• Ei tuloksia

In Finland, the possibility of utilizing two or more ALS datasets from a large-scale inventory 628

area is unlikely, although the potential could be realized in the future. The first complete ALS 629

data coverage of Finland will be completed by 2020. In addition, several forest operators have 630

acquired their own ALS datasets. Therefore, operational applications of the fusion of leaf-off 631

and leaf-on ALS data are possible. At the very least, the finding in this study that metrics de-632

rived from leaf-off ALS data could substitute for aerial image metrics could be applied in cases 633

where the acquisition of aerial images has failed, for example, due to unexpected weather con-634

ditions. The determination of a satisfactory time interval between bi-temporal ALS data acqui-635

sitions for forest inventories requires further study. The acquisition of both leaf-off and leaf-on 636

ALS data for an inventory area over a short time interval is not reasonable from an economical 637

viewpoint. Therefore, single sensor solutions, such as multispectral ALS, may be more attrac-638

tive for future species-specific forest inventories. Unfortunately, the results of this study did not 639

indicate that multispectral ALS data could offer a single sensor solution for species-specific 640

ALS-based forest inventories. In general, the findings of this study reveal new possibilities to 641

combine multiple RS data sources and encourage repeat national ALS data acquisitions in for-642

ested countries.

643 644

5 Conclusions 645

The results indicate that the combination of leaf-on and leaf-off ALS metrics provide lower 646

error rates than the traditional combination of ALS and aerial image metrics for the prediction 647

of species-specific logwood volumes. Our findings also show that recent leaf-off ALS data can 648

be replaced by older leaf-off ALS data without a significant deterioration in logwood prediction 649

error rates. We also explored metrics derived from multispectral ALS data. The results indicate 650

that the multispectral metrics lead to a slight improvement in the error rates associated with 651

logwood volume predictions. Overall, the outcome of this study encourages a deeper investiga-652

tion of the possibilities of combining different multi-temporal ALS datasets in area-based forest 653

inventories. In the future, multi-temporal ALS datasets will be increasingly available from in-654

ventory areas. As such, methods and applications that incorporate all available ALS data from 655

an inventory site are welcome.

656 657

Funding details 658

This study is a contribution to the project Comparative test to predict species-specific diameter 659

distributions in forest information systems financed by the Finnish Forest Centre. This study 660

was also supported by the project Sustainable, climate-neutral, and resource-efficient forest-661

based bioeconomy (FORBIO, decision number 314224), funded by the Strategic Research 662

Council at the Academy of Finland. The Finnish Society of Forest Sciences supported this work 663

with a scholarship granted to the corresponding author.

664 665 666

Disclosure statement 667

No potential conflict of interest was reported by the authors.

668 669

670

Availability of data and material 671

The raw leaf-off ALS datasets supporting the conclusions of this article are available in the 672

repository of National Land Survey Finland, https://tiedostopalvelu.maanmittauslai-673

tos.fi/tp/kartta. The multispectral ALS data, and the field data will not be shared due to the 674

ownership of the data.

675 676

Data deposition 677

No data deposition.

678

Acknowledgements 679

We acknowledge the support provided by the Strategic Research Council of the Academy of 680

Finland for the FORBIO project (decision number 314224), led by Prof. Heli Peltola at the 681

School of Forest Sciences, UEF. We would like to express our gratitude to Prof. Heli Peltola 682

and Prof. Jyrki Kangas for the acquisition of the financial support for the fieldwork needed to 683

conduct this study. We also would like to thank the Finnish Society of Forest Science for the 684

scholarship awarded to the corresponding author.

685 686

Captions for figures 687

Figure 1. Location of the study area and sample plots in Finland.

688

689 690

Figure 2. This figure demonstrates the multispectral ALS data (M-ALS). The leftmost figure 691

describes the data around a validation plot in a coniferous dominated forest, and the rightmost 692

in a deciduous dominated forest. In the color ramp, black describes the lowest heights and yel-693

low describes the highest heights.

694

695 696

Figure 3. This figure demonstrates leaf-off ALS datasets used in this study (the uppermost 697

figures: S16-ALS; the bottom figures: S11-ALS). The leftmost figures describe the data around 698

a validation plot in a coniferous dominated forest, and the rightmost in a deciduous dominated 699

forest. In the color ramp, black describes the lowest heights, and yellow describes the highest 700

heights.

701

702 703

Figure 4. Species-specific root mean squared error (RMSE; %) and mean difference (BIAS;

704

%) error values for logwood volume predictions in terms of remote sensing data and response 705

configurations. For the abbreviations of remote sensing data combinations, please refer to sec-706

tion 2.3.

707

708

709 710

Figure 5. Predicted vs. observed dominant and minor tree species logwood volumes presented 711

in 30 x 30 m validation data. Remote sensing data combinations of M-CH2-ALS + S16-ALS 712

(leftmost) and M-CH2-ALS + AI (rightmost) were used. The SimLog response configuration 713

was employed in all combinations. The median iteration (25th of 50) with respect to the root 714

mean squared error (RMSE) value associated with the dominant logwood volume is presented.

715

For the abbreviations of remote sensing data, please refer to section 2.3.

716 717

718

Figure 6. Predicted vs. observed dominant and minor tree species logwood volumes presented 719

with 30 x 30 validation data. Remote sensing data combination of M-CH2-ALS + S11-ALS 720

was used. The SimLog response configuration was employed in all combinations. The median 721

iteration (25th of 50) with respect to the root mean squared error (RMSE) value associated with 722

dominant logwood volume is presented. For the abbreviations of remote sensing data, please 723

refer to section 2.3.

724 725

726

References 727

Anderson RS, Bolstad PV. 2013. Estimating aboveground biomass and average annual wood 728

biomass increment with airborne leaf-on and leaf-off LiDAR in great lakes forest types. North 729

J Appl For. 30(1):16–22.

730 731

Axelsson A, Lindberg E, Olsson H. 2018. Exploring Multispectral ALS Data for Tree Species 732

Classification. Remote Sens. 10(2):183.

733 734

Axelsson P. 2000. DEM Generation from laser scanner data using adaptive TIN models. Int 735

Arch Photogramm Remote Sens. 33(B4):110–117.

736 737

Bohlin J, Bohlin I, Olsson H, Granström A. 2017. Quantifying post-fire fallen trees using multi-738

temporal lidar. Int J Appl Earth Obs Geoinf. 63:186–195.

739 740

Bollandsås OM, Ene LT, Gobakken T, Næsset E. 2018. Estimation of biomass change in mon-741

tane forests in Norway along a 1200 km latitudinal gradient using airborne laser scanning: a 742

comparison of direct and indirect prediction of change under a model-based inferential ap-743

proach. Scan J ForRes. 33(2):155–165.

744 745

Breidenbach J, Nothdurft A, Kändler G. 2010. Comparison of nearest neighbour approaches 746

for small area estimation of tree species-specific forest inventory attributes in central Europe 747

using airborne laser scanner data. Eur J For Res. 129(5):833–846.

748 749

Budei BC, St-Onge B, Hopkinson C, Audet F. 2017. Identifying the genus or species of indi-750

vidual trees using a three-wavelength airborne lidar system. Remote Sens Envir. 204:632–647.

751 752

Bouvier M, Durrieu S, Fournier RA, Renaud J. 2015. Generalizing predictive models of forest 753

inventory attributes using an area-based approach with airborne LiDAR data. Remote Sens 754

Envir. 156:322–334.

755 756

Dalponte M, Ene LT, Gobakken T, Næsset E, Gianelle D. 2018. Predicting selected forest stand 757

characteristics with multispectral ALS data. Remote Sens. 10(4):586.

758 759

Suomen metsäkeskus [Finnish Forest Centre]. 2016. Kaukokartoitusperusteisen metsien inven-760

toinnin koealojen maastotyöohje, versio 1.7 [The remote sensing based forest inventory field 761

guide for plot measurements, version 1.7]:1–30.

762 763

Gobakken T, Næsset E. 2004. Estimation of diameter and basal area distributions in coniferous 764

forest by means of airborne laser scanner data. Scan J For Res. 19(6):529–542.

765 766

Hill RA, Broughton RK. 2009. Mapping the understorey of deciduous woodland from leaf-on 767

and leaf-off airborne LiDAR data: A case study in lowland Britain. ISPRS. 64(2):223–233.

768 769

Hou Z, Xu Q, Vauhkonen J, Maltamo M, Tokola T. 2016. Species-specific combination and 770

calibration between area-based and tree-based diameter distributions using airborne laser scan-771

ning. Can J For Res. 46(6):753–765.

772 773

Hynynen J, Ojansuu R, Hökkä H, Siipilehto J, Salminen H, Haapala P. 2002. Models for pre-774

dicting stand development in MELA system. Metsäntutkimuslaitoksen Tiedonantoja. 835.

775

Korhonen L, Peuhkurinen J, Malinen J, Suvanto A, Maltamo M, Packalén P, Kangas J. 2008.

780

The use of airborne laser scanning to estimate sawlog volumes. Forestry 81(4):499–510.

781 782

Korpela I, Ørka H, Maltamo M, Tokola T, Hyyppä J. 2010. Tree species classification using 783

airborne LiDAR–effects of stand and tree parameters, downsizing of training set, intensity nor-784

malization, and sensor type. Silva Fenn. 44(2):319–339.

785 786

Korpela I, Tuomola T, Välimäki E. 2007. Mapping forest plots: an efficient method combining 787

photogrammetry and field triangulation. Silva Fenn. 41(3):457–469.

788 789

Poudel KP, Flewelling JW, Temesgen H. 2018. Predicting volume and biomass change from 790

multi-temporal lidar sampling and remeasured field inventory data in Panther Creek watershed, 791

Oregon, USA. Forests 9:28.

792 793

Kukkonen M, Maltamo M, Korhonen L, Packalen P. 2019. Multispectral Airborne LiDAR Data 794

in the Prediction of Boreal Tree Species Composition. IEEEE Trans Geosci Remote Sens:1–

795 10.

796 797

Laasasenaho J. 1982. Taper curve and volume functions for pine, spruce and birch. Commun 798

Inst For Fenn. 108:1–74.

799 800

Latifi H, Nothdurft A, Koch B. 2010. Non-parametric prediction and mapping of standing tim-801

ber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived 802

predictors. Forestry 83(4):395–407.

803 804

Maltamo M, Næsset E, Bollandsås OM, Gobakken T, Packalén P. 2009. Non-parametric pre-805

diction of diameter distributions using airborne laser scanner data. Scan J For Res. 24(6):541–

806

553.

807 808

Maltamo M, Packalen P. 2014. Species-specific management inventory in Finland. In: Maltamo 809

M, Naesset E, Vauhkonen J, editors. Forestry applications of airborne laser scanning – concepts 810

and case studies. Managing forest ecosystems. Vol. 27. Dordrecht: Springer; p. 241–252.

811 812

Maltamo M, Ørka HO, Bollandsås OM, Gobakken T, Næsset E. 2015. Using pre-classification 813

to improve the accuracy of species-specific forest attribute estimates from airborne laser scan-814

ner data and aerial images. Scan J For Res. 30(4):336–345.

815 816

Maltamo M, Mehtätalo L, Valbuena R, Vauhkonen J, Packalen P. 2017. Airborne laser scan-817

ning for tree diameter distribution modelling: a comparison of different modelling alternatives 818

in a tropical single-species plantation. Forestry 91(1):121–131.

819 820

McCarley TR, Kolden CA, Vaillant NM, Hudak AT, Smith AMS, Wing BM, Kellogg BS, 821

Kreitler J. 2017. Multi-temporal LiDAR and Landsat quantification of fire-induced changes to 822

forest structure. Remote Sens Environ. 191:419–432.

823 824

Moeur M, Stage AR. 1995. Most similar neighbor: an improved sampling inference procedure 825

for natural resource planning. For Sci. 41(2):337–359.

826 827

Næsset E, Gobakken T. 2005. Estimating forest growth using canopy metrics derived from 828

airborne laser scanner data. Remote Sens Environ. 96(3):453–465.

829 830

Næsset E. 2014. Area-based inventory in Norway – from innovation to an operational reality 831

In: Maltamo M, Naesset E, Vauhkonen J, editors. Forestry applications of airborne laser scan-832

ning – concepts and case studies. Managing forest ecosystems. Vol. 27. Dordrecht: Springer;

833

p. 215–240.

834 835

Natural Resources Institute Finland. 2013. Volume of pine, spruce and birch (data version 15).

836

[Accessed 27.4. 2017]. http://kartta.luke.fi/opendata/valinta-en.html 837

838

Nyström M, Holmgren J, Olsson H. 2013. Change detection of mountain birch using multi-839

temporal ALS point clouds. Remote Sens Lett. 4(2):190–199.

840 841

Nyström M, Lindgren N, Wallerman J, Grafström A, Muszta A, Nyström K, Ståhl G, Olsson 842

H, editors. 2015. Data assimilation in forest inventory, first empirical results using ALS data.

843

Proceedings of SilviLaser 2015. La Grand Motte, France: Irstea-UMR TETIS, IGN-LIF and 844

Société Française de Photogrammétrie et de Télédétection (SFPT). p. 174–176.

845 846

Packalén P, Maltamo M. 2007. The k-MSN method for the prediction of species-specific stand 847

attributes using airborne laser scanning and aerial photographs. Remote Sens Environ 848

109(3):328–341.

849 850

Packalén P, Maltamo M. 2008. Estimation of species-specific diameter distributions using air-851

borne laser scanning and aerial photographs. Can J For Res. 38(7):1750–1760.

852 853

Packalén P, Suvanto A, Maltamo M. 2009. A two stage method to estimate species-specific 854

growing stock. Photogramm Eng Remote 75:1451–1460.

855 856

Packalén P, Temesgen H, Maltamo M. 2012. Variable selection strategies for nearest neighbor 857

Peuhkurinen J, Maltamo M, Malinen J. 2008. Estimating species-specific diameter distributions 861

and saw log recoveries of boreal forests from airborne laser scanning data and aerial photo-862

graphs: a distribution-based approach. Silva Fenn. 42(4):625–641.

863 864

Räty J, Vauhkonen J, Maltamo M, Tokola T. 2016. On the potential to predetermine dominant 865

tree species based on sparse-density airborne laser scanning data for improving subsequent pre-866

dictions of species-specific timber volumes. Forest Ecosyst. 3(1):1–17.

867 868

Räty J, Packalen P, Maltamo M. 2018. Comparing nearest neighbor configurations in the pre-869

diction of species-specific diameter distributions. Ann For Sci. 75(1):1–16.

870 871

Shang C, Treitz P, Caspersen J, Jones T. 2017. Estimating stem diameter distributions in a 872

management context for a tolerant hardwood forest using ALS height and intensity data. Can J 873

Remote Sens. 43(1):79–94.

874 875

Solberg S, Næsset E, Hanssen KH, Christiansen E. 2006. Mapping defoliation during a severe 876

insect attack on Scots pine using airborne laser scanning. Remote Sens Environ. 102(3):364–

877

376.

878 879

St-Onge B, Budei BC. 2015. Individual tree species identification using the multispectral return 880

intensities of the Optech Titan LiDAR system. Proceedings of SilviLaser 2015. p. 71–73.

881 882

Thomas V, Oliver RD, Lim K, Woods M. 2008. LiDAR and weibull modeling of diameter and 883

basal area. Forest Chron 84(6):866–875.

884 885

Tompalski P, Coops NC, Marshall PL, White JC, Wulder MA, Bailey T. 2018. Combining 886

multi-date airborne laser scanning and digital aerial photogrammetric data for forest growth and 887

yield modelling. Remote Sens. 10(2):347.

888 889

Vastaranta M, Korpela I, Uotila A, Hovi A, Holopainen M. 2012. Mapping of snow-damaged 890

trees based on bitemporal airborne LiDAR data. Eur J For Res. 131(4):1217–1228.

891 892

Vauhkonen J, Packalen P, Malinen J, Pitkänen J, Maltamo M. 2014. Airborne laser scanning-893

based decision support for wood procurement planning. Scan J For Res. 29(sup1):132–143.

894 895

Villikka M, Packalén P, Maltamo M. 2012. The suitability of leaf-off airborne laser scanning 896

data in an area-based forest inventory of coniferous and deciduous trees. Silva Fenn. 46(1):99–

897

110.

898 899

White JC, Arnett JT, Wulder MA, Tompalski P, Coops NC. 2015. Evaluating the impact of 900

leaf-on and leaf-off airborne laser scanning data on the estimation of forest inventory attributes 901

with the area-based approach. Can J For Res. 45(11):1498–1513.

902 903

White JC, Wulder MA, Varhola A, Vastaranta M, Coops NC, Cook BD, Pitt D, Woods M.

904

2013. A best practices guide for generating forest inventory attributes from airborne laser scan-905

ning data using an area-based approach. Forest Chron. 89(6):722–723.

906 907

Yu X, Hyyppä J, Kaartinen H, Maltamo M. 2004. Automatic detection of harvested trees and 908

determination of forest growth using airborne laser scanning. Remote Sens Environ. 90(4):451–

909

462.

910 911

Yu X, Hyyppä J, Kaartinen H, Hyyppä H, Maltamo M, Rönnholm P, editors. 2005. Measuring 912

the growth of individual trees using multi-temporal airborne laser scanning point clouds. Pro-913

ceedings of ISPRS Workshop Laser Scanning. vol. 2005. p. 204–208.

914 915

Yu X, Hyyppä J, Litkey P, Kaartinen H, Vastaranta M, Holopainen M. 2017. Single-Sensor 916

Solution to Tree Species Classification Using Multispectral Airborne Laser Scanning. Remote 917

Sens. 9(2):108.

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932

Appendix 933

Table 7. This table shows the minimum, maximum, and standard deviation of root mean 934

squared error (RMSE) values (%) among the 50 prediction iterations when the SimLog response 935

configuration was used.

936

Dominant logwood Minor logwood Total logwood

Min Max Sd Min Max Sd Min Max Sd

M-ALS 37.8 50.0 2.5 219.2 399.9 43.1 26.3 40.3 3.3

M-ALS + AI 32.4 43.7 2.5 128.6 332.5 42.0 21.1 37.7 3.3

M-ALS + S16-ALS 28.4 42.3 2.8 96.3 230.5 26.4 19.7 27.5 1.7 M-ALS + S11-ALS 29.6 41.8 2.3 89.8 249.5 31.2 22.1 30.2 1.9

M-CH2-ALS 41.1 50.2 2.2 300.3 393.2 23.6 33.3 41.0 2.0

M-CH2-ALS + AI 32.6 44.3 2.4 116.7 306.8 40.5 23.5 35.4 2.6 M-CH2-ALS + S16-ALS 29.4 39.5 2.3 105.3 211.6 22.3 20.0 28.3 1.6 M-CH2-ALS + S11-ALS 29.4 40.7 2.4 82.6 202.1 23.1 22.0 32.3 1.9

S16-ALS 34.8 47.4 2.8 129.5 223.3 20.1 20.7 32.1 1.8

S16-ALS + AI 30.3 45.9 3.2 94.1 242.0 22.7 21.1 29.1 1.8

S16-ALS + S11-ALS 32.2 44.9 3.0 119.2 199.9 17.6 20.8 28.5 1.9 937

Table 8. This table shows the minimum, maximum, and standard deviation of root mean 938

squared error (RMSE) values (%) among the 50 prediction iterations when the SepSM response 939

configuration was used.

940

Dominant logwood Minor logwood Total logwood

Min Max Sd Min Max Sd Min Max Sd

M-ALS 39.2 47.7 2.1 158.3 348.4 41.9 26.0 42.1 3.2

M-ALS + AI 32.9 45.5 2.5 118.0 308.8 45.0 25.7 41.8 3.5

M-ALS + S16-ALS 32.7 43.2 2.1 117.1 233.0 30.1 24.5 36.8 2.5 M-ALS + S11-ALS 31.9 40.6 1.9 84.1 210.0 27.1 24.4 38.6 2.6

M-CH2-ALS 38.2 46.1 1.8 206.3 380.2 39.3 29.0 40.6 2.9

M-CH2-ALS + AI 30.2 42.9 2.6 86.2 261.0 38.8 24.1 37.3 3.1 M-CH2-ALS + S16-ALS 33.2 44.6 2.4 89.2 285.3 37.6 24.8 35.9 2.5 M-CH2-ALS + S11-ALS 30.7 42.0 2.6 93.9 230.5 29.0 22.2 32.8 2.5

S16-ALS 33.8 47.5 3.4 147.5 274.8 35.9 25.5 37.8 3.2

S16-ALS + AI 31.7 44.5 2.9 100.2 252.9 32.2 25.4 38.9 3.1

S16-ALS + S11-ALS 32.7 45.8 3.3 113.3 259.9 33.1 25.7 36.1 2.7 941

942 943 944

Tables and captions for the tables 945

946

Table 1. Means and standard deviations of the main forest attributes in the training and valida-947

tion data. DGM = diameter of basal area median tree.

948

Training Validation

Forest attribute Tree species Mean Sd Mean Sd

Volume (m3∙ha-1) Pine 76.0 83.4 77.1 90.7

Spruce 87.7 109.1 87.5 109.9

Deciduous 22.8 36.1 41.0 62.2

Total 186.4 100.4 205.6 94.6

Logwood volume (m3∙ha-1) Pine 46.3 61.3 50.3 67.9

Spruce 55.4 90.6 57.7 94.2

Deciduous 5.8 16.4 17.7 40.6

Total 107.5 98.5 125.6 101.1

Basal area (m2∙ha-1) Pine 8.8 9.1 8.6 9.7

Spruce 9.9 10.5 9.8 10.3

Deciduous 2.9 4.2 4.4 5.9

Total 21.6 8.2 22.8 7.7

DGM (cm) Pine 21.0 6.5 22.2 6.4

Spruce 17.1 8.4 17.8 9.8

Deciduous 14.8 7.5 16.8 8.5

949 950 951 952 953 954 955 956 957 958

Table 2. Bucking parameters used for the logwood calculations.

959

Tree group Logwood minimum Diameter (cm)

Logwood minimum length (m)

Logwood maximum length (m)

Pine 15 3.7 6.1

Spruce 16 3.7 6.1

Deciduous 18 3.7 6.1

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979

Table 3. Summary of the parameters used in airborne laser scanning (ALS) acquisitions for 980

multispectral leaf-on (M-ALS), unispectral leaf-off (S16-ALS), and older unispectral leaf-off 981

(S11-ALS) ALS data.

982

Airborne laser scanning data

M-ALS S16-ALS S11-ALS

Year 2016 2016 2011

Type Multispectral leaf-on Unispectral leaf-off Unispectral leaf-off

Device Optech Titan Leica ALS60 Leica ALS60

Flying altitude (m) 850 2400 2200

Scanning half angle (deg) 20 20 20

Lateral overlap 55 % 20 % 20 %

Pulse density (m-2) 13.5 0.9 0.8

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000

Table 4. Summary of the metrics used as predictor variables in nearest neighbor (NN) imputa-1001

tions.

1002

Metric ALS data Aerial Images Description

Mean x x Mean of echo heights or spectral values

computed from aerial images.

Standard deviation x x Standard deviation of echo heights or spectral values computed from aerial images.

Maximum x x Maximum of echo heights or spectral

values computed from aerial images.

Minimum x x Minimum of echo heights or spectral values computed from aerial images

Kurtosis x Kurtosis of echo heights or intensities.

Skewness x Skewness of echo heights or intensities.

Height percentiles x Height percentiles for 5, 10, …, 95 %.

Densities x Densities for 0.5, 2, 5, 10, 15, and 20 m

Echo proportion x Proportions for echo categories: first, last, and intermediate.

Intensity percentiles x Intensity percentiles for 5, 10, …, 95 %.

1Ratio of height

per-centiles x

Ratio metrics between the height percentiles of separate ALS channels.

Computed for height percentiles of 60, 65, …, 95 %.

1Ratio of intensity percentiles

x Ratio metrics between the intensity percentiles of separate ALS channels.

Computed for intensity percentiles of 55, 60, …, 95 %.

1 When using a combination in which multispectral ALS data is included, a metric from the second channel of

1003

multispectral ALS is as a numerator.

1004

Note: All ALS metrics are computed separately for the channels of multispectral ALS and for unispectral ALS

1005

datasets. All ALS metrics are computed separately for echo categories: first, last, and intermediate. Aerial image

1006

metrics are computed for spectral bands of red, green, blue and near-infrared.

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

Table 5. Relative root mean squared error (RMSE; %) and mean difference (BIAS; %) values 1018

(in parenthesis) for the prediction of dominant, minor, and total logwood volumes using Sim-1019

Log with different remote sensing data combinations. Please see Appendix for detailed statistics 1020

related to the RMSE values among the iterations.

1021

Data combination Dominant logwood Minor logwood Total logwood

M-ALS 45.6 (-21.7) 337.2 (141.2) 34.8 (1.7)

M-ALS + AI 38.6 (-17.7) 219.8 (87.2) 27.2 (-2.7)

M-ALS + S16-ALS 34.3 (-15.6) 136.1 (39.0) 23.2 (-7.7)

M-ALS + S11-ALS 34.7 (-15.1) 126.2 (35.6) 25.3 (-7.9)

M-CH2-ALS 46.6 (-22.1) 359.2 (146.6) 36.9 (2.1)

M-CH2-ALS + AI 37.9 (-17.6) 219.8 (86.2) 27.4 (-2.7)

M-CH2-ALS + S16-ALS 34.0 (-15.9) 134.1 (39.7) 23.1 (-8.0) M-CH2-ALS + S11-ALS 34.5 (-15.5) 122.1 (32.3) 25.7 (-8.7)

S16-ALS 39.9 (-19.6) 165.6 (47.6) 25.0 (-10.0)

S16-ALS + AI 38.7 (-19.1) 152.5 (41.0) 25.1 (-10.5)

S16-ALS + S11-ALS 38.7 (-19.0) 148.6 (41.6) 24.5 (-10.4) Note: 30 x 30 m plots were used for the validation. For the abbreviations of remote sensing 1022

data combinations, please refer to section 2.3.

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

Table 6. Relative root mean squared error (RMSE; %) and mean difference (BIAS; %) values 1038

(in parenthesis) for the prediction of dominant, minor, and total logwood volumes using SepSM 1039

with different remote sensing data combinations. The presented values are as a mean of 50 1040

iterations. Please see Appendix for detailed statistics related to the RMSE values among the 1041

iterations.

1042

Data combination Dominant logwood Minor logwood Total logwood

M-ALS 43.3 (-19.2) 247.1 (101.5) 33.7 (-0.8)

M-ALS + AI 37.6 (-15.1) 207.0 (77.0) 33.3 (0.1)

M-ALS + S16-ALS 37.9 (-17.4) 157.7 (55.9) 29.3 (-3.8)

M-ALS + S11-ALS 36.3 (-15.3) 141.9 (45.2) 28.7 (-2.3)

M-CH2-ALS 42.6 (-19.2) 278.3 (114.4) 35.3 (-0.1)

M-CH2-ALS + AI 35.9 (-13.9) 150.8 (51.7) 29.8 (-1.6)

M-CH2-ALS + S16-ALS 38.1 (-17.8) 150.7 (49.9) 29.9 (-4.8) M-CH2-ALS + S11-ALS 35.8 (-15.3) 137.6 (45.3) 27.3 (-2.8)

S16-ALS 40.4 (-18.8) 209.7 (73.4) 30.8 (-1.8)

S16-ALS + AI 38.1 (-17.5) 159.2 (44.2) 31.1 (-4.3)

S16-ALS + S11-ALS 39.8 (-18.6) 183.6 (62.8) 30.9 (-2.8) Note: 30 x 30 m plots were used for the validation. For the abbreviations of remote sensing 1043

data combinations, please refer to section 2.3.

1044 1045 1046 1047