• Ei tuloksia

1   INTRODUCTION

5.3.1   Mobilization  substudy

Table 29. The comparison of all PCR-positive/negative and MFC-positive/negative samples from patients who reached nCR/CR (n=129)

MFC negative, N=91 (%) MFC positive, N=38 (%)

PCR negative 59 (65) 1 (3)

PCR positive 32 (35) 37 (97)

 

PCR, polymerase chain reaction; MFC, multiparameter flow cytometry; nCR, near complete remission

All  of  the  129  follow-­‐‑up  samples  from  nCR/CR  patients  were  simultaneously  investigated   by  S-­‐‑  and  U-­‐‑  IFE,  the  S-­‐‑FLC  ratio,  MFC  and  PCR.  Among  these  samples  IFE  or  S-­‐‑FLC  ratio   did   not   have   clinically   predictive   correlation   with   immunophenotypic   or   molecular   remission  (Figure  2.  II).  S-­‐‑  or  U-­‐‑IFE  and  the  S-­‐‑FLC  ratio  were  not  statistically  significantly   predictive   for   MolR   (p=0.44   and   p=0.06,   respectively),   and   the   prediction   for   MFC-­‐‑

negativity   was   even   lower.     IFE   was   still   positive   in   39%   and   38%   of   MFC-­‐‑negative   and   PCR-­‐‑negative   samples,   respectively.   IFE   and   PCR   were   concordant   in   57%   of   samples,   positive  or  negative,  and  the  respective  number  was  62%  for  IFE  and  MFC.  IFE  and  FLC   ratio  were  serologically  in  concordance  in  63%.  Two  patients  who  were  MRD  negative  by   MFC   and   PCR   had   consistently   positive   IFE   and   an   abnormal   FLC   ratio   prior   to   extramedullary  relapse  16  months  after  ASCT.    

       The   successful   comparison   of   these   four   methods   required   an   applicable   allele   specific   oligonucleotide  for  each  patient.  That  would  not  have  been  possible  without  expanding  the   clonality   screening   to   IgK   and   IgL   multiplex   PCRs,   IgH   singleplex   PCRs   and   reverse   oriented   ASO   primer   and   probe,   which   was   needed   in   13/22   patients   and   yield   100%  

applicability  comparable  with  MFC  assay.  When  MFC  was  positive,  PCR  was  also  positive   in  97%  of  cases.  

   

5.3   RANDOMIZED   COMPARISON   OF   CD34+  CELL   MOBILIZATION   WITH   LOW-­‐‑

DOSE   CY   +   G-­‐‑CSF   OR   G-­‐‑CSF   ALONE   AFTER   NOVEL   INDUCTION   TREATMENT   (FMG-­‐‑MM02)  (III)    

 5.3.1  Mobilization  substudy  

Low-­‐‑dose  CY  (2g/m2)  +  G-­‐‑CSF  5  µμg/kg  (arm  A)  was  compared  with  G-­‐‑CSF  10  µμg/kg  alone   (arm  B),  in  a  randomized  fashion  in  a  substudy  of  the  FMG-­‐‑MM02  study.    

       There  was  no  statistically  significant  difference  in  the  primary  endpoint  (the  proportion   of  patients  with  the  yield  ≥  3  x  106/kg  for  one  transplant  with  1−2  aphereses),  94%  vs.  77%  in   arms   A   and   B,   respectively   (p=0.084)   (Table   30).   The   only   difference   was   in   one   of   the   secondary  endpoints.  The  median  number  of  aphereses  needed  to  reach  a  yield  ≥  3  x  106/kg   was   lower   in   arm   A   than   in   arm   B   [1   vs.   2   aphereses   (p=0.035)].     Regarding   the   predetermined  goal  of  ≥  6  x  106/kg  for  a  double  graft  there  was  no  difference  between  the   arms,   62%   vs.   51%   (p=0.469),   respectively.   The   proportion   of   patients   achieving   this   goal   with  1−2  aphereses  was  62%  in  arm  A  and  50%  in  arm  B  (p=0.662),  respectively.  Another   secondary  endpoint,  need  of  plerixafor  use,  was  similar  between  the  two  arms;  two  patients   (6%)  in  arm  A  and  five  patients  (14%)  in  arm  B  (p=0.428).    

       Even  though  there  was  no  significant  difference  between  the  study  arms  in  terms  of  B-­‐‑

CD34+  cells  x  106/l  on  the  first  apheresis  day  there  was  a  significant  difference  in  yields  of   the  first  aphereses  (Figure  1  and  2,  III).  On  the  second  day  of  aphereses  both  the  B-­‐‑CD34+  

level  and  the  yield  were  higher  in  arm  A  (Figure  1  and  2,  III).  

Table 30. Mobilization results in the randomized study in MM patients Arm A) CY + G-CSF

N=34 Arm B) G-CSF

N=35 P

Primary endpoint yield ≥ 3 x 106/kg with 1−2 harvests,

N(%) 32/34 (94) 27/35 (77) 0.084

Primary endpoint yield ≥ 6 x 106/kg for double graft with which  is  the  recommended  target  for  a  single  transplant  by  IMWG.  

       The  total  number  of  CD34+  cells  collected  was  higher  after  CY  2g/m2  +  G-­‐‑CSF  than  after   G-­‐‑CSF  alone,  with  median  of  6.7  (2.2−12.4)  x  106/kg  and  5.3  (2.4−12.4)  x  106/kg,  respectively   (p=0.012)  (Table  2,  III).  There  was  also  a  statistically  significant  difference  between  the  arms   regarding   the   number   of   CD34+   cells   infused   after   high-­‐‑dose   melphalan;   4.3   (2.2−7.3)   x   106/kg  and  3.2  (2.3−6.2)  x  106/kg  in  arms  A  and  B,  respectively  (p=0.010).  The  engraftment   data  and  hospitalization  time  were  similar  between  the  arms  (Table  3,  III).      

       5.3.2    Treatment  responses  

Sixty-­‐‑nine   patients   were   mobilized   after   three   courses   of   RVD.   Altogether   59   patients   proceeded  to  ASCT.  The  responses  before  mobilization  and  three  months  after  ASCT  are   presented  in  Table  31  and  Figure  14.    

       The  ORR  after  RVD  induction  was  84%  by  intention-­‐‑to-­‐‑treat  (ITT).  The  primary  endpoint,   MFC-­‐‑MRD  negativity  measured  by  6-­‐‑10  color  MFC,  was  achieved  after  induction  in  22/69   (32%)  of  patients  who  actually  received  the  assigned  RVD-­‐‑induction  and  in  22/80  (28%)  by  

ITT.  The  median  sensitivity  of  MFC-­‐‑MRD-­‐‑negativity  was  <  0.01%  (range  0.0046%−0.069%).    

Three   months   post-­‐‑ASCT   altogether   24/53   (45%)   of   evaluable   patients   were   MFC-­‐‑MRD   negative   with   a   median   sensitivity   of   <0.006%   (range   0.003%−0.03%).   The   median   MFC-­‐‑

MRD   positive   result   was   0.08%   (range   0.003%−0.9%).   The   median   number   of   events   was   756   437   (range   200   000-­‐‑2   283   554).   So   far   samples   from   10   patients   in   sCR/MFC-­‐‑MRD   negative  have  been  analyzed  by  ASO-­‐‑PCR  and  7/10  were  also  PCR-­‐‑MRD  negative  with  a   median  sensitivity  of  <0.0006%  (range  <0.0004%−0.02%).  There  was  no  difference  between   study  arms  with  regard  to  PFS  during  the  very  short-­‐‑term  follow-­‐‑up  (Figure  15).    

Table 31. Response rates before and after mobilization by intention to treat, N=80 Response before

mobilization, n (%) Response 3 months after ASCT, n(%)

MFC-MRD negative* 22 (28) 28 (35)

sCR 7 (9) 14 (18)

CR 4 (5) 6 (8)

VGPR 25 (31) 26 (33)

PR 33 (41) 12 (15)

PD 2 (3) 9 (11)

Out 9 (11) 13 (16)

ASCT, autologous stem cell transplantation; MFC, multiparameter flow cytometry; MRD, minimal residual disease; *Immunophenotypic remission independently of paraprotein response. sCR; stringent complete remission; CR, complete remission; VGPR, very good partial remission; PR, partial remission;

PD, progressive disease.

                   

Figure 14. Response rates before mobilization (Pre-Mob) and three months after autologous transplantation (3 months Post-ASCT), N=80

 

 

Figure 15. Progression-free survival according to mobilization arm.

 5.3.3  Adverse  events  

Fifty  grade  3  or  higher  severe  adverse  events  were  documented  in  37  patients  during  RVD   induction   (Table   28).   The   most   common   were   infections,   like   pneumonia   and   bronchitis,   and   neutropenia.   Nine   patients   with   early   drop   out   due   to   toxicities   had   the   following   adverse   events:   severe   liver   toxicity,   severe   sepsis   syndrome   with   rash,   neutropenia,   amaurosis   fugax,   simultaneous   diagnosis   of   lung   adenocarcinoma   and   previous   prostate   cancer.  Two  patients  were  not  eligible  for  ASCT  due  to  infections  and  one  patient  died  from   hepatorenal  syndrome.  During  maintenance  8/59  (14%)  of  patients  have  had  lenalidomide   dose   reduction   because   of   neutropenia   (n=7)   or   rash   (n=1).   Three   (4%)   patients   have   discontinued  maintenance  due  to  severe  rash.  

   

5.4  DRUG  SENSITIVITY  AND  RESISTANCE  TESTING  (IV)    5.4.1  Chemosensitivity  groups  based  on  ex  vivo  drug  sensitivity  

Drug   sensitivity   and   resistance   testing   (DSRT)   was   applied   to   50   samples   from   NDMM   (n=16)  and  RRMM  (n=27)  patients  against  308  drugs  or  molecules.  Fourteen  samples  were   from  the  patients  included  in  the  FMG-­‐‑MM02  study.  An  example  of  a  waterfall  blot  with   selective  DSRT  results  for  an  individual  MM  patient  is  shown  in  Figure  16.  Unsupervised   clustering  of  both  drug  sensitivity  score  (DSS)  and  selective  DSS  for  each  patient  resulted  in   four  different  patient  groups  based  on  their  similar  response  to  the  tested  drugs:  group  I,   sensitive;  group  II,  moderately  sensitive;  group  III,  resistant  and  group  IV,  highly  resistant   (Figure  17).  Group  I  and  III  samples  were  further  divided  into  two  different  subgroups  A   and   B   based   on   dexamethasone   sensitivity.   The   samples   with   low   dexamethasone   sensitivity  clustered  mostly  in  the  B  subgroups.  The  result  was  not  so  distinct  in  group  II,   and  the  patients  in  group  IV  were  not  sensitive  to  dexamethasone.    

               

                                             

Figure 16. An example of waterfall blot demonstrating the most effective, selective drugs ex vivo marked as read (ABT-199, BMS-754807) and the least effective, non-selective drugs as blue (paclitaxel, docetaxel) for this newly diagnosed MM patient.

In   general,   conventional   chemotherapeutic   drugs   and   proteasome   inhibitors   showed   similar  ex  vivo  sensitivity  to  patient  cells  as  the  healthy  control  cells.  However,  the  myeloma   cells   showed   variable   responses   to   targeted   agents   including   many   signal   transduction   inhibitors.  In  group  I,  the  myeloma  cells  showed  sensitivity  to  several  signaling  pathway   inhibitors,  such  as  CDK,  HDAC,  IGF-­‐‑1R,  MEK,  PI3K-­‐‑mTOR  and  HSP90  inhibitors  (Figure   17;  Figure  1a,  IV).  Cells  in  group  II  responded  to  many  of  the  same  drugs  as  in  group  I,  but   the   sensitivities   were   moderate,   in   particular   to   HDAC,   MEK,   and   HSP90   inhibitors.  

Samples   in   group   III   were   resistant   to   targeted   therapies   and   exhibited   an   overall   diminished  response  to  most  drugs  compared  to  healthy  controls.  The  samples  in  group  IV   showed   resistance   to   almost   all   drugs   tested,   except   BCL2   inhibitors   and   bryostatin   1,   Figure  17.  Responses  to  glucocorticoids  and  IMIDs  were  heterogeneous  and  varied  across   the  DSRT  groups  (Figure  17).  Differential  sensitivities  between  the  different  groups  to  select   targeted  agents  are  shown  in  Figure  18.  

 

     

 

Figure 18. Ex vivo responses to proteasome inhibitors and to some targeted drugs. The p-level indicates significant differences in terms of mean DSS between the following groups:

bortezomib; group IV vs all others; carfilzomib, healthy vs group I and IV, I vs III and IV, IV vs II and III; panobinostat, healthy vs I and IV, I vs II, III and IV, IV vs II and III; dual PI3K-mTOR inhibitor, healthy vs I and II, I vs III and IV, II vs III and IV; trametinib, healthy vs I, I vs II, III and IV; navitoclax, healthy vs I, I vs II, III and IV.

 Cytotoxic   effects   of   targeted   therapies   were   selective   towards   CD138+  cells   compared   to   CD138  non-­‐‑plasma  cells  from  the  same  patient,  supporting  the  hypothesis  that  novel  drugs   produce   a   response   by   targeting   important   oncogenic   signals   activated   in   myeloma   cells   (Suppl.  Figure  S5,  IV).  

 

5.4.2  DSRT  results  based  on  cytogenetic  FISH  aberrations    

The   cytogenetic   FISH   findings   of   tested   samples   are   showed   in   relation   to   the   chemosensitivity   groups   in   Figure   19.     Samples   of   patients   with   t(4;14)   clustered   predominantly  in  group  II  and  highly  resistant  patients  in  group  III-­‐‑IV  more  often  had  del   (17p).   When   different   karyotypes   analysed   by   FISH   were   evaluated   in   terms   of   drug   sensitivity   the   samples   of   both   t(4;14)   and   del(17p)   patients   showed   more   sensitivity   to   targeted  agents.    

 

 

Figure 19. Ex vivo drug responses based on cytogenetic aberrations. Red boxes represent the cytogenetic aberration of that patient sample.

 

Possible   beneficial   therapies   for   t(4;14)   by  ex   vivo   analysis   include   proteasome   inhibitors   (bortezomib   and   carfilzomib   tested),   pomalidomide,   cyclin-­‐‑D   kinase-­‐‑,   dual-­‐‑PI3K-­‐‑mTOR-­‐‑,   IGF-­‐‑1R-­‐‑   and   HDAC   (e.g   panobinostat)   inhibitors   and   tosedostat.   For   the   highest   risk   patients  with  del(17p)  some  new  possibilities  to  investigate  in  vivo  were  identified.  These   cells   were   selectively   highly   vulnerable   to   the   pan   BCL2-­‐‑inhibitor   navitoclax   (Figure   20)   and  to  a  lesser  extent  the  selective  BCL2-­‐‑inhibitor  venetoclax  (Figure  3b,  3c,  Suppl.  Figure   S6a,   IV).   HDAC   inhibitors   (e.g   panobinostat)   and   prima-­‐‑1-­‐‑Met   were   among   the   drugs   to   which  myeloma  cells  with  del(17p)  in  general  showed  some  sensitivity.    

 

   

Figure 20. Drug sensitivities according to cytogenetic aberrations

There   has   been   a   hope   that   FGFR-­‐‑inhibitors   would   offer   targeted   treatment   for   t(4;14)   patients  having  overexpression  of  FGFR3  and  MMSET  genes,  but  in  this  ex  vivo  assay  the   FGFR  inhibitors  dovitinib  and  NVP-­‐‑BGJ398  showed  no  efficacy  toward  MM  cells.  Of  note,   GSK-­‐‑J4,  an  inhibitor  of  JMJD3/KDM6B  was  toxic  to  the  cells  harboring  t(4;14).    

       The   first   individual  ex   vivo   -­‐‑   in   vivo   translations   were   promising   in   three   patients   who   were   treated   based   on   DSRT   results:   two   patients   with   pomalidomide   +   dexamethasone   and  one  patient  with  temsirolimus  +  bortezomib  (Figure  4a-­‐‑4f,  IV).  Patient  R-­‐‑MM-­‐‑2757  had   the  highest  ex  vivo  sDSS  for  temsirolimus  with  a  fast  in  vivo  response  (Figure  4d,  IV).  After   the  second  relapse,  a  decrease  in  ex  vivo  sensitivity  to  temsirolimus,  correlating  to  the  in  vivo   resistance  to  the  drug  (Figure  4f,  IV).    

       Finally,   we   analyzed   the   value   of   DSRT   results   for   the   prediction   of   outcome   of   these   mostly  relapsed/refractory  patients  in  this  study.  Time  to  the  next  treatment  correlated  with   the  DSRT  subgroup  so  that  the  patients  of  group  I  and  IV  had  the  shortest  TTNT  and  OS   calculated  from  the  date  of  sample  collection,  which  was  always  done  at  the  start  of  new   treatment   (Figure   21).   Patients   in   the   most   sensitive   group   I   by  ex   vivo   testing   had   progression  with  very  short  TTNT,  and  the  shortest  OS  with  a  hazard  ratio  of  4.66  (CI95%  

1.71  –  12.77),  p=0.03.  The  DSRT  chemosensitivity  group  was  the  strongest  variable  for  OS  in   a   multivariate   analysis   including   gender,   paraprotein   type,   high-­‐‑risk   cytogenetics   and   general  sensitivity  based  on  clinical  response.  For  clinical  response  variable  patients  were   classified   as   treated   and   sensitive,   alkylator-­‐‑refractory,   LEN-­‐‑refractory,   BZM-­‐‑refractory,   LEN  and  BZM-­‐‑refractory  or  alkylator-­‐‑  LEN-­‐‑  and  BZM-­‐‑refractory.  

 

   

 

       

Figure 21. Overall survival according to DSRT group

6  Discussion    

6.1  THE  MAIN  FINDINGS    

 These  studies  focus  on  the  treatment  of  MM  with  novel  drugs  with  special  reference  to  the   quality  of  response,  autologous  stem  cell  mobilization  and  translational  research  with  the   goal  to  identify  new  molecules  for  targeted  therapy  especially  in  high-­‐‑risk  MM.  Studies  I-­‐‑II   consist   of   47   NDMM   patients,   including   129   simultaneous   sequential   serum,   urine   and   bone  marrow  samples  from  22  nCR/CR  patients  for  MFC  and  PCR.  Study  III  included  80   NDMM  patients  in  a  randomized  mobilization  substudy  after  RVD  induction  and  study  IV   43   ND   or   RRMM   patients   with   50   bone   marrow   samples   evaluated   for   drug   sensitivity   testing.    

       Twenty-­‐‑eight  percent  of  all  patients  (13/47)  and  59%  (13/22)  of  nCR/CR  patients  achieved   MolR  after  BZM+Dex  +  ASCT  treatment.  These  patients  achieved  a  significantly  longer  PFS   than  patients  without  MolR  (Studies  I-­‐‑II).  With  the  individually  expanded  clonal  design  the   applicability   of   ASO-­‐‑PCR   was   100%,   which   enabled   the   comprehensive   comparison   of   MRD  methods.  MFC  and  PCR  had  concordance  in  the  majority  of  samples  but  in  35%  of   cases   PCR   showed   MRD   in   MFC-­‐‑negative   samples.   The   S-­‐‑FLC   ratio   and   IFE   were   not   predictive   of   MRD-­‐‑negativity   (Studies   I-­‐‑II).   Stem   cell   mobilization   with   G-­‐‑CSF   alone   produced  comparable  CD34+  cell  yields  with  a  comparable  need  for  plerixafor  than  CY  +  G-­‐‑

CSF  after  lenalidomide-­‐‑based  induction,  but  with  more  aphereses  (Study  III).    

       The   DSRT   method   was   applicable   in   MM   cells  ex   vivo,   and   four   different   sensitivity   profiles  were  recognizable.  Group  I  consisted  of  samples  showing  sensitivity  to  molecules   targeting   different   signaling   pathways   and   these   patients   had   shortest   TTNT   and   OS.  

Myeloma   cells   of   high-­‐‑risk   del17p   patients   were   refractory   to   almost   all   compounds,   but   showed  the  highest  selective  sensitivity  to  BCL2  inhibitors  (Study  IV).    

 6.2  PATIENTS  

   The   study   patients   in   these   clinical   studies   represent   common,   non-­‐‑selected   NDMM   patients  in  the  routine  hospital  daily  ward.  The  proportion  of  high-­‐‑risk  patients  based  both   on   FISH   findings   (22%   in   FMG-­‐‑MM01   and   20%   in   FMG-­‐‑MM02),   correlates   also   with   the   earlier  published  data  in  MM  population  (51,54).  During  the  course  of  these  studies  in  2008   –  2016  Boyd  et  al.  (348)  and  thereafter  IMWG  (86)  published  guidelines  for  risk  stratification   in  MM  both  based  on  ISS  and  cytogenetics  and  these  were  again  revised  by  Palumbo  et  al.  

in  2015  (85).  This  indicates  that  along  with  the  development  and  implementation  of  novel   drugs  the  sorting  of  patients  by  parameters  predicting  outcome  has  recently  been  one  of  the   main   interests.   The   patients   in   these   studies   have   been   classified   based   on   IMWG   ISS   criteria  (84)  with  the  majority  of  patients  included  in  stage  II.    

       During  the  last  decade  it  has  become  clear  that  novel  drugs  benefit  most  the  patients  with   standard-­‐‑risk   multiple   myeloma,   but   patients   with   high-­‐‑risk   and   relapsed,   refractory   myeloma   still   have   a   poor   outcome.   Development   of   new   treatment   strategies   for   these   patients  is  an  important  challenge.  Because  the  aim  of  the  FMG-­‐‑MM01  study  was  to  explore   the  MolR  rate  in  nCR/CR  patients  the  patients  whose  response  was  worse  than  PR  after  two   BZM+Dex   cycles   were   excluded   from   this   study,   so   the   results   obtained   in   PFS   and   OS   demonstrate  the  outcome  of  early  well-­‐‑responding  patients.  However,  when  OS  between   patients  off-­‐‑  and  on-­‐‑  protocol  were  compared  later  on  there  was  no  statistical  difference  in   the  long-­‐‑term  follow-­‐‑up  suggesting  the  efficacy  of  second  line  and  later  salvage  treatments.  

The  proportion  of  HR  patients  in  early  off-­‐‑protocol  group  was  59%  and  30%  in  the  group   continued   per   protocol.   In   the   off-­‐‑protocol   group   then   41%   were   standard-­‐‑   and   low-­‐‑risk  

patients  not  achieving  PR  after  two  BZM+Dex  cycles.  They  possibly  had  an  MGUS-­‐‑like  MM   profile,  which  could  explain  the  similar  OS  in  the  long-­‐‑term  follow-­‐‑up  between  off-­‐‑  and  on-­‐‑

protocol  group.  The  negative  impact  of  high-­‐‑risk  cytogenetics  on  PFS  was  clearly  seen  also   in  this  small  MM  population.    On  the  other  hand,  patients  with  better  outcome  could  be   distinguished  also  based  on  conventional  CR  response,  in  line  with  previous  publications   (278).   Still,   within   the   CR   group   the   molecular   response   can   give   additional   information   dividing  the  patients  in  two  separate  groups  with  different  outcomes  (Figure  4,  II).  

       In  the  DSRT  study  the  samples  were  collected  from  16  (37%)  randomly  selected  NDMM   patients  and  27  (63%)  RRMM  patients.  This  study  focused  first  on  very  refractory  patients   to  evaluate  the  applicability  of  the  assay  in  patients  with  immediate  need  for  help.  After   confirmation  of  the  applicability  the  study  was  expanded  to  NDMM  patients.  

 6.3  RESPONSE  ASSESSMENT  METHODS  (I,  II)  

 The   depth   of   treatment   response   is   a   direct   surrogate   for   outcome   in   MM   (349).   Beside   conventional   serological   response   markers   the   assessment   of   the   deeper   quantitative   response  calls  for  a  practical,  economic,  reliable  and  standardized  method  to  detect  MRD.  

Both  MFC  and  PCR  have  been  investigated  in  several  studies  (Table  16,  Table  17)  and  both   have   advantages   and   disadvantages   (Table   19).   In   practice   MFC   with   faster   analysis   has   awoken   wider   interest   than   the   more   time-­‐‑consuming   and   laborious   techniques   of   PCR.  

More  patients  achieve  CR/sCR  with  novel  treatments  even  in  relapsed  disease  setting  (214),   increasing   pressure   to   develope   of   high-­‐‑quality   MRD   assays   to   compare   the   efficacy   of   different  expensive  treatment  regimens  increases.    

     The  challenge  in  PCR  is  the  design  of  a  suitable  probe.  This  has  been  successful  in  42-­‐‑

86%  of  cases  in  earlier  publications  (Table  17)  and  is  usually  at  the  level  of  75%  compared  to   at  least  95%  of  detecting  the  aberrant  PC  clone  by  MFC  (Table  16).  In  our  study  the  PCR   coverage  of  100%  could  be  achieved  by  gradual  widening  of  the  primer  sets  used  for  the   clonality   detection.   Somatic   hypermutations   characteristic   of   MM   can   complicate   the   detection  of  a  suitable  clonal  mutation  and  design  of  the  probe.  Using  only  a  standardized   method   for   ASO-­‐‑PCR   with   only   one   specific   forward   primer   can   lead   to   low   PCR   applicability  (318).  The  detection  of  the  clone  may  be  improved  by  sequencing  of  Ig  light   chain,  IgH  and  kappa-­‐‑deleting  elements  (Kde)  rearrangements  and  alternate  locations  for   consensus   primers   (310,   I   and   II).   In   our   study   the   100%   applicability   was   reached   in   unselected   nCR/CR   patients   by   using   singleplex   Ig   consensus   primers   in   addition   to   the   multiplex   primers,   inclusion   of   the   light   chain   rearrangements   for   clone   detection   and   if   needed,  using  a  reverse-­‐‑oriented  ASO-­‐‑primer  and  individually  designed  TaqMan  probe  for   ASO-­‐‑PCR  analysis.  

       This  enhanced  three-­‐‑step  ASO-­‐‑PCR  approach  will  increase  the  costs  of  assay  by  30%  and   could  have  the  most  benefit  in  multicenter  trials  for  detecting  MRD  in  CR  patients.  Due  to   the  need  for  a  fast  and  practical  method  for  routine  MRD  assay  the  sensitivity  of  MFC  could   be  improved  by  using  8−10  or  even  12  color  MFC  and  trying  to  collect  up  to  2−5  x  106  cells   using  a  bulk  lysis  method  (13,  14,  92,  93,  94).  This  will  prolong  the  time  needed  for  flow   cytometry   run   and   probably   will   require   additional   devices,   which   will   also   increase   the   costs  of  MFC.    However,  the  sensitivity  of  MFC  can  never  reach  that  of  PCR  because  MFC   requires  10−50  clonal  cells  to  confirm  MRD,  but  an  optimal  molecular  method  can  detect   even  a  single  clonal  residual  cell,  which  gives  at  least  one  logarithm  higher  sensitivity  to   molecular  methods  in  any  case.  

       MRD   is   usually   measured   in   patients   when   a   nCR/CR   response   has   been   achieved   corresponding  to  serum  paraprotein  concentration  of  150–500  mg/l  (350).  However,  because   of  the  long  half-­‐‑life  of  paraprotein  a  patient  with  IFE  positivity  may  be  in  MolR.    Persisting   IFE  positivity  may,  on  the  other  hand,  represent  oligoclonal  secretion  called  atypical  serum   IFE  pattern  (ASIP),  i.e.  appearance  of  either  heavy  or  light  chain  components  which  differ   from   the   original   paraprotein.   In   one   study   up   to   33%   of   autotransplanted   patients  

developed   ASIP   and   4/7   analyzed   patients   were   in   MolR   (351).   Occurrence   of   ASIP   has   been  fairly  common  (up  to  60%)  after  novel  therapies  compared  to  conventional  therapies   (11.1%)   (352).   However,   the   sustained   primary   IFE   positivity   in   MFC-­‐‑MRD   negative   patients  predicts  a  shorter  PFS  (285).    

       The  FLC  assay  can  detect  light  chains  below  the  concentration  of  1  mg/l.  However,  an   aberrant  FLC  ratio  can  be  produced  also  by  oligoclonal  secretion.  In  the  study  by  Singhal  et  

       The  FLC  assay  can  detect  light  chains  below  the  concentration  of  1  mg/l.  However,  an   aberrant  FLC  ratio  can  be  produced  also  by  oligoclonal  secretion.  In  the  study  by  Singhal  et