• Ei tuloksia

Multiple myeloma treatment in the era of novel agents : special reference to minimal residual disease, stem cell mobilization and drug sensitivity testing / Raija Silvennoinen

N/A
N/A
Info
Lataa
Protected

Academic year: 2022

Jaa "Multiple myeloma treatment in the era of novel agents : special reference to minimal residual disease, stem cell mobilization and drug sensitivity testing / Raija Silvennoinen"

Copied!
132
0
0

Kokoteksti

(1)

DISSERTATIONS | RAIJA SILVENNOINEN | MULTIPLE MYELOMA TREATMENT IN THE ERA OF NOVEL ... | No 376

uef.fi

PUBLICATIONS OF

THE UNIVERSITY OF EASTERN FINLAND Dissertations in Health Sciences

ISBN 978-952-61-2260-1 ISSN 1798-5706

Dissertations in Health Sciences

THE UNIVERSITY OF EASTERN FINLAND

RAIJA SILVENNOINEN

MULTIPLE MYELOMA TREATMENT IN THE ERA OF NOVEL AGENTS

– Special reference to minimal residual disease, stem cell mobilization and drug sensitivity testing Novel drugs combined with autologous stem

cell transplantation have improved the overall survival in multiple myeloma. The majority of patients will still relapse after successful first-line treatment. We analyzed the impact of minimal residual disease after novel drugs on the patient outcome. The randomized stem cell mobilization study compared two different

mobilization methods. The ex vivo assay study focused on finding new molecules for

treatment of high-risk myeloma.

RAIJA SILVENNOINEN

(2)

 

 

 

             

Multiple  myeloma  treatment  in  the  era  of   novel  agents  –  special  reference  to  minimal   residual  disease,  stem  cell  mobilization  and  

drug  sensitivity  testing    

 

(3)

 

 

   

(4)

 

 

 

RAIJA SILVENNOINEN

Multiple  myeloma  treatment  in  the  era  of   novel  agents  –  special  reference  to  minimal   residual  disease,  stem  cell  mobilization  and  

drug  sensitivity  testing  

 

         

To  be  presented  by  permission  of  the  Faculty  of  Health  Sciences,  University  of  Eastern  Finland  for   public  examination  in  Canthia  100  Auditorium,  Kuopio,  on  Friday,  October  28th  2016,  at  12  noon  

   

Publications  of  the  University  of  Eastern  Finland    Dissertations  in  Health  Sciences    

Number  376      

Department  of  Medicine,  Institute  of  Clinical  Medicine,     School  of  Medicine,  Faculty  of  Health  Sciences  

University  of  Eastern  Finland   Kuopio  

2016  

(5)

         

     

  Grano   Jyväskylä,  2016  

  Series  Editors:    

Professor  Tomi  Laitinen  M.D.,  Ph.D.  

Institute  of  Clinical  Medicine,  Clinical  Radiology  and  Nuclear  Medicine   Faculty  of  Health  Sciences  

 

Professor  Hannele  Turunen,  Ph.D.  

Department  of  Nursing  Science   Faculty  of  Health  Sciences  

 

Professor  Kai  Kaarniranta,  M.D.,  Ph.D.  

Institute  of  Clinical  Medicine,  Ophthalmology   Faculty  of  Health  Sciences  

 

Associate  Professor  (Tenure  Track)  Tarja  Malm,  Ph.D.  

A.I.Virtanen  Institute  for  Molecular  Sciences   Faculty  of  Health  Sciences  

 

Lecturer  Veli-­‐‑Pekka  Ranta,  Ph.D.  (pharmacy)   School  of  Pharmacy  

Faculty  of  Health  Sciences    

Distributor:    

University  of  Eastern  Finland   Kuopio  Campus  Library  

P.O.Box  1627   FI-­‐‑70211  Kuopio,  Finland   http://www.uef.fi/kirjasto  

 

ISBN  (print):  978-­‐‑952-­‐‑61-­‐‑2260-­‐‑1   ISBN  (pdf):  978-­‐‑952-­‐‑61-­‐‑2261-­‐‑8  

ISSN  (print):  1798-­‐‑5706   ISSN  (pdf):  1798-­‐‑5714  

ISSN-­‐‑L:  1798-­‐‑5706

(6)

   

Author’s  address:   Department  of  Medicine/Kuopio  University  Hospital  

  PL  100,  70029  KYS  

KUOPIO    

  FINLAND  

 

Supervisors:   Professor  Kari  Remes,  M.D.,  Ph.D.  

Department  of  Hematology/Turku  University  Hospital   University  of  Turku  

TURKU   FINLAND    

Docent  Veli  Kairisto,  M.D.,  Ph.D.  

Department  of  Clinical  Chemistry/TYKSLAB/Turku  University  Hospital   University  of  Turku  

TURKU   FINLAND    

  Docent  Esa  Jantunen,  M.D.,  Ph.D.  

Department  of  Medicine/Kuopio  University  Hospital   University  of  Eastern  Finland  

KUOPIO   FINLAND    

Reviewers:   Docent  Eeva-­‐‑Riitta  Savolainen  M.D.,  Ph.D.  

NordLab,  Oulu  University  Hospital  

Department  of  Clinical  Chemistry,  University  of  Oulu   OULU  

FINLAND    

Docent  Erkki  Elonen  M.D.,  Ph.D.  

Helsinki  University  Central  Hospital   Comprehensive  Cancer  Center  Helsinki   Department  of  Hematology  

HELSINKI   FINLAND    

Opponent:        Assoc.Professor  Hareth  Nahi,  M.D.,  Ph.D.  

Haematology  Centre  Karolinska,  M54   Karolinska  University  Hospital,  Huddinge   STOCKHOLM    

SWEDEN    

             

(7)
(8)

Silvennoinen,  Raija  

Multiple  myeloma  treatment  in  the  era  of  novel  agents  –  special  reference  to  minimal  residual  disease,  stem   cell  mobilization  and  drug  sensitivity  testing  

University  of  Eastern  Finland,  Faculty  of  Health  Sciences  

Publications  of  the  University  of  Eastern  Finland.  Dissertations  in  Health  Sciences  376.  2016.  109  p.  

 

ISBN  (print):  978-­‐‑952-­‐‑61-­‐‑2260-­‐‑1   ISBN  (pdf):  978-­‐‑952-­‐‑61-­‐‑2261-­‐‑8   ISSN  (print):  1798-­‐‑5706   ISSN  (pdf):  1798-­‐‑5714   ISSN-­‐‑L:  1798-­‐‑5706    

ABSTRACT

The   introduction   of   novel   agents   and   autologous   stem   cell   transplantation   (ASCT)   has   improved   overall   survival   (OS)   in   multiple   myeloma   (MM).   However,   the   majority   of   patients   will   relapse   or   progress   in   2-­‐‑3   years   and   proceed   to   end-­‐‑stage   MM   in   5-­‐‑6   years.  

Several  novel  agents  have  been  launched  for  the  treatment  of  relapsed/refractory  myeloma   patients   in   recent   years.   The   relapse   develops   from   the   original   clonal   minimal   residual   disease   (MRD)   even   after   complete   remission   (CR)   or   from   a   new   evolutional   clone.  

Multiparameter  flow  cytometry  (MFC)  and  allele-­‐‑specific  real-­‐‑time  quantitative  polymerase   chain  reaction  (ASO  RQ-­‐‑PCR)  have  both  been  investigated  in  detecting  MRD.    

       In  two  prospective  studies  including  a  total  of  127  newly  diagnosed  (ND)  MM  patients   responses   after   2-­‐‑drug   (bortezomib   +   dexamethasone)   or   3-­‐‑drug   (bortezomib   +   lenalidomide  +  dexamethasone)  induction  treatment  followed  by  ASCT,  and  lenalidomide   maintenance   in   the   latter,   were   studied.   Molecular   remission   was   assessed   and   immunoelectrophoresis   (IFE)   was   compared   with   the   serum   free   light   chain   (FLC)   ratio,   MFC   and   ASO   RQ-­‐‑PCR   in   near   CR/CR   patients.   The   role   of   a   conventional   mobilization   regimen,  cyclophosphamide  +  G-­‐‑CSF  (arm  A)  was  compared  with  G-­‐‑CSF  alone  (arm  B)  in   the   randomized   mobilization   substudy   after   3-­‐‑drug   induction.   In   the   translational   prospective  study  applicability  of  ex-­‐‑vivo  drug  sensitivity  and  resistance  testing  (DSRT)  was   evaluated   in   50   bone   marrow   samples   from   43   NDMM   and   relapsed   MM   patients.   The   results  were  correlated  with  findings  in  cytogenetics  (fluorescent  in  situ  hybridization)  and   especially  aimed  to  identify  new  treatment  modalities  for  high-­‐‑risk  patients.  

       In  the  first  trial  the  molecular  remission  rate  was  28%,  whereas  MFC  remission  rate  was   38%.  These  patients  had  longer  progression-­‐‑free  survival.  Neither  IFE  nor  the  FLC  ratio  was   predictive  for  MFC-­‐‑  or  PCR  -­‐‑negativity.  In  the  mobilization  study  there  was  no  statistically   significant  differences  between  the  study  arms.  Arm  A  was  superior  in  terms  of  one  of  the   secondary  end  points,  the  median  number  of  collections  needed  to  reach  the  yield  of  3  x   106/kg.   DSRT   allowed   stratification   of   patients   into   four   different   drug   sensitivity   groups   ranging   from   group   I   having   a   wide   sensitivity   to   targeted   therapies   to   group   IV   with   a   resistance   to   almost   all   tested   drugs.   Several   signaling   pathway   inhibitors   showed   sensitivity   for   t(4;14)   patients   but   for   del(17p)   patients   BCL2   -­‐‑and   histone   deacetylase   inhibitors  only  showed  some  ex  vivo  sensitivity.  

PCR  was  applicable  in  all  patients  tested  and  was  more  sensitive  than  the  other  response   assessment   methods.   With   the   defined   collection   target   the   mobilization   arms   were   comparable   after   lenalidomide-­‐‑based   induction.     DSRT   appears   to   be   a   promising   new   method  to  find  useful  drugs  for  the  treatment  of  relapsed  or  refractory  MM  patients.  

   

National  Library  of  Medicine  Classification:  WH  540,  QY  95,  QY  102,  QU  550.5.P6,  QY  265,  WH  380,  QZ  267,   QZ  203,  WB  365  

Medical   Subject   Headings:   Multiple   Myeloma;   Neoplasm,   Residual;   Flow   Cytometry;   Polymerase   Chain   Reaction;   Immunoelectrophoresis;   Hematopoietic   Stem   Cell   Mobilization;   Bortezomib;   Lenalidomide;   Drug   Resistance  

(9)

                                                                                     

(10)

Silvennoinen,  Raija  

Multippelin  myelooman  hoito  uusien  lääkkeiden  aikakaudella  -­‐‑  jäännöstaudin  merkitys,  omien  kantasolujen   mobilisaatio  ja  myelooman  lääkeherkkyys  

Itä-­‐‑Suomen  yliopisto,  terveystieteiden  tiedekunta  

Itä-­‐‑Suomen  yliopiston  julkaisuja.  Terveystieteiden  tiedekunnan  väitöskirjat  376.  2016.  109  s.  

 

ISBN  (print):  978-­‐‑952-­‐‑61-­‐‑2260-­‐‑1   ISBN  (pdf):  978-­‐‑952-­‐‑61-­‐‑2261-­‐‑8   ISSN  (print):  1798-­‐‑5706   ISSN  (pdf):  1798-­‐‑5714   ISSN-­‐‑L:  1798-­‐‑5706    

TIIVISTELMÄ

 Myeloomapotilaiden   elinaika   on   pidentynyt   uusien   lääkkeiden   ja   omien   kantasolujensiirron   tuella   annettavan   korkea-­‐‑annossolunsalpaajahoidon   ansiosta.   Valta-­‐‑

osalla   potilaista   tauti   kuitenkin   uusiutuu   2-­‐‑3   vuoden   kuluessa   edeten   5-­‐‑6   vuodessa   myöhäisvaiheeseen.   Täydellisenkin   remission   jälkeen   tauti   uusiutuu   joko   alkuperäisen   myeloomasolukon   lisääntyessä   tai   uuden   muuntuneen   myeloomasolukon   kautta.   Useita   uusia   lääkkeitä   on   viime   vuonna   hyväksytty   myeloomapotilaiden   hoitoon.   Myelooman   jäännöstautia   tutkivia   menetelmiä   ovat   monivärivirtaussytometria   (immunofenotyypitys)   ja   molekyyligeneettinen   tutkimus,   alleeli-­‐‑spesifinen   reaaliaikainen   kvantitatiivinen   polymeraasi  ketjureaktio  (ASO-­‐‑RQ-­‐‑PCR).  

       Kahdessa   prospektiivisessa   tutkimuksessa   127   uudella   myeloomapotilaalla   tutkittiin   hoitovasteet   kahden   (bortetsomibi,   deksametasoni)   ja   kolmen   lääkkeen   hoitoyhdistelmän   (lenalidomidi,   bortetsomibi,   deksametasoni)   ja   omien   kantasolujensiirron   tuella   annetun   korkea-­‐‑annoshoidon   jälkeen.     Jälkimmäisessä   tutkimuksessa   potilaat   saivat   lenalidomidi-­‐‑

ylläpitohoitoa.   Ensimmäisessä   osatyössä   analysoitiin   hoidon   molekylaarinen   vaste.  

Toisessa   osatyössä   verrattiin   keskenään   immunoelektroforeesin   tulosta,   seerumin   vapaita   kevytketjuja,   monivärivirtaussytometriaa   ja   ASO-­‐‑RQ-­‐‑PCR   -­‐‑tutkimusta.   Kolmas   osatyö   vertasi   satunnaistetussa   tutkimuksessa   omien   kantasolujen   keräystä   edeltäviä   mobilisaatiohoitoja:   haara   A)   perinteinen   CY   +   G-­‐‑CSF   ja   haara   B)   G-­‐‑CSF.   Neljäs   osatyö,   translationaalinen   prospektiivinen   tutkimus,   selvitti   ex   vivo   lääkeherkkyystutkimuksen   käytettävyyttä   43   myeloomapotilaan   luuydinnäytteen   soluissa.   Tuloksia   verrattiin   myeloomasolujen   kromosomipoikkeavuuksiin   ja   pyrittiin   identifioimaan   uusia   potentiaalisia  lääkkeitä  korkean  riskin  potilaille.    

       Molekylaarisen   remission   saavutti   28%   potilaista,   virtaussytometrialla   38%.   Näillä   potilailla   oli   pidempi   tautivapaa   elinaika   kuin   huonomman   hoitovasteen   saavuttaneilla.  

Immunoelektroforeesin   tai   seerumin   vapaat   kevytketjut   -­‐‑tutkimuksen   tulos   ei   ollut   luotettava  ennakoimaan  molekylaarista  tai  immunofenotyyppistä  remissiota.  Kantasolujen   mobilisaatio-­‐‑tutkimuksessa   tutkimushaarojen   välillä   ei   ollut   eroa   ensisijaisen   päätetapahtuman  (keräystulos  ≥  3  x  106/kg)  suhteen.    Tutkimushaarassa  A  tulos  saavutettiin   kuitenkin   vähemmillä   keräyskerroilla.     Lääkeherkkyysnäytteiden   tulosten   perusteella   potilaiden   solut   pystyttiin   jakamaan   neljään   ryhmään   herkistä   hyvin   vastustuskykyisiin.  

Korkean   riskin,   t(4;14),   potilaiden   myelomasoluihin   näyttivät   tehoavan   useat   signaalireittien   estäjät,   mutta   kromosomi   17   lyhyen   haaran   puutoksen   omaaviin   soluihin   lähinnä  vain  BCL2-­‐‑  ja  histonideasetylaasiestäjät.  

       Jäännöstautitutkimuksessa   PCR-­‐‑aluke   pystyttiin   muodostamaan   kaikille   analysoitaville   potilaille   ja   PCR   oli   herkin   jäännöstaudin   osoittaja.   Satunnaistetun   tutkimuksen   kanta-­‐‑

solujenkeräyshaarat   olivat   keräystavoitteen   suhteen   verrannollisia.     Lääkeherkkyystutki-­‐‑

mus   on   lupaava   uusi   menetelmä   haettaessa   uusia   lääkkeitä   hoitoresistenttiin   ja   korkean   riskin  myeloomaan.  

Yleinen   Suomalainen   asiasanasto:     myelooma;   uusiutuminen;   kantasolujen   siirto;   hoitomenetelmät;  

lääkehoito;  hoitovaste;  lääkeresistenssi  

(11)

     

(12)

 

Acknowledgements  

The   work   on   this   thesis   was   started   in   2008   at   the   Department   of   Internal   Medicine   of   Tampere  University  Hospital.  The  task  force  for  multiple  myeloma  in  Finland,  the  Finnish   Myeloma  Group  (FMG)  started  in  2009.  Work  on  this  study  continued  at  the  Department  of   Medicine,  Kuopio  University  Hospital  2012  onwards.  In  2013  the  Finnish  Myeloma  Group   started   collaboration   with   the   Institute   for   Molecular   Medicine   Finland   (FIMM)   and   the   door  for  translational  research  in  multiple  myeloma  opened.      

       I   send   my   sincere   gratitude   to   the   former   Head   of   Department   of   Internal   Medicine,   Tampere  University  Hospital,  Docent  Kari  Pietilä,  for  supporting  me  when  I  was  starting   the   FMG-­‐‑MM01   study.   I   express   my   gratitude   to   Professor   Markku   Laakso,   Institute   of   Clinical  Medicine,  University  of  Eastern  Finland,  for  his  support  to  my  research  since  2012.  

I  thank  the  former  Head  of  Department  of  Medicine,  Kuopio  University  Hospital,  Docent   Seppo   Lehto,   for   supporting   me   when   I   started   my   second   investigator   initiated   study   FMG-­‐‑MM02.   I   am   grateful   to   Kirsi   Luoto,   Maire   Anttonen,   Arja   Halkoaho   and   Tuomas   Selander   at   the   Science   Services   Center   of   Kuopio   University   Hospital.   I   thank   you   for   always  having  time  for  my  projects  and  me.    

       I  sincerely  thank  my  principal  supervisor  Professor  Kari  Remes  from  Turku  University   Hospital  and  the  University  of  Turku.  You  were  brave  enough  to  take  on  the  difficult  task   to   educate   a   clinician   to   an   investigator.   You   showed   me   how   to   think   in-­‐‑depth   and   critically  about  clinical  studies  with  a  clear  practical  view  still  in  mind.  You  have  challenged   me   with   straight   questions,   but   always   softened   our   collaboration   with   your   fascinating   humor.  

       I  express  my  sincere  gratitude  to  my  second  supervisor,  Docent  Veli  Kairisto,  who  with   the  great  patience  has  had  time  for  my  never-­‐‑ending  questions  regarding  ASO-­‐‑PCR.  You   have   pointed   out   the   main   questions   of   molecular   genetics   to   be   answered   during   my   studies.  I  hope  that  our  collaboration  will  continue  at  the  next  generation  level.    

       My   third   supervisor,   Docent   Esa   Jantunen,   will   receive   my   deepest   gratitude   for   his   tireless  support  during  my  studies.  I  would  like  to  say  that  you  have  saved  my  mind.  While   writing  my  thesis  I  was  suddenly  involved  with  the  development  of  new  clinical  studies  in   multiple  myeloma  and  with  a  much  wider  network.  With  your  support  I  have  been  able  to   maintain   my   balance.   I   admire   how   you   can   take   a   mix   of   results   and   data   to   a   clear   conclusion.  During  the  last  busy  weeks  your  help  has  been  most  valuable.  

       I  am  deeply  grateful  for  the  reviewers  of  this  thesis,  Docent  Eeva-­‐‑Riitta  Savolainen  and   Docent  Erkki  Elonen,  whose  valuable  comments  helped  me  to  improve  the  work.  I  wish  to   thank  Docent  David  Laaksonen  for  linguistic  revision.  The  multiparameter  flow  cytometry   part  of  this  work  would  never  have  been  possible  without  the  support  and  intelligence  of   Docent   Tarja-­‐‑Terttu   Pelliniemi,   who   sometimes   had   to   read   my   thoughts   for   lack   of   adequate  content  to  my  questions.    I  am  honored  to  have  the  President  of  Nordic  Myeloma   Study  Group,  Assoc.  Professor  Hareth  Nahi,  as  my  opponent.  

       “The  sound  of  science  is  clear  here”  encouraged  me  in  the  darkest  moments.  This  was  a   comment  of  one  reviewer  after  the  first  review  of  the  second  paper.    I  would  like  to  thank   all  voluntary  anonymous  colleagues  in  scientific  communities  who  offer  their  free  time  for   reviewing  manuscripts.  

       I  have  been  privileged  to  be  the  first  chairperson  of  the  Finnish  Myeloma  Group.  In  our   working  group  we  have  had  several  workshops  concentrating  on  diagnostic  guidelines  and   the   development   of   treatment   for   myeloma   patients   in   Finland.   Meanwhile,   in   the   background,   our   clinical   and   laboratory   coinvestigators   and   nurses   have   treated   study   patients  and  these  studies  have  matured.  I  give  my  deepest  gratitude  to  all  my  colleagues   and  all  study  nurses  and  hematological  nurses  who  have  been  involved  in  many  different  

(13)

ways  in  this  research  collaboration.  The  Finnish  myeloma  patients  and  their  families  need   an  extremely  warm  thanks  for  participating  in  these  studies  and  donating  blood  and  bone   marrow  for  this  research,  which  in  all  circumstances  does  not  come  for  their  benefit,  but   hopefully   will   help   the   next   generation   of   patients.   I   am   honored   by   your   altruism   and   commitment.  

       Professor   Kimmo   Porkka   receives   my   special   thanks   for   his   ultimate   support   at   every   turn  of  my  hospital  and  research  work.  He  has  always  been  on  line  to  help  show  me  the   way  to  overcome  difficulties.  Without  him  we  would  not  have  any  future  for  hematological   research   in   Finland.   I   give   my   warm   gratitude   to   Caroline   Heckman   and   Mamun   Majumder,  my  co-­‐‑investigators  at  FIMM.  You  have  always  been  available  and  helped  me   with   this   research.   In   addition,   I   would   like   to   thank   Tuija   Lundán   for   privat   lessons   on   PCR  methods  and  for  interpreting  the  results.    

       I  am  very  grateful  for  Ilona  Siljander  and  Jaakko  Valtola.  Ilona  has  shown  me  the  way  to   understand  statistics  and  Jaakko  has  been  my  support.  I  am  looking  forward  with  pleasure   to  our  future  collaboration.  I  thank  my  nearest  neighbor  Hannu  for  saving  me  from  dead-­‐‑

ends  with  the  files.  When  work  and  research  are  major  parts  of  your  life,  I  have  been  happy   to  find  friends  there.  I  am  forever  thankful  to  Taru,  my  soulmate,  for  her  inspiring  presence   and  great  support  in  my  life.      

       For  my  childhood  family  I  would  like  to  give  my  deepest  gratitude.  I  thank  my  deceased   parents  for  showing  me  how  the  diligence,  hard  work  and  not  giving  up  can  lead  to  results.  

I   am   privileged   to   have   spent   my   childhood   in   the   far   countryside   with   four   siblings.   I   thank  all  my  siblings  for  sharing  our  happiness  and  sorrows  during  the  whole  of  our  lives.  

       My   husband   Seppo   and   I   have   shared   countless   adversities,   but   just   as   many   happy   times  in  our  lives.  For  this  part  I  had  to  go  alone,  but  when  I  had  time  to  look  around  you   were  always  somewhere  nearby.  You  made  all  of  this  possible  taken  responsibility  for  the   daily  routines.  Sinna,  my  lovely  dog,  you  earn  a  warm  hug  for  trying  to  teach  me  how  to  be   noiseless  and  wait  with  patience.  These  lessons  clearly  will  go  on.  

       I  am  most  deeply  grateful  in  my  life  to  our  sons  Jouni  and  Jonne.  All  what  makes  me   happy   walks   in   the   door   with   you.   During   our   entire   lives   together,   but   in   recent   times   when  I  have  most  desperately  needed  it  you  have  lightened  my  days  with  your  irresistible,   special  sense  of  humor.    You  fill  my  life  with  happiness,  gratitude  and  joy.  

       I   thank   Tampere   University   Hospital   for   the   Research   Funding   (Grant9M097)   and   the   Research   Committee   of   Kuopio   University   Hospital   Catchment   Area   for   State   Research   Funding   (project   5101424).   I   thank   the   Finnish   Hematology   Association   and   Research   Foundation  of  Blood  Disease  for  the  grants.  I  also  wish  to  thank  Janssen  and  Celgene  for   Research  Funding.  

 Kuopio  18th  September  2016    Raija  Silvennoinen  

                             

(14)

 

List  of  the  original  publications  

 

This  dissertation  is  based  on  the  following  original  publications:    

   

I Silvennoinen  R,  Kairisto  V,  Pelliniemi  T-­‐‑T,  Putkonen  M,  Anttila  P,  Säily  M,  Sikiö   A,  Opas  J,  Penttilä  K,  Kuittinen  T,  Honkanen  T,  Lundán  T,  Juvonen  V,  Luukkaala   T,   Remes   K.   Assessment   of   molecular   remission   rate   after   bortezomib   plus   dexamethasone  induction  treatment  and  autologous  stem  cell  transplantation  in   newly  diagnosed  multiple  myeloma  patients.  Br  J  Haematol  160:  561-­‐‑564,  2013.    

 

II Silvennoinen   R,   Lundán   T,   Kairisto   V,   Pelliniemi   T-­‐‑T,   Putkonen   M,   Anttila   P,   Huotari  V,  Mäntymaa  P,  Siitonen  S,  Uotila  L,  Penttilä  T-­‐‑L,  Juvonen  V,  Selander  T,   Remes   K.   Comparative   analysis   of   minimal   residual   disease   detection   by   multiparameter   flow   cytometry   and   enhanced   ASO   RQ-­‐‑PCR   in   multiple   myeloma.  Blood  Cancer  J  4:  e250,  2014.  

 

III Silvennoinen  R,  Anttila  P,  Säily  M,  Lundan  T,  Heiskanen  J,  Siitonen  T,  Kakko  S,   Putkonen  M,  Ollikainen  H,  Terävä  V,  Kutila  A,  Launonen  K,  Räsänen  A,  Sikiö  A,   Suominen  M,  Bazia  P,  Kananen  K,  Selander  T,  Kuittinen  T,  Remes  K,  Jantunen  E.  

A  randomized  phase  II  study  of  stem  cell  mobilization  with  cyclophosphamide  +   G-­‐‑CSF  or  G-­‐‑CSF  alone  after  lenalidomide-­‐‑based  induction  in  multiple  myeloma.    

Bone  Marrow  Transplant  51:  372-­‐‑376,  2016.  

 

IV Majumder   M.M,   Silvennoinen   R,   Anttila   P,   Tamborero   D,   Eldfors   S,   Yadav   B,   Karjalainen   R,   Kuusanmäki   H,   Lievonen   J,   Parsons   A,   Suvela   M,   Jantunen   E,   Porkka  K,  Heckman  C.A.  Functional  screening  of  multiple  myeloma  to  develop   precision  treatment  strategies  and  for  outcome  prediction.  Submitted.  

     

   

     The  publications  were  reprinted  with  the  permission  of  the  copyright  owners.  

 

(15)

 

(16)

Contents

     

 

 

1  INTRODUCTION    ...     1  

  2  REVIEW  OF  THE  LITERATURE    ...     3  

  2.1  Multiple  myeloma  ...     3  

2.1.1  Epidemiology  and  risk  factors    ...     3  

2.1.2  Origin  of  multiple  myeloma  ...     3  

2.1.3  MGUS  transformation  to  multiple  myeloma    ...     4  

2.1.4  Genetics  of  multiple  myeloma  ...     4  

2.1.5  Marrow  microenvironment    ...     7  

2.1.6  Immunology  (immunome)  of  multiple  myeloma    ...     7  

2.1.7  Clonal  evolution  in  multiple  myeloma    ...     7  

2.1.8  Myeloma  bone  disease    ...     8  

2.1.9  Diagnosis  of  multiple  myeloma  ...     8  

   2.1.9.1  Criteria  for  multiple  myeloma  ...     8  

   2.1.9.2  Bone  marrow  cell  morphology  ...     11  

   2.1.9.3  Multiparameter  flow  cytometry    ...     11  

   2.1.9.4  Cytogenetic  studies  at  diagnosis  ...     12  

   2.1.9.5  Imaging  in  multiple  myeloma  ...     12  

2.2  Novel  drugs  in  multiple  myeloma  ...     13  

2.2.1  From  alkylating  agents  to  novel  drugs  in  induction  therapy   13   2.2.2  Mobilization  of  CD34+  cells  for  autologous  transplantation   15   2.2.3  Consolidation  treatment    ...     17  

2.2.4  Maintenance  therapy  ...     19  

2.2.5  Description  of  novel  drugs  ...     21  

   2.2.5.1  Bortezomib  ...     21  

   2.2.5.2  Liposomal  doxorubicin  ...     21  

   2.2.5.3  Lenalidomide  ...     21  

   2.2.5.4  Pomalidomide    ...     22  

   2.2.5.5  Carfilzomib  ...     22  

   2.2.5.6  Other  new  proteasome  inhibitors  ...     22  

   2.2.5.7  Immune  therapies  ...     23  

   2.2.5.8  Epigenetic  approach  -­‐‑  deacetylase  inhibitors  ...     23  

   2.2.5.9  Cell  cycle  and  kinase  inhibitors  ...     24  

   2.2.5.10  Signal  transduction  inhibitors    ...     24  

   2.2.5.11  Targeting  microenvironment    ...     24  

2.2.6  Novel  drugs  and  allogeneic  transplantation    ...     27  

2.3  Response  assessment  in  multiple  myeloma  ...     27  

2.3.1  General  ...     27  

2.3.2  Assessment  of  minimal  residual  disease  (MRD)  in          myeloma  patients  ...     29  

   2.3.2.1  Multiparameter  flow  cytometry  (MFC)    ...     29  

(17)

   2.3.2.2  ASO-­‐‑RQ-­‐‑PCR  ...     31  

   2.3.2.3  Next  generation  sequencing  (NGS)  ...     33  

   2.3.2.4  Comparison  of  MFC,  PCR  and  NGS  for  MRD  detection   33   2.4  Drug  sensitivity  and  resistance  testing    ...     37  

2.4.1  General  issues  in  multiple  myeloma  ...     37  

2.4.2  DSRT  experience  in  Finland  ...     38  

  3  AIMS  OF  THE  STUDY    ...     39  

  4  PATIENTS  AND  METHODS    ...     40  

  4.1  Study  design  ...     40  

4.1.1  FMG-­‐‑MM01  study  (I,  II)    ...     40  

4.1.2  FMG-­‐‑MM02  study  (III)  ...     43  

4.1.3  Drug  sensitivity  and  resistance  testing  ex  vivo  (IV)  ...     46  

4.2  Patients  ...     46  

4.3  Ethical  considerations  ...     50  

4.4  Methods  ...     50  

4.4.1  Serum  and  urine  immunoelectrophoresis  (I,  II,  III)    ...     50  

4.4.2  Serum  free  light  chain  assay  (I,  II,  III)  ...     50  

4.4.3  Fluorescence  in  situ  hybridization  (I-­‐‑IV)  ...     50  

4.4.4  Multiparameter  flow  cytometry  (I,  II,  III)  ...     51  

4.4.5  ASO-­‐‑RQ-­‐‑PCR  (I,  II,  III)    ...     51  

4.4.6  CD34+  assessment  and  stem  cell  collection  (III)    ...     52  

4.4.7  Drug  sensitivity  and  resistance  testing  (IV)  ...     52  

4.4.8  Drug  sensitivity  testing  data  analysis    ...     53  

4.4.9  Data  collection  ...     54  

4.4.10  Study  endpoints  ...     54  

4.4.11  Statistical  methods  ...     54  

  5  RESULTS    ...     56  

  5.1  Treatment  responses,  molecular  remission  and  its  impact  on        survival  after  a  novel  induction  treatment  and  ASCT          (FMG-­‐‑MM01)  (I)  ...     56  

5.1.1  Responses    ...     56  

5.1.2  Progression-­‐‑free  survival  and  overall  survival    ...     58  

5.1.3  Adverse  events    ...     60  

5.2  Comparison  of  four  different  methods  in  response        assessment  in  multiple  myeloma  (II)  ...     61  

5.3  Randomized  comparison  of  CD34+  cell  mobilization  with  low-­‐‑        dose  CY  +  G-­‐‑CSF  or  G-­‐‑CSF  alone  after  novel  induction  treatment        FMG-­‐‑MM02  (III)  ...     62  

5.3.1  Mobilization  substudy  ...     62  

5.3.2  Treatment  responses  ...     63  

5.3.3  Adverse  events  ...     65  

(18)

5.4  Drug  sensitivity  and  resistance  testing  (IV)  ...     65  

5.4.1  Chemosensitivity  groups  based  on  ex  vivo  DSRT  ...     65  

5.4.2  DSRT  results  based  on  cytogenetic  FISH  aberrations  ...     69  

  6  DISCUSSION    ...     72  

  6.1  The  main  findings  ...     72  

6.2  Patients  ...     72  

6.3  Response  assessment  methods  (I,  II)  ...     73  

6.4  FMG-­‐‑MM01:  Minimal  residual  disease  responses  ...     74  

6.5  Stem  cell  mobilization  and  treatment  (FMG-­‐‑MM02)  (III)  ...     75  

6.6  Drug  sensitivity  and  resistance  testing  (IV)  ...     76  

  7  FUTURE  PERSPECTIVES    ...     78  

  7.1  Minimal  residual  disease  response  ...     78  

7.2  Stem  cell  mobilization  for  autologous  transplantation  ...     78  

7.3  Drug  sensitivity  and  resistance  testing  ...     79  

  8  CONCLUSIONS    ...     80  

  9  REFERENCES    ...     81    

   

(19)

   

Abbreviations  

 

AKT   Aktin  

ASCT   Autologous   stem   cell   trans-­‐‑

  plantation  

ASO   Allele  specific  oligonucleotide   BCL   B-­‐‑cell  lymphoma  

Β2-­‐‑miglo   Beta-­‐‑2  -­‐‑microglobulin  

BM   Bone  marrow  

BMSC   Bone  marrow  stem  cell   BRAF   Proto-­‐‑oncogen  B-­‐‑Raf  

BZM   Bortezomib  

CD   Cluster  of  differentiation   CDK(i)   Cyclin-­‐‑D-­‐‑kinase  (inhibitor)   CFZ   Carfilzomib  

CR   Complete  remission   CT   Computerized  tomography   CXCR4   C-­‐‑X-­‐‑C   chemokine   receptor  

type  4  

CY   Cyclophosphamide  

Dex   Dexamethasone  

DNA   Deoxyribonucleic  acid   DSRT   Drug  sensitivity  and  

resistance  testing   DSS   Drug  sensitivity  score   EBMT   European  Society  for  Blood  

and  Marrow  Transplantation   EGF   Epidermal  growth  factor   ECOG   Eastern  Cooperative  

 

ERK   Extracellular  regulated  kinase     FGFR   Fibroblast  growth  factor  

receptor  

FIMM   Institute  for  Molecular   Medicine  Finland   FISH   Fluoresence  in  situ  

hybridization  

FMG   Finnish  Myeloma  Group   G-­‐‑CSF   Granulocyte-­‐‑colony  

stimulating  factor   GEP   Gene  expression  profile   GVHD   Graft-­‐‑versus-­‐‑host  disease   FLC   Free  light  chain  

HDAC(i)   Histonedeacetylase  (inhibitor)   HDMEL   High-­‐‑dose  melphalan    

HR   High-­‐‑risk  

HSP90   Heat-­‐‑shock  protein  90  

IFE   Immunofixation  

electrophoresis   iFISH   Interphase  FISH  

IF   Immunofixation  

IFN   Interferon  

IgA   Immunoglobulin  A   IgD,  IgE   Immunoglobulin  D,  -­‐‑E   IGF-­‐‑1R   Insulin-­‐‑like  growth  factor  1  

receptor  

IgG   Immunoglobulin  G  

(20)

IGHV   IgH  variable  

IgK   Immunoglobulin  kappa   IgL   Immunoglobulin  lambda   IgM   Immunoglobulin  M  

IL   Interleukin  

IMiD   Immunomodulating  drug   IRd   Ixazomib,  lenalidomide,  

dexamethasone  

ISS   International  Staging  System   IMWG   International  Myeloma  

Working  Group  

κ   kappa  

Kd   Carfilzomib,  dexamethasone   KRAS   Kirsten   rat   sarcoma   viral  

oncogene  homolog  

KRd   Carfilzomib,   lenalidomide,   dexamethasone  

λ   Lambda  

LC   Light  chain  

LDH   Lactate  dehydrogenase   Len   Lenalidomide  (Revlimid®)   LenDex   Lenalidomide,dexamethasone   LR   Low-­‐‑risk  

MFC   Multiparameter  flow   cytometry    

MGUS   Monoclonal  gammopathy  of   undetermined  significance   MEK   Mitogen-­‐‑activated  protein  

kinase  

MEL   Melphalan  

MM   Multiple  myeloma  

MMSET   Multiple  myeloma  SET   domain  

MNC   Mononuclear  cell  

Mo   Months    

MoAb   Monoclonal  antibodies     MolR   Molecular  remission   MP   Melphalan,  prednisolone   MPR   Melphalan,  prednisolone,  

lenalidomide    

MPT   Melphalan,  prednisolone,   thalidomide  

MPV   Melphalan,  prednisolone,   bortetsomib  

MR   Minimal  response   MRD   Minimal  residual  disease   mRNA   Messenger  ribonucleic  acid   MRI   Magnetic  resonance  imaging   mTOR   Mammalian  target  of  

rapamycin  

MYC   V-­‐‑myc  avian  myelocytoma-­‐‑

tosis  viral  oncogene  homolog   nCR   Near  complete  remission   ND   Newly  diagnosed   NF-­‐‑kB   Nuclear  factor-­‐‑kappa  B   NGS   Next  generation  sequencing   NK   Natural  killer  

NMSG   Nordic  Myeloma  Study   Group  

NR   Not  reported  

NRAS   Neuroblastoma  RAS  viral   oncogene  homolog  

(21)

ORR   Overall  response  rate   OS   Overall  survival   PB   Peripheral  blood   PC   Plasma  cell  

PCD   Plasma  cell  disease   PCR   Polymerase  chain  reaction   PD   Progressive  disease   PD-­‐‑1   Programmed  death-­‐‑1   PD-­‐‑L1   Programmed  death  ligand-­‐‑1   PET   Position  emission  

tomography  

PFS   Progression-­‐‑free  survival   PI   Proteasome  inhibitors   PI3K   Phosphoinositide  3-­‐‑kinase  

PN   Polyneuropathy  

PR   Partial  remission  

RAF   Raf  proto-­‐‑oncogene  serine/  

threonine  protein  kinase   RAS   Retrovirus-­‐‑associated  DNA  

sequences  

RD   Lenalidomide  (Revlimid®)   and  dexamethasone   RB1   Retinoblastoma  1   RNA   Ribonucleic  acid   RR   Relapsed/refractory   RVD   Lenalidomide,  bortezomib,  

dexamethasone   RQ-­‐‑PCR   Real-­‐‑time  quantitative  

polymerase  chain  reaction   SC   Stem  cell  

sCR   Stringent  complete  remission  

SCT   Stem  cell  transplantation   SD   Stable  disease  

sDSS   Selective  drug  sensitivity   score  

S-­‐‑FLC   Serum  free  light  chain   SMM   Smoldering  multiple  

myeloma   SR   Standard-­‐‑risk  

T   Thalidomide  

TD   Thalidomide  and   dexamethasone   TP53   Tumor  protein  53   TRAF3   TNF  receptor-­‐‑associated  

factor  3  

TTNT   Time  to  next  treatment   TTP   Time  to  progression   VAD   Vincristine,  doxorubicin,  

dexamethasone  

VCD   Bortezomib  (Velcade®),   cyclophosphamide,   dexamethasone  

VelDex   Bortezomib  (Velcade®),   dexamethasone  

VGPR   Very  good  partial  response   VMP   Bortezomib  (Velcade®),  

melphalan,  prednisone   VT   Bortezomib  (Velcade®)  and  

thalidomide  

VTD   Bortezomib  (Velcade®)   thalidomide,  dexa-­‐‑  

methasone    

(22)

       

   

 

(23)

1  Introduction    

The  overall  survival  (OS)  of  multiple  myeloma  (MM)  patients  has  improved  significantly   with  the  combination  of  novel  drugs  and  autologous  stem  stell  transplantation  (ASCT)  (1,  2,   3).  The  majority  of  patients  respond  to  the  first-­‐‑line  treatment  usually  achieving  a  median   progression-­‐‑free   survival   (PFS)   of   2-­‐‑3   years.   Inevitable   subsequential   progression   will   occur,   however,   resulting   in   treatment-­‐‑resistant   end-­‐‑stage   disease   with   cytopenias,   infections  and  poor  prognosis  (4).      

       The   era   of   novel   agents   began   with   the   first   publication   in   1999   on   the   first   immunomodulating  agent  (IMiD)  thalidomide  (5,  6),  continued  with  the  launching  of  the   first  proteasome  inhibitor  (PI),  bortezomib  in  2004,  followed  by  the  second-­‐‑generation  IMiD   lenalidomide   in   2008   and   the   second-­‐‑generation   PI   carfilzomib   in   2012.   The   third   IMiD   pomalidomide  was  approved  by  European  Medicines  Agency  in  2013  and  carfilzomib  in   2015.   The   next   important   group   of   new   drugs   in   MM   are   the   monoclonal   antibodies   (MoAb).  The  CD38+  MoAb,  daratumumab,  has  showed  efficacy  even  as  a  monotherapy  in   resistant   MM   (7,   8)   and   another   MoAb,   elotuzumab,   combined   with   lenalidomide,   has   confirmed  the  usefulness  of  synergy  in  MM  therapy  (9).    

       Numerous   new   small   molecules   and   cell   signaling   pathway   inhibitors   are   now   in   the   pipelines   and   in   preclinical   and   clinical   studies,   giving   hope   in   the   future   for   improved   treatment  response  with  targeted  therapy  in  MM.  We  have  a  challenge  to  combine  these   new  drugs  in  the  most  feasible  way  in  different  lines  of  treatment  in  addition  to  clarify  their   role  in  consolidation  and  maintenance  treatment.    This  challenge  will  be  best  met  by  better   understanding   the   heterogenous   nature   of   MM   between   patients   and   within   individual   patient  (10).    Due  to  clonal  heterogeneity  the  treatment  would  be  better  targeted  if  we  knew   which  clone  or  clones  were  responsible  for  each  progression  phase  of  disease.    

       With   the   higher   quality   responses   in   the   era   of   novel   agents   it   has   became   more   important   to   explore   the   differences   between   novel   therapies   at   the   minimal   residual   disease   (MRD)   level.   An   applicable,   practical,   sensitive   and   economic   method   for   MRD   assessment  for  clinical  studies  and  further  for  routine  use  is  needed.  Multiparameter  flow   cytometry   (MFC)   and   allele-­‐‑specific   oligonucleotide   real   time   quantitative   polymerase   chain   reaction   (ASO   RQ-­‐‑PCR)   have   been   studied   in   this   setting   (11,   12).   MFC   has   been   shown  to  be  more  applicable  in  practice.  MFC  still  needs  standardization,  however,  and  the   EuroFlow  Consortium  is  working  on  that  (13,  14).  ASO  RQ-­‐‑PCR  is  well  standardized,  but  is   more   time-­‐‑consuming   and   laborious   and   its   applicability   is   based   on   the   success   rate   of   probe  design  (11,  12).  Nonetheless,  when  successful  it  is  usually  at  least  one  logarithm  more   sensitive  than  4-­‐‑colour  MFC  (11).    

       ASCT   has   sustained   its   role   as   standard   therapy   in   transplant-­‐‑eligible   patients.  

Mobilization  of  autologous  stem  cells  needs  to  be  re-­‐‑evaluated  after  induction  with  novel   agents,   which   lead   to   a   higher   proportion   of   good   responses   before   ASCT.   The   best   mobilization   regimen   yielding   sufficient   graft   number   without   major   long-­‐‑term   harmful   effects  should  be  evaluated.  

       We   conducted   two   prospective   national   clinical   studies   for   newly   diagnosed   MM   patients   with   novel   drugs.   The   first   study   included   a   2-­‐‑drug   combination   as   induction   followed   by   ASCT   and   the   second   study   a   3-­‐‑drug   combination   followed   by   ASCT   and   maintenance.  MRD  assessment  with  MFC  and  ASO  RQ-­‐‑PCR  was  systematically  included  in   both   studies.   In   the   second   study   the   earlier   mobilization   standard   (low-­‐‑dose   cyclophosphamide  +  G-­‐‑CSF)  was  compared  with  G-­‐‑CSF  alone  in  a  randomized  setting.    

       The  jungle  of  second-­‐‑generation  novel  agents  and  small  molecules  is  thick,  and  we  need   tools   to   predict   the   efficacy   of   these   expensive   drugs.   We   designed   the  ex-­‐‑vivo   drug   sensitivity   and   resistance   testing   (DSRT)   study   to   evaluate   its   applicability   in   MM   bone  

(24)

marrow  samples,  and  combined  the  results  with  fluorescence  in  situ  hybridization  (FISH)   findings.   The   aim   was   to   identify   new   possible   innovative   therapies   for   high-­‐‑risk   MM   patients  who  have  the  poorest  prognosis.    

 

 

 

(25)

2    Review  of  the  Literature  

2.1 MULTIPLE MYELOMA 2.1.1  Epidemiology  and  risk  factors  

Multiple   myeloma   (MM)   is   the   second   most   common   hematological   cancer   after   lymphomas   in   the   Western   countries   with   the   annual   incidence   of   4-­‐‑6/100   000   (15).   It   represents  1%  of  all  cancers  and  10%  of  hematological  cancers.  MM  occurs  more  commonly   in  males  than  in  females:  in  the  Finnish  Cancer  Registry  the  incidences  are  3.4/100  000  and   2.6/100  000,  respectively  (16).  The  annual  incidence  has  been  370  new  MM  cases  in  years   2009−2013  (including  all  plasma  cell  disorders)  and  255  deaths  due  to  myeloma  have  been   registered  annually  between  2009−2013  (16).  The  age-­‐‑adjusted  mortality  was  3.6/100  000  in   Finland  (16).  In  total,  1446  patients  were  living  with  the  diagnosis  at  the  end  of  year  2013   according   to   the   Finnish   Cancer   Registry   (16).   The   median   age   in   MM   patients   is   65−70   years  at  diagnosis,  but  about  10%  of  patients  are  less  than  55  years  of  age  (16).  The  median   OS  has  increased  during  the  last  two  decades  mostly  in  patients  less  than  65  years  of  age   from  3−4  to  7−8  years  due  to  novel  drugs  combined  to  ASCT  (17).      

       The   primary   cause   of   myeloma   is   unknown,   but   increasing   age,   male   gender,   familial   background  and  past  history  of  monoclonal  gammapathy  of  unknown  significance  (MGUS)   have  been  established  as  risk  factors  (18-­‐‑19).  In  addition,  environmental  exposure  to  nuclear   radiation,   petroleum   products   and   pesticides   is   thought   to   increase   the   risk   (20-­‐‑21).   It   is   overrepresented  in  farmers,  wood  and   leather  manufacturers   (20-­‐‑21).   A   family  history   of   other   chronic   B-­‐‑cell   malignancies   like   smoldering   multiple   myeloma   (SMM)   and   Waldenström  disease,  has  also  been  noted  as  a  risk  factor  for  myeloma  (18,  22).  The  risk  of   MGUS  or  MM  is  increased  3-­‐‑4.25  fold  in  the  first-­‐‑degree  relatives  (18,  22,  23,  24,  25,  26).    

       Germinal   genetic   mutations   seem   to   be   localized   in   chromosome   1q   and   4q   loci   (22).  

Grass   et   al.   found   that   hyperphosphorylated   form   of   Paratarg-­‐‑7   (P-­‐‑7)   was   a   consistent   finding  in  familial  and  sporadic  MGUS  and  MM,  suggesting  its  role  in  the  pathogenesis  of   inherited  forms  (27).  Obesity  and  immune  dysfunction  have  also  been  proposed  to  increase   MM  risk.  Several  factors  associated  with  obesity  have  been  linked  to  the  risk,  like  increased   oxidative   stress,   alterations   in   immunological   and   metabolic   response,   and   endogenous   hormone  levels  (sex  steroids,  insulin  and  insulin-­‐‑like  growth  factor-­‐‑1)  (18,  28).    

2.1.2  Origin  of  multiple  myeloma  

The  healthy  counter-­‐‑part  of  the  malignant  plasma  cell  (PC)  is  postgerminal  center  antibody   producing   mature   PC   representing   terminal   differentiation   of   B   lymphocytes.   These   are   needed   for   production   a   wide   range   of   immunoglobulins,   when   exposed   to   different   antigens  during  a  lifetime.  The  contact  of  an  antigen  with  a  virgin  B  lymphocytes  induces   them   to   either   proceed   to   develop   into   low-­‐‑affinity   plasma   cells   or   to   move   into   the   germinal  center.  In  germinal  centers  B-­‐‑cells  undergo  affinity  maturation  of  their  antibody   through  somatic  hypermutations.  This  means  a  rapid  proliferation  and  differentiation  of  B-­‐‑

cells  for  selected  antibodies.  During  the  development  of  B-­‐‑cells  into  the  antibody  secreting   mature  plasma  cells  they  go  through  the  immunoglobulin  heavy  chain  class  switch  process,   which  enables  the  production  of  different  immunoglobulins,  mostly  immunoglobulins  A,  G   and  M.  This  process  requires  several  new  DNA  rearrangements  and  it  makes  possible  for   the   necessary   translocations   to   appear   (29).   The   functionality   of   these   antibodies   is   confirmed   by   class   switch   recombination   (isotype   switching),   where   one   switch   region   is   replaced  by  another  allowing  the  production  of  different  immunoglobulin  isotypes  (10,  30).  

Early  genetic  mutations  occur  at  the  pre-­‐‑B  stage  and  later  mutations  and  genetic  events  at  

(26)

       There  is  a  suggestion  that  MM  cancer  stem  cells  with  self-­‐‑renewal  capacity  both  initiate   and  propagate  MM,  and  are  responsible  not  only  for  the  initial  birth  of  MM,  but  also  for  the   relapse  and  progression  and  ultimately  drug  resistance.  These  cells  probably  do  not  have   one   precise   phenotype,   but   might   be   plastic   and   functionally   bidirectional   between   non-­‐‑

stem   and   stem-­‐‑like   compartments   (32,   33,   34).   Therapy   may   induce   the   regeneration   of   clones,  which  are  able  to  survive  in  an  inflammatory  and  hypoxic  microenvironment  (33,   34,   35).   The   immunophenotypes   of   cell   populations   having   such   plasticity   have   been   suggested   to   be   clonotypic   B   cell   (CD19+CD138-­‐‑),   pre-­‐‑PC   (CD19-­‐‑CD38++,   CD319+,CD138-­‐‑)   and  MM  cell  (CD38++,  CD138+)  (33,  36).  Attempts  have  been  made  to  identify  myeloma  stem   cell  (SC)  reservoirs  to  eradicate  of  minimal  residual  disease  (37).  

2.1.3  MGUS  transformation  to  multiple  myeloma  

Monoclonal   gammapathy   of   undetermined   significance   (MGUS)   phase   precedes   MM   probably  in  all  cases,  and  it  will  convert  to  MM  with  an  annual  incidence  of  1%  (38,  39).  

Elevated   serum   monoclonal   protein   (M-­‐‑component)   >   30g/l   (a   criteria   for   smoldering   myeloma),  an  abnormal  serum  free  light  chain  (sFLC)  ratio  and  IgA  or  IgD  subtype  are  risk   factors   for   progression   to   MM   (40,   41).   The   percentage   of   aberrant   PCs   as   assessed   with   multiparameter  flow  cytometry  (MFC)  ≥  95%  of  all  plasma  cells  also  means  increased  risk   for  active  myeloma  (42,  43).  The  latest  update  regarding  the  risk  of  smoldering  MM  (SMM)   to   proceed   to   active   MM   in   two   next   years   concluded   that   an   sFLC   ratio   of   involved   to   uninvolved  light  chain  equal  to  or  greater  than  100  or  BM  plasma  cell  infiltration  of  more   than  60%  or  bone-­‐‑specific  MRI  findings  to  be  an  indication  for  treatment  (44).  

 

2.1.4  Genetics  of  multiple  myeloma  

Myeloma  cells  have  a  very  instable  genome  with  a  heterogeneous  mutation  profile  (Tables   1  and  2a,  2b).  MM  cells  have  more  mutations  than  acute  leukemias,  and  are  closer  to  the   number   of   mutations   found   in   solid   tumours   (45,   46,   47,   48).   Standard   cytogenetic   techniques  found  already  in  1985  that  myeloma  cells  have  several  karyotypic  aberrations   like  monosomies,  trisomies,  deletions  and  translocations  (49,  50,  51,  52).  Due  to  failure  to   stimulate  myeloma  cells  to  divide  in  vitro  leads  to  inappropriate  and  insufficient  material   for  metaphase  analysis  with  negative  findings  (53).  About  half  of  myeloma  patients  have  a   hyperdiploid  genome  with  trisomies  in  the  odd  chromosomes  3,  5,  7,  9,  11,  15,  19  and  21.  

The   rest   have   nonhyperdiploid   genome   were   the   most   common   translocation   is   between   the   immunoglobulin   heavy   chain   (IgH)   locus   on   chromosome   14q32   and   one   of   the   following  oncogene  partners:  cyclin  D1,  t(11;14);  cyclin  D3,  t(6;14);  fibroblast  growth  factor   receptor   3,   t(4;14);   v-­‐‑maf   avian   musculoaponeurotic   fibrosarcoma   oncogene   homolog,   t(14;16)   and V-­‐‑maf   musculoaponeurotic   fibrosarcoma   oncogene   homolog   B,   t(14;20).   In   these  translocations  the  IgH  region  with  the  strong  enhancer  gene  moves  beside  to  these   oncogenes  leading  to  overexpression  of  the  targeted  proteins,  enabling  the  immortality  of   the  cells  (10,  21,  54,  55,  56).  These  translocations  are  reported  to  be  already  present  in  the   MGUS  phase,  but  in  a  lower  proportion  than  in  more  advanced  phases  (SMM  or  MM)  of   the  disease.  Copy  number  abnormalities  like  del(17p),  del(13),  1q  gain  or  del  1p  increase  in   SMM  and  MM  patients  (10,  21).      

       Secondary  genetic  events  are  activating  mutations  (Table  2a,  2b).  They  include  pathways   involved  in  proliferation,  immortalization  and  apoptosis  resistance  of  myeloma  cells  such   as  MYC,  KRAS  and  NRAS,  BRAF,  PI3K,  and  AKT.  Deletion  (del)  of  oncosuppressors,  such   as  del(17p)  involving  the  locus  of  TP53  (tumor  protein  53)  is  also  important  (10,  21,  54,  55,   56).    

Genetic  or  nongenetic  disruption  of  key  regulators  of  plasma  cell  differentiation,  XBP-­‐‑1  (X-­‐‑

box  binding  protein  1),  PRDM1  (PR  domain  containing  1)  and  IRF-­‐‑4  (interferon  regulatory   factor  4)  have  proved  to  be  crucial  for  the  pathogenesis  of  myeloma  (57,  58).  Generalized   gene   hypomethylation   is   associated   with   the   transition   between   MGUS   and   MM   and   hypermethylation  of  specific  target  genes  has  been  correlated  with  progression  of  MM  into  

(27)

plasma   cell   leukemia   (10,   47,   21).   There   is,   however,   no   consensus   about   the   driver   mutations  in  myeloma.    

       Chapman  et  al.  were  the  first  who  performed  whole  genome/exome  sequencing  in  MM   patients  and  found  five  genes  to  be  most  commonly  mutated  in  MM:,  NRAS,  TP53,  DIS3   and  FAM46C  (45).  The  expanded  sequencing  results  from  the  same  group  confirmed  these   results   in   addition   to  BRAF  (59).   Bolli   et   al.   identified   new   candidate   genes   like  ROBO1,   SP140,  LTB  and  EGFR1,  and  again  highlighted  the  heterogeneity  of  the  myeloma  genome   (60).   KRAS,   NRAS,   DIS3,   FGFR3,   IRF4,   FAM46C,   BRAF,   EGR1,   TRAF3,   LTB,   TP53,   HIST1H1E,  MAX,  CYLD  and  RB1  were  the  15  significantly  mutated  genes  found  by  Walker   et   al.,   and   his   group   formulated   the   international   staging   system   mutation   score   for   the   identification  of  high-­‐‑risk  patients  (61).  

Table 1. Primary genetic events in multiple myeloma (10, 54, 55, 56, 62)

Primary genetic events Genes Percentage of tumours Risk

IGH translocations

t(4;14) (p16;q32) FGFR3 and MMSET 11-15 High

t(6;14) (p21;q32) CCND3 <1 Standard

t(11;14)(q13;q32) CCND1 14-16 Standard

t(14;16)(q32;q23) MAF 3-5 High

t(14;20)(q32;q12) MAFB 1.5-2 High

Hyperdiploidy

(chromosomal trisomy)

Chromosome Genes

3, 5, 7, 9, 11, 15, 19 and 21 45-57 Standard

 

Table 2a. Secondary genetic changes in multiple myeloma

Chromosomes Genes Percentage

of tumors Risk

Secondary translocations

t(8;14) MYC 1 High

Gains

1q CKS1B and ANP32E 40 High

12p LTBR <1

17q Deletions

1p CDKN2C, FAF1 and FAM46C 30 High?

6q 33

8p TRAIL-R1 and TRAIL-R2 25

11q BIRC2 and BIRC3 7

13 RB1 and DIS3 45

14q TRAF3 38

16q CYLD and WWOX 35

17p TP53 8 High

(28)

Table 2b. Secondary genetic changes in multilple myeloma

Chromosomes Genes Percentage of tumors

Epigenetic event

Global hypomethylation Genome-wide methylation arrays

(MGUS to MM) and gene-specific hypermethylation

(MM to PC leukemia)

Molecular hallmarks

G1/S abnormality CDKN2C

RB1 3

CCND1 3

CDKN2A

Proliferation NRAS 21

KRAS 28

BRAF 5

MYC 1

Resistance to apoptosis PI3k, AKT

NF-kB pathway TRAF3 3

CYLD 3

I-kB Abnormal localization/bone disease DKK1

FRZB, DNAH5 8

Abnormal plasma cell differentiation XBP1 3

BLIMP1 (PRDM1) 6

IRF4 5

Abnormal DNA repair TP53 6

MRE11A 1

PARP1

RNA editing DIS3 13

FAM46C 10

LRRK2 5

Epigenetic abnormalities KDM6A 10

MLL 1

MMSET 8

HOXA9, KDM6B

ANP32E, acidic leucine-rich phosphoprotein 32 family, member E; BIRC, babuloviral IAP repeat- containing protein; BLIMP1, B lymphocyte-induced maturation protein 1; BRAF, proto-ongocen B Raf; CCND, cyclin D; CDKN, cyclin-dependent kinase inhibitor; CKS1B, CDC28 protein kinase 1B;

CYLD, cylindromatosis; DIS3, DIS3 homolog; DKK1, dickkoppf1; DNAH, dynein, axonemal, heavy chain; DNMT3A, DNA methyltransferase 3A; FAF1, FAS-associated factor 1; FAM46C, family with sequence similarity 46, member C; FRZB, frizzled-related protein; HOXA9, homeobox A9; IGH, immunoglobulin heavy chain; I-κB, inhibitor of nuclear factor-κB; IRF4, interferon regulatory factor 4; KDM, lysine demethylase; LRRK2, leucine-rich repeat kinase 2; LTBR, lymphotoxin beta receptor;

MAF, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog; MAFB, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B; MLL, mixed-lineage leukemia; MMSET, multiple myeloma SET domain; MRE11A, meiotic recombination 11A; NF-κB, nuclear-factor-κB;

PARP1, poly (ADP-ribose) polymerase 1; PRDM1, PR domain zinc finger protein 1; RB1, retinoblastoma 1; TRAF3, tumour necrosis factor receptor-associated factor 3; TRAIL-R1, tumor necrosis factor receptor superfamily member 10A; WWOX, WW domain-containing oxidoreductase;

XBP1, X box-binding protein 1

Viittaukset

LIITTYVÄT TIEDOSTOT

Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor

Although PINP was not related with the local bone resorption in joints, the strong corre- lation between a marker of bone formation (PINP) and markers of bone collagen degrada-

1. To identify the molecular and functional basis for a novel disease gene MCM3AP. Characterise a novel syndrome and its genotype-phenotype correlation in multiple families.

Cultured small-intestinal specimens of patients with untreated celiac disease (with or without T1D) spontaneously secreted more IL-1β and IL-6 than did children

When DMARD therapy was initiated very early, the clinical picture improved as it did in patients with longer duration of symptoms, although the disease activity remained higher and

Mobilization of peripheral blood stem cells for autologous transplant in non- Hodgkin's lymphoma and multiple myeloma patients by plerixafor and G-CSF and detection of tumor

Hae- matopoietic stem cell mobilization with plerixafor and G-CSF in patients with multiple myeloma transplanted with au- tologous stem cells. Pusic I, Jiang S, Landua

Modification of yield components and stem length in spring barley by the application of growth retardants prior to main shoot stem elongation.. The in- fluence of variety, year,