• Ei tuloksia

1. Feldman, D. Polymer History. Designed Monomers and Polymers 2008, 11, 1-15.

2. Kauffer; Phoebe, H. Injection Molding; Materials Science and Technologies; Nova Science Publishers, Inc.: 2011

3. Abdullahi, A. A.; Choudhury, I. A.; Azuddin, M. Process Development and Product Quality of Micro-Metal Powder Injection Molding. Materials and Manufacturing Processes 2015, 30, 1377-14.

4. Nishiyabu, K. Micro metal powder injection molding, 2012.

5. Muhammad Jabir, S.; Noorsyakirah, A.; Mohd Afian, O.; Nurazilah, M. Z.; Ahmad Aswad, M.; Mohd Afiq, N. H.; Mazlan, M. Analysis of the rheological behavior of copper metal injection molding (MIM) feedstock, Procedia chemistry 2016, 19, 148-152.

6. Zhang, T.; Kong, L.; Dai, Y.; Yue, X.; Rong, j.; Qiu, F.; Pan, J. Enhanced oil and organic solvents absorption by polyurethane foams composites modified with MnO2 nanowires, Chemical Engineering Journal 2017, 309, 7-14.

7. Gonzalez-Gutierrez, J.; Duretek, I.; Christian, K.; Poljsak, A.; Marko, B.; Emri, I.;

Holzer, C. Models to Predict the Viscosity of Metal Injection Molding Feedstock Materials as Function of Their Formulation, Metals 2016, 6, 129.

8. Chen, G.; Cao, P.; Wen, G.; Edmonds, N. Debinding behaviour of a water soluble PEG/PMMA binder for Ti metal injection moulding. Materials Chemistry and Physics 2013, 139, 557-565.

9. Hayat, M. D.; Li, T.; Cao, P. Incorporation of PVP into PEG/PMMA based binder system to minimize void nucleation. Materials & Design 2015, 87, 932-938.

10. Amin, A. M.; Ibrahim, M. H. I.; Asmawi, R. Mixing homogeneity and rheological characterization for optimal binder formulation for metal injection moulding, Applied Mechanics and Materialis 2014, 607, 181-184.

11. Hossain, A.; Choudhury, I. A.; Nahar, N.; Hossain, I.; Bin Mamat, A. Experimental and Theoretical Investigation of Powder-Binder Mixing Mechanism for Metal Injection Molding, Materials and Manufacturing Processes 2015, 30, 41-46.

12. Chen, G.; Cao, P.; Wen, G.; Edmonds, N.; Li, Y. Using an agar-based binder to produce porous NiTi alloys by metal injection moulding. Intermetallics 2013, 37, 92-99.

13. Hayat, M. D.; Wen, G.; Li, T.; Cao, P. Compatibility improvement of Ti-MIM feedstock using liquid surfactant. Journal of Materials Processing Technology 2015, 224, 33-39.

53

14. Daudt, N. d. F.; Bram, M.; Barbosa, A. P. C.; Laptev, A. M.; Alves, C.

Manufacturing of highly porous titanium by metal injection molding in

combination with plasma treatment. Journal of Materials Processing Technology 2017, 239, 202-209.

15. Shbeh, M. M.; Goodall, R. Design of water debinding and dissolution stages of metal injection moulded porous Ti foam production, Materials and design 2015, 87, 295-302.

16. Royer, A.; Barrière, T.; Gelin, J. Development and characterization of a metal injection molding bio sourced inconel 718 feedstock based on

polyhydroxyalkanoates; Metals, 2016, 6, 89.

17. Páez-Pavón, A.; Jiménez-Morales, A.; Santos, T. G.; Quintino, L.; Torralba, J. M.

Influence of thermal debinding on the final properties of Fe-Si soft magnetic alloys for metal injection molding (MIM), Journal of magnetism and magnetic materials 2016, 342-347.

18. Manonukul, A.; Muenya, N.; Léaux, F.; Amaranan, S. Effects of replacing metal powder with powder space holder on metal foam produced by metal injection moulding. Journal of Materials Processing Tech 2010, 210, 529-535.

19. Laptev, A. M.; Daudt, N. F.; Guillon, O.; Bram, M. Increased Shape Stability and Porosity of Highly Porous Injection‐Molded Titanium Parts. Advanced Engineering Materials 2015, 17, 1579-1587.

20. Zhao, D.; Chang, K.; Ebel, T.; Qian, M.; Willumeit, R.; Yan, M.; Pyczak, F.

Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material, Journal of the Mechanical Behavior of Biomedical Materials 2013, 28, 171-182.

21. Wolff, M.; Schaper, J.; Suckert, M.; Dahms, M.; Ebel, T.; Willumeit-Römer, R.;

Klassen, T. Magnesium Powder Injection Molding (MIM) of Orthopedic Implants for Biomedical Applications. JOM 2016, 68, 1191-1197.

22. Jin Man Jang; Wonsik Lee; Se-Hyun Ko; Chulwoong Han; Hanshin Choi Oxide Formation In Metal Injection Molding Of 316L Stainless Steel. Archives of Metallurgy and Materials 2015, 60, 1281-1285.

23. FANG, W.; HE, X.; ZHANG, R.; YANG, S.; QU, X. Evolution of stresses in metal injection molding parts during sintering. Transactions of Nonferrous Metals Society of China 2015, 25, 552-558.

24. Okolieocha, C.; Raps, D.; Subramaniam, K.; Altstädt, V. Microcellular to

nanocellular polymer foams: Progress (2004-2015) and future directions - A review . European polymer journal 2015, 73, 500-519.

25. Spina, R. Technological characterization of PE/EVA blends for foam injection molding, Materials and design 2015, 84, 64-71.

54

26. Kramschuster, A.; Turng, L. An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue

engineering scaffolds. Journal of biomedical materials research., 2010, 92, 366-376.

27. Zhang, L.; Zhao, G.; Wang, G. Formation mechenism of porous structure in plastics parts injected by microcellular injection molding technology with variable mold temperature, Applied thermal engineering 2017, 114, 484-497.

28. Rizvi, S.; Alaei, M.; Yadav, A.; Bhatnagar, N. Quantitative analysis of cell distribution in injection molded microcellular foam. Journal of Cellular Plastics 2014, 50, 199-219.

29. Lee, J.; Turng, L. Improving Surface Quality of Microcellular Injection Molded Parts Through Mold Surface Temperature Manipulation With Thin Film Insulation, Polymer Engineering and Science 2010.

30. Chu, R. K.; Mark, L. H.; Jahani, D.; Park, C. B. Estimation of the foaming

temperature of mold-opening foam injection molding process. Journal of Cellular Plastics 2016, 52, 619-641.

31. Ozkoc, G.; Kemaloglu, S.; Quaedflieg, M. Production of poly(lactic acid)/organoclay nanocomposite scaffolds by microcompounding and polymer/particle leaching, Polymer Composites 2010.

32. Saatchi, M.; Behl, M.; Lendlein, A. Double layer porous structures by an injection molding/particulate leaching approach, Macromol. Symp. 2014, 346, 100-107.

33. Esquirol, A.; Sarazin, P.; Virgilio, N. Tunable porous hydrogels from cocontinuous polymer blends, ACS Publications: 2014, 47, 3068-3075.

34. Venkatram Prasad Shastri; Ivan Martin; Robert Langer Macroporous Polymer Foams by Hydrocarbon Templating. Proceedings of the National Academy of Sciences of the United States of America 2000, 97, 1970-1975.

35. Sundback, C.; Hadlock, T.; Cheney, M.; Vacanti, J. Manufacture of porous polymer nerve conduits by a novel low-pressure injection molding process. Biomaterials 2003, 24, 819-830.

36. Noorsyakirah, A.; Mazlan, M.; Mohd Afian, O.; Ahmad Aswad, M.; Muhammad Jabir, S.; Nurazilah, M. Z.; Mohd Afiq, N. H.; Bakar, M.; Mohd Nizam, A. J.;

Ahmad Zahid, O.; Mohd Bakri, M. H. Application of potassium carbonate as space holder for metal injection molding process of open pore copper foam, Procedia Chemistry 2016, 19, 552-557.

37. Jakubowicz, J.; Adamek, G.; Dewidar, M. Titanium foam made with saccharose as a space holder. J Porous Mater 2013, 20, 1137-1141.

38. LI, B.; LI, Z.; LU, X. Effect of sintering processing on property of porous Ti using space holder technique. Transactions of Nonferrous Metals Society of China 2015, 25, 2965-2973.

55

39. Diao, K. K.; Xiao, Z.; Zhao, Y. Y. Specific surface areas of porous Cu

manufactured by lost carbonate sintering: Measurement by quantative stereology and cyclic voltammetry, Materials Chemistry and Physics 2015, 162, 571-579.

40. Mahaidin, A. A.; Abdullah, N.; Mohammad, M.; Omar, M. A.; Suleiman, M. J.;

Zainon, N. M.; Hadi, M. A. N.; Abd Jalil, M. N.; Omar, A. Z.; Mohd Hijazi, M. B.

Effect on sintering cycle on physical and mechanical propertiess of open pore cell copper foam, Procedia Chemistry 2016, 19, 546-551.

41. Lu Zhen; Huang Zhenhan; Jiang Shaosong; Liu Wei; Zhang Kaifeng Influencing factors for the microstructure and mechanical properties of micro porous titanium manufactured by metal injection molding, Metals, 2016, 6, 83.

42. Yeh, R.; Hsu, R. Application of porous oxide layer in plastic/metal direct adhesion by injection molding. Journal of Adhesion Science and Technology 2015, 29, 1617-1627.

43. Mariot, P.; Leeflang, M. A.; Schaeffer, L.; Zhou, J. An investigation on the properties of injection-molded pure iron potentially for biodegradable stent application, Powder technology 2016, 226-235.

44. Qi, Y.; Contreras, K. G.; Jung, H.; Kim, H.; Lapovok, R.; Estrin, Y. Ultrafine-grained porous titanium and porous titanium/magnesium composites fabricated by space holder-enabled severe plastic deformation, Materials Science and

Engineering C 2016, 59, 754-765.

45. Soyama, J.; Oehring, M.; Ebel, T.; Kainer, K. U.; Pyczak, F. Sintering Behavior and Microstructure Formation of Titanium Aluminide Alloys Processed by Metal Injection Molding; JOM, 2017.

46. Kimura, F.; Kadoya, S.; Kajihara, Y. Effects of molding conditions on injection molded direct joining using a metal with nano-structured surface. Precision Engineering 2016, 45, 203-208.

47. Li, H.; Li, M.; Li, W.; Yang, Q.; Li, Y.; Gu, Z.; Song, Y. Three dimensional MOF-sponge for fast dynamic adsorption, 2016, 3.

48. Liu, S.; Duvigneau, J.; Vancso, J. Nanocellular polymer foams as promising high performance thermal insulation materials, European polymer journal 2015, 65, 33-45.

49. Fang, Y.; Bao, J.; Yan, H.; Sun, W.; Zhao, L.; Hu, G. Preparation of open‐cell foams from polymer blends by supercritical CO2 and their efficient oil‐absorbing performance. AIChE Journal 2016, 62, 4182-4185.

50. Boitsov, O. F.; Chernushev, L. I.; Skorokhod, V. V. Effects of Porous Structure on the Electrical Conductivity of Highly Porous Metal-Matrix Materials. Powder Metallurgy and Metal Ceramics 2003, 42, 88-93.