  in  the  maintenance  setting  are  also  ongoing  (220).  Other   next   generation   PIs   in   phase   2   studies   are   oprozimib   (oral)   and   marizomib   (intravenous)   (221).  

 2.2.5.7  Immune  therapies    

A  potentially  important  way  to  improve  the  treatment  efficacy  in  MM  is  to  include  immune   therapy:   IMiDs,   monoclonal   antibodies,   checkpoint   inhibitors,   vaccines   and   chimeric   antigen  representing  T-­‐‑cells  (222-­‐‑225).  Anti-­‐‑CD20  therapy  was  a  disappointment  probably   due  to  low  CD20  expression  in  MM  cells,  increased  complement  inhibiting  proteins  on  MM   cells,   Fc-­‐‑γ   polymorphism   and   selective   loss   of   CD20   expression   (226).  For   a   target   to   be   feasible  in  MoAb-­‐‑therapy  for  MM,  the  target  should  be  expressed  on  a  majority  of  MM  cells   or  cells  involved  in  angiogenesis  or  at  a  higher  level  than  on  non-­‐‑target  cells  (227).  

       Elotuzumab   (CS1),   daratumumab   (CD38),   SAR650984   (CD38),   MOR202   (CD38),   siltuximab   (IL-­‐‑6),   lorvotuzumab   (CD56),   nBT062   (CD138),   dacetuzumab   (CD40),   lucatumumab   (CD40),   tabalumab   (B-­‐‑cell   activating   factor),   milatuzumab   (CD74),   ulocuplumab  (CXCR4)  and  nivolumab,  pembrolizumab  and  atezolizumab  (PD-­‐‑1)  have  all   been  investigated  as  MoAbs  in  MM  (9,  223,  224,  225,  227,  228,  229,  231).    

       Elotuzumab   (ELO)   is   directed   against   signaling   lymphocyte   activation   molecule   F7   (SLAMF7)  also  called  CS1,  which  is  a  glycoprotein  that  is  highly  expressed  in  MM  cells  but   also  expressed  in  NK  and  CD8+  T-­‐‑cells  (229).  As  monotherapy  it  seems  to  be  nearly  useless   (230)   but   the   synergy   of   ELO   with   LEN   has   been   demonstrated   in   Eloquent-­‐‑2   trial   with   superiority   for   LEN+ELO+Dex   vs   LEN+Dex   with   a   PFS   of   19.4   months   and   14.9   months,   respectively  (9).  Some  synergy  seems  also  to  be  achieved  by  adding  PI  to  ELO+Dex  based   on  results  of  comparison  of  ELO+BZM+Dex  vs  BZM+Dex,  with  PFS  of  9.7  and  6.9  (231).    

       Daratumumab  has  been  found  to  be  efficient  even  as  a  monotherapy  and  in  combinations   and  has  resulted  in  significant  responses  in  patients  being  treated  already  with  BZM,  IMiDs   and  ASCT  (7,  8).  In  a  phase  1-­‐‑2  study  for  RRMM,  of  whom  64%  were  double-­‐‑refractory,  the   ORR  was  36%  for  daratumumab  as  monotherapy,  and  65%  of  these  who  responded  did  not   have  progression  at  12  months  (7).  In  the  SIRIUS  trial  the  OR  was  29%  in  heavily  treated   and  refractory  patients  (8).    

       Anti-­‐‑PD1  monotherapy  has  not  been  as  beneficial  in  MM  as  in  lymphoma  (232),  but  anti-­‐‑

PD1  pembrolizumab  combined  with  IMiD  has  shown  efficacy  in  RRMM  (228).  The  role  of   checkpoint  inhibitors  in  MM  and  especially  in  relation  to  ASCT  will  be  explored  in  future   studies  (233,  234).  

 2.2.5.8  Epigenetic  approach  -­‐‑  deacetylase  inhibitors  

DNA  methylation  and  histone  modifications  are  the  two  main  epigenetic  mechanisms.  In   MM,  in  addition  to  DNA  methylation,  histone  methylation  and  acetylation  are  the  major   epigenetic   changes.   As   a   monotherapy   histone   deacetylase   inhibitors   (HDACi)   are   not   effective,  but  combination  of  PI  plus  HDACi  has  proved  to  be  effective  and  has  a  scientific   rationale  (235).  PIs  inhibit  the  degradation  of  ubiquitinated  misfolded  proteins,  and  HDACi   interfere   with   aggresome   formation,   which   contributes   to   the   accumulation   of   toxic   misfolded   proteins   in   MM   cells,   finally   resulting   in   apoptosis   (235).  The   most   important   trials  in  this  field  have  been  phase  3  studies  with  vorinostat  +  BZM  (236),  in  which  addition  

of   vorinostat   had  very   limited   benefit,   and   the   phase   2-­‐‑3   Panorama   1-­‐‑2   studies,   which   showed  a  PFS  difference  of  11.9  vs  8.1  and  12.5  vs  4.7  months  between  panobinostat  +  BZM   +  Dex  vs  BZM  +  Dex,  respectively  (237,  238).  In  the  subgroup  analysis  the  PFS  difference  for   patients  ≥  2  treatment  lines  was  12.5  vs  4.7  months  (239).  In  BZM-­‐‑refractory  patients,  20-­‐‑

30%   had   a   benefit   when   adding   panobinostat   (239).   To   avoid   the   toxicity   of   these   first-­‐‑  

generation  HDAC  inhibitors,  a  selective  HDAC6-­‐‑specific  inhibitor  (ricolinostat,  ACY-­‐‑1215)   has  been  investigated.  Ricolinostat  has  been  shown  to  trigger  synergy  when  combined  with   CFZ  even  in  BZM-­‐‑refractory  MM  cells  (240).    

       With  regard  to  histone  lysine  methyltransferase,  MMSET  is  a  very  interesting.  MMSET  is   upregulated  in  all  cases  of  t(4;14)  myeloma,  leading  to  global  genomic  alteration  of  histone   patterns   and   increased   expression   of   oncogenic   loci,   e.g.   NF-­‐‑kB   (241).     This   could   offer   a   possibility  for  targeted  therapy  (242).  

 2.2.5.9  Cell  cycle  and  kinase  inhibitors  

Because  cyclin-­‐‑D  dysregulation  is  a  pathogenetic  event  in  the  course  of  MM,  it  has  been  an   interest   of   targeted   therapy.   The   cyclin-­‐‑D   kinase   inhibitor   (CDKi)   seleciclib   was   tried   to   RRMM  patients  with  BZM,  but  with  disappointing  results  (243).  Another  CDKi,  dinaciclib,   has  shown  efficacy  as  a  monotherapy  in  RRMM  patients  (244).  The  kinesin  spindle  protein   inhibitor,  ARRY-­‐‑520,  has  a  specific  and  unique  influence  on  cells  because  it  can  arrest  cells   in   mitosis   and   induce   apoptosis,   preventing   survival   signals   (235).  Due   to   this   unique   influence  it  is  now  being  investigated  in  phase  1  studies  with  PIs  and  IMiDs  (245,  246).  In   the   jungle   of   a   growing   number   of   new   molecules   for   MM   it   would   be   valuable   to   find   biomarkers  to  predict  the  response.  For  example  in  regard  to  filanesib  (ARRY-­‐‑520)  therapy   low  alfa  1-­‐‑acid  glycoprotein  levels  in  plasma  seems  to  correlate  with  better  outcome  (247).  

In  the  hope  of  finding  similar  targeted  therapies  like  imatinib  in  chronic  myeloid  leukemia,   tyrosine   kinase   FGFR3   inhibitors,   like   dovitinib,   have   been   tested   in   t(4;14)   positive   MM   patients,  but  again  with  poor  results  (248).  Insulin-­‐‑like  growth  factor  1-­‐‑receptor  (IGF-­‐‑1R)  is   a   clear   theoretical   target   in   cell   growth,   but   very   limited   clinical   benefit   has   been   found   when  combining  IGF-­‐‑1R-­‐‑  monoclonal  antibody  with  BZM  (249).    

 2.2.5.10  Signal  transduction  inhibitors  

PIs  were  the  first  class  of  drugs  focusing  on  a  specific  pathway  activated  in  MM  cells,  the   NF-­‐‑kB  pathway  (250-­‐‑251).  The  PI3K/AKT/mTOR  pathway  is  overactive  in  MM,  leading  to   proliferation,   clonal   cell   expansion,   apoptosis   inhibition   and   drug   resistance   and   is   probably  one  of  the  most  important  pathways  in  the  pathogenesis  of  MM  (235,  252,  253).  

Perifosine   and   afuresertib   act   as   AKT   inhibitors,   showing   better   efficacy   when   combined   with  PIs  or  IMiDs  (254,  255,  256).  Phospho-­‐‑AKT  positivity  was  associated  with  better  PFS   (253).  Downstream  of  this  pathway  is  the  mTOR  complex,  which  has  been  targeted  by  the   mTORC1-­‐‑inhibitors  everolimus  and  temsirolimus  (257-­‐‑258).  The  latter  has  been  combined   with   BZM   in   advanced   disease   (259).   The   research   in   general   is   focused   on   better   understanding   the   details   of   inhibiting   PI3K/AKT/mTOR   pathway   in   cancer   treatment,   because  single  factor  inhibition  can  cause  positive  feedback  by  alternative  routes,  resulting   in   a   new   progression   after   a   short   primary   response   (260).   mTORC1/C2   and   dualPI3K/mTOR  inhibitors  have  therefore  been  tested  (261).  Tipifarnib,  farnesyltransferase   inhibitor   (262)   and   selumetinib   (AZD6244),   an   MEK   inhibitor   (263),   have   been   tested   against   the   signaling   pathway   RAS/RAF/MEK/ERK   with   minimal   stabilization   activity   of   disease  so  far.  About  5%  of  MM  patients  have  been  shown  to  have  kinase  BRAF  mutations   (45,  264),  and  vemurafenib,  a  BRAF  inhibitor,  has  been  proven  to  have  efficacy  in  BRAF-­‐‑

positive  patients  with  advanced,  refractory  disease  (265).    

 2.2.5.11  Targeting  microenvironment    

Due  to  the  unique  interaction  between  BMSCs  and  MM  cells,  major  efforts  have  been  done   in   recent   years   to   develop   agents   to   interrupt   this   symbiosis.   Hypoxia   seems   to   promote  

disease   progression,   and   the   hypoxia-­‐‑activated   prodrug   TH-­‐‑302   has   been   combined   with   BZM,   resulting   in   induction   of   apoptosis   (266,   267).   Even   though   angiogenesis   with   vascular  endothelial  growth  factor  (VEGF)  upregulation  is  thought  to  be  important  for  the   well-­‐‑being  of  MM  cells,  antiangiogenetic  VEGF-­‐‑inhibition  does  not  have  proven  efficacy  in   MM  (268).  Plerixafor,  a  CXCR4  inhibitor,  can  block  the  interaction  between  MM  cells  and   the   BM   microenvironment,   and   when   used   for   a   chemosensitization   with   BZM   it   has   showed  an  ORR  of  40%  in  RRMM  (269).    

The  main  recent  phase  2-­‐‑3  trials  for  relapsed  or  relapsed  and  refractory  patients  are  shown   in  Table  13.  

2.2.6  Novel  drugs  and  allogeneic  transplantation  

Transplant-­‐‑related  mortality  (TRM)  has  been  34-­‐‑53%  in  allogeneic  stem  cell  transplantation   (allo-­‐‑SCT)   preceded   by   myeloablative   conditioning   in   MM   (270).     To   improve   the   safety,   reduced-­‐‑intensity   conditioning   (RIC)   with   non-­‐‑myeloablative   regimens   was   developed.  

TRM  decreased  to  10-­‐‑16%  with  this  approach,  but  in  only  two  out  of  seven  RIC  allo-­‐‑SCT   trials   an   OS   benefit   compared   to   ASCT   was   noted   (270,   271,   272).   The   design   of   these   studies  varies  in  several  aspects  in  addition  to  different  follow-­‐‑up  times  which  hampers  the   interpretation  of  the  results  (270).  Both  Len  and  BZM  have  been  evaluated  in  the  post-­‐‑allo   setting   (270).   By   stimulation   of   alloreactive   T-­‐‑   and   NK-­‐‑cells   Len   could   promote   graft-­‐‑

versus-­‐‑myeloma  effect  and  improve  treatment  response,  but  with  excess  toxicity  of  T-­‐‑cell   mediated   graft   versus   host   disease   (GVHD).   For   example,   in   the   HOVON-­‐‑76   trial   37%  

developed  acute  GVHD  and  17%  chronic  GVHD,  which  can  be  life-­‐‑threatening  (270,  273,   274).    BZM  has  been  tested  in  small  trials  as  post–allo  maintenance  based  on  its  inhibition  of   NF-­‐‑kB,   producing   an   antimyeloma   effect   and   GVHD   suppression   (270,   275).   A   phase   2   allotransplant   study   including   PI   in   conditioning   (bortezomib)   and   during   maintenance   (ixazomib  vs  placebo)  for  high-­‐‑risk  patients  will  be  started  in  a  national  US  study  (276).  The   risk-­‐‑benefit  ratio  of  allo-­‐‑SCT  is  considered  to  be  acceptable  in  selected  patients  with  ultra-­‐‑

high-­‐‑risk  MM,  with  del(17p),  t(4;14)  or  t(14;16)  and  1q21  amplification  (>3  copies)  and  ISS   III   whose   median   OS   is   predicted   to   be   24   months   or   less   (277).   Novel   drugs   will   most   probably  be  combined  with  different  immunological  approach  in  allo-­‐‑SCT  in  future  (270,   279).  

 2.3 RESPONSE ASSESSMENT IN MULTIPLE MYELOMA  2.3.1  General  

The  importance  of  attaining  CR  with  the  initial  myeloma  treatment  has  become  apparent   (278,   279).   Accordingly,   the   development   of   new   effective   treatment   strategies   has   raised   the   question   of   how   to   compare   the   efficacy   of   different   therapies   more   precisely.   An   immunofixation   electrophoresis   (IFE)   negative   CR   was   incorporated   into   the   remission   criteria   first   in   the   allogeneic   transplantation   setting   (280).   Following   the   introduction   of   high-­‐‑dose  treatment  supported  by  ASCT  the  new  consensus  criteria  for  evaluating  disease   responses   were   published,   including   an   IFE-­‐‑negative   sustained   CR   (281).   Near   complete   response   (nCR)   was   used   for   response   between   partial   response   (PR)   and   CR   when   electrophoresis   was   normal   but   immunifixation   was   still   positive   (278).     In   2006   the   International   Myeloma   Working   Group   (IMWG)   published   the   consensus   criteria   for   assessing   the   response   in   MM.   Categories   of   stringent   CR   (sCR)   and   very   good   partial   remission  (VGPR)  were  established,  and  nCR  was  included  in  VGPR  (282).  The  serum  FLC   (sFLC)  assay  for  response  evaluation  of  oligo-­‐‑  or  non-­‐‑secretory  myeloma  was  also  included   (282).  Kyle  &  Rajkumar  updated  ISS  and  high-­‐‑risk  criteria  in  2009  (283).  IMWG  updated  the   response   and   progression   criteria   in   2011   (Table   14   and   15),   and   the   terms   stringent   CR,   immunophenotypic   CR   and   molecular   CR   (MolR)   have   been   suggested   for   uniform   reporting  of  clinical  trials  (284).    

       IFE,   sFLC   and   MFC   have   been   compared   in   one   trial   where   immunophenotypic   remission  predicted  a  longer  PFS  and  TTP  than  conventional  CR  or  sCR  (285).  The  impact  of   normalization  of  sFLC  ratio  in  CR  patients  is  controversial  due  to  the  low  specificity  and   the  presence  of  aberrant  oligoclonal  bands  after  therapy  (286).  In  addition,  normalization  of   sFLC  ratio  has  been  showed  in  spite  of  a  positive  IFE  (287).  Molecular  CR  is  defined  as  a  CR   plus  negative  ASO-­‐‑PCR  with  sensitivity  of  10-­‐‑5  (284).  For  an  immunophenotypic  remission   at  least  1  x  106  BM  cells  should  be  analyzed  using  at  least  4-­‐‑color  MFC  showing  no  aberrant   clonal   plasma   cells   (284).   The   sensitivity   of   the   analysis   can   be   improved,   even   if   panels   vary,  by  analyzing  as  many  BM  cells  as  possible  even  up  to  2-­‐‑5  x  106  and  using  ≥  8  color  

MRD   can   be   assessed   using   immunophenotypic   MFC   and   molecular   techniques   (PCR   based  assays  and  sequencing  of  IgH  locus)  from  bone  marrow  samples,  or  extramedullary   molecular  or  magnetic  resolution  imaging  outside  the  BM  (11,  97,  98,  288).  Tables  14  and  15   show  the  IMWG  response  criteria  for  MM.  

 

Table 14. Response criteria for multiple myeloma (284) Stringent complete response (sCR)

Complete response as described in CR and Normal free light chain ratio (FLC) ratio and

Absence of clonal plasma cells by immunohistochemistry or 2- to 4-color flow cytometry Complete response (CR)

Negative immunofixation of serum and urine and Disappearance of any soft tissue plasmacytomas and

< 5% plasma cells in bone marrow  

If only measurable disease is by serum FCL levels: CR indicates a normal FCL ratio of 0.26 to 1.65 in addition to CR criteria listed above  

Very good partial response (VGPR)

Serum and urine monoclonal protein (M-component) detectable by immunofixation but not on by electrophoresis or  

90% or greater reduction in serum M-component plus urine M-component level < 100 mg per 24 hours  

If only measurable disease is by serum FCL levels: VGPR indicates > 90% decrease in the difference between involved and uninvolved FCL levels

Partial response (PR)  

≥50% reduction of serum M-protein and reduction in 24-hour urinary M-component by ≥90%

or to < 200 mg/24 h  

If the serum and urine M-protein are not measurable, a ≥50% decrease in the difference between involved and uninvolved FLC levels  

If the serum and urine M-protein are not measurable, and S-FLC is also unmeasurable, ≥50%

reduction in plasma cells provided bone marrow plasma cell percentage was ≥30%

In addition to the above, if present at baseline a ≥50% reduction in the size of soft plasmacytomas

Stable disease (SD)

Not meeting criteria for CR, VGPR, PR or progressive disease Progressive disease (PD)

Increase of 25% from lowest response value in any of the following - Serum M-component; absolute increase must be ≥ 0.5 g/dl and /or - Urine M-component; absolute increase must be ≥200 mg/24 h and/or

In patients without measurable S/U-M-prot difference between involved and uninvolved FCL levels (absolute increase > 10mg/dl)

Bone marrow PC % (must be ≥ 10%, only in patients without measurable M-component or FLC)

New bone lesions or plasmacytomas or growth of them Development of hypercalcemia

Table 15. Additional response criteria for multiple myeloma (284)

Mimimal response in patients with relapsed refractory myeloma adopted from the EBMT criteria (284)

≥ 25% but ≤ 49% reduction of S-M-protein and reduction in 24h U-M-protein by 50%-89%

In addition to the above, if present at baseline, 25%-49% reduction in the size of soft tissue plasmacytomas is also required

No increase in size or number of lytic bone lesions (development of compression fracture does not exclude response)

Immunophenotypic remission

Stringent CR and absence of phenotypic aberrant PCs (clonal) in BM with a minimum of 1 million total BM cells analyzed by MFC (with > 4 colors)

Molecular CR

CR and negative ASO-PCR with sensitivity 10-5

 In  addition  to  the  above  mentioned  criteria  refractory  myeloma  is  a  status  of  myeloma  that   is   nonresponsive   during   primary   or   salvage   treatment,   or   is   progressing   within   60   days   from  the  last  therapy.  Nonresponding  myeloma  is  the  phase  of  MM  with  failure  to  reach   minimal   response   (MR)   or   progression   during   therapy.   Two   different   categories   are   included   in   refractory   MM,   namely   primary   refractory   myeloma   and   relapsed   and   refractory   myeloma   (RRMM).   RRMM   is   nonresponsive   during   salvage   therapy,   or   is   progressive  within  60  days  from  the  last  therapy  in  patients  who  have  reached  at  least  MR   at  some  time  point  before  this  progression.  Primary  refractory  MM  means  that  the  patient   never  achieved  even  MR  and  is  either  nonresponsive  or  nonprogressive  or  the  patient  is  not   only  nonresponsive,  but  is  progressing.  Relapsed  MM  denotes  MM  that  initially  responded   to   treatment,   but   is   progressing   and   is   in   need   of   salvage   treatment.   This   needs   to   be   separated  from  primary  refractory  MM  and  RRMM.  Especially  in  clinical  trials  it  should  be   described  to  which  drug  category  the  patients  have  relapsed  or  are  refractory,  in  addition  to   use  of  stratification  factors  like  cytogenetic  aberrations  and  disease  stage  (284).  

 2.3.2  Assessment  of  minimal  residual  disease  (MRD)  in  myeloma  patients   2.3.2.1  Multiparameter  flow  cytometry  (MFC)  

The   first   goal   of   the   EuroFlow   Consortium   was   to   establish   a   diagnostic   panel   for   PC   disease,   and   it   has   been   thereafter   updated   for   MFC-­‐‑MRD   assessment   (92,   93,   94).   If   the   goal  is  to  assess  MRD  negative  status,  the  minimum  number  of  cellular  events  is  >  500  000.  

Consensus  guidelines  recommend  2  x  106  cells  as  an  acceptable  minimum  for  MRD  and  as   much   as   5   x   106   cells   for   high-­‐‑sensitivity   MRD   (93,   94).  A   novel   MFC   method   is   being   planned   that   will   use   8-­‐‑10   (-­‐‑12)   polychromatic   cytometry   with   novel   software   enabling   more  precise  discrimination  of  clonal  and  normal  PCs.  Development  of  reference  library  of   normal   and   tumor   cells   and   a   (semi)   automated   flow-­‐‑MRD   monitoring   are   also   being   planned  (12).    

       One  of  the  goals  of  EuroFlow  Consortium  was  to  develop  the  MFC  method  so  that  with   very  distinguished  panel  it  would  be  possible  to  identify  MRD  even  without  the  primary   sample   from   each   patient   as   a   reference.   Using   the   automated   computer   model-­‐‑based,   novel  MFC  analysis  (principal  component  analysis,  PCA)  Paiva  et  al.  were  able  to  recognize   a  group  of  newly  diagnosed  MM  with  a  MGUS-­‐‑like  profile  with  long-­‐‑term  OS  independent   of   CR   response   (289).   PC   antigen   expressions   have   also   been   investigated   for   outcome   prediction.  Mateo  et  al.  observed  that  CD28+  PCs  associated  with  t(14;16)  and  del(17p),  and   CD117   PCs   with   t(4;14)   and   del   13q   and   CD28+/CD117-­‐‑   immunophenotype   was   a   poor   prognostic  marker  for  PFS  and  OS  (290).  CD56  expression  of  MM  cells  indicates  BM  stroma  

extramedullary  manifestations  (291).  Loss  of  CD56  expression  in  the  course  of  myeloma  can   also  predict  the  risk  of  developing  plasma  cell  leukemia  (292).  

                           

Figure 2. Example of ten color multiparameter flow cytometry for detection of minimal residual disease in multiple myeloma. The antibody panel was following: CD38 FITC /cylambda PE /CD56 ECD /CD138 PC5.5 /CD19 PC7 /cykappa APC /CD200 APC R700 /CD81 APC H7 /CD27 BV421 /CD45 KO. Analysis was made with Navios (Beckman-Coulter) flow cytometry and Infinicyt (Cytognos) soft-ware.

FITC= fluorescein isothyocyanate, PE= phycoerythrin, ECD= PE-Texas Red, PC5.5=PE Cyanin5.5, PC7=PE Cyanin7, APC= allocyanin, BV421=Brilliant Violet 421, KO=Krome Orange.

CD38 clone L38 from Cytognos, CD56 clone NHK1, CD138 clone B-A38, CD19 clone J3-119, CD45 clone J.33 from Beckman Coulter, CD200 clone OX104, CD81 clone JS-81 and CD27 clone M-T271 from Beckton Dickinson, lambda and kappa, polyclonal from Dako.

         The   first   positive   studies   regarding   MFC-­‐‑MRD   assessment   in   MM   encouraged   the   Spanish  and  UK  groups  to  include  their  4-­‐‑  and  6-­‐‑  color  MFC-­‐‑MRD  panels  in  clinical  trials.  

In   both   the   PETHEMA/GEM2000   and   MRC   Myeloma   IX   study   the   achievement   of   immunophenotypic  remission  after  ASCT  was  predictive  to  superior  PFS  and  OS  (293,  294,   295,  296).  These  studies  showed  the  impact  of  immunophenotypic  remission  for  patients  in   conventional  CR  as  well,  but  the  achievement  of  MRD-­‐‑negativity  in  high-­‐‑risk  patients  was   most  predictive  of  the  more  favorable  outcome  and  sustained  CR  (295,  296,  297).  They  also   demonstrated   that   MFC-­‐‑MRD   negativity   independent   of   serological   PR   or   CR   might   predict  similar  or  even  better  outcome  than  CR  status  with  MRD-­‐‑positivity  (285).      

       Including  two  novel  agents  in  the  treatment  regimen  Roussel  et  al.  were  able  to  achieve   MFC-­‐‑MRD   negativity   in   up   to   68%   of   patients   using   the   7-­‐‑color   method   in   MRD   assessment  (150).  This  response  correlated  again  with  longer  PFS.  The  threshold  of  MRD   negativity  was  limited  to  0.01%  in  the  first  studies  (293-­‐‑296,  298,  Table  16)  due  to  technical   reasons   compared   to   the   sensitivity   capabilities   of   10-­‐‑5  with   novel   MFC   methods.   In   addition,   to   MFC-­‐‑MRD   negativity   the   MRD   level   as   a   continuous   variable   seems   to   be   predictive  for  OS.  In  MRC  Myeloma  IX  trial  there  was  a  significant  improvement  in  OS  for  

each   log   depletion   in   MRD   level   (299).   Studies   of   using   MFC   in   MM   patients   are   summarized  in  Table  16.  

 Table 16. Main studies of MFC-MRD detection and outcome of MFC – and MFC + patients

Reference Treatment No. Method/Limit

of detection Appl./

Appl., applicability; MRD, minimal residual disease; MFC, multiparameter flow cytometry; CT, chemotherapy; NA, not available; mo, months; y, years; VMP, bortezomib, melphalan,

Appl., applicability; MRD, minimal residual disease; MFC, multiparameter flow cytometry; CT, chemotherapy; NA, not available; mo, months; y, years; VMP, bortezomib, melphalan,