• Ei tuloksia

1. G. M. Mikheev, V. Ya. Kogai, T. N. Mogileva, K. G. Mikheev, A. S. Saushin, Yu. P. Svirko, ”Photon helicity driven surface photocurrent in CuSe films”, Applied Physics Letters, vol. 115, no. 6, pp. 061101, (2019).

2. G. M. Mikheev, V. Ya. Kogai, K. G. Mikheev, T. N. Mogileva, A. S. Saushin, Yu. P. Svirko, ”Polarization-sensitive photoresponse of the CuSe/Se nanocomposite prepared by vacuum thermal deposition”, Materials Today Communications, vol. 21, pp. 100656, (2019).

3. G. M. Mikheev, V. A. Aleksandrov, A. S. Saushin, ”Circular photogalvanic effect observed in silver-palladium film resistors”, Technical Physics Letters, vol. 37, no. 6, pp. 551–555, (2011).

4. A. S. Saushin, K. G. Mikheev, E. V. Aleksandrovich, V. S. Pozdnyakov, G. M.

Mikheev, ”Polyarizatsionno-chuvstvitel'nyy fototok v rezistivnykh plonkakh Ag/Pd:

vliyaniye vremeni i temperatury vzhiganiya pasty [Polarization-sensitive photocurrent in Ag/Pd resistive films: the effect of time and temperature of paste firing]”, Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy], vol. 17, pp. 4, pp. 642–650, (2015).

5. A. S. Saushin, G. M. Mikheev, ”Vliyaniye polyarizatsii izlucheniya na parametry fotovol'taicheskikh impul'sov v nanostrukturirovanykh serebro-palladiyevykh rezistivnykh plonkakh [Influence of radiation polarization on the parameters of photovoltaic pulses in nanostructured silver-palladium resistive films]”, Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy], vol. 15, no. 1, pp.

127–137, (2013).

6. A. S. Saushin, R. G. Zonov, E. V. Aleksandrovich, N. V. Kostenkov, G. M. Mikheev,

”Vliyaniye temperaturnogo vozdeystviya v vakuume na polyarizatsionno-oriyentatsionno chuvstvitel'nyy fototok v nanokompozitnykh Ag/Pd plonkakh [Influence of temperature action in vacuum on polarization-orientation-sensitive photocurrent in nanocomposite Ag/Pd films]”, Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy], vol. 21, no. 1, pp. 75–85, (2019).

7. E. L. Ivchenko, Optical spectroscopy of semiconductor nanostructures, Springer Berlin Heidelberg, (2004).

8. V. I. Belinicher, B. I. Sturman, ”The photogalvanic effect in media lacking a center of symmetry”, Soviet Physics – Uspekhi, vol. 23, no. 3, pp. 199–223, (1980).

9. V. L. Alperovich, V. I. Belinicher, V. N. Novikov, A. S. Terekhov, ”Surface photovoltaic effect in solids. Theory and experiment for interband transitions in gallium arsenide”, Journal of Experimental and Theoretical Physics, vol. 53, no. 6, pp. 1201-1208, (1981).

10. A. M. Danishevskii, A. A. Kastal'skii, S. M. Ryvkin, I. D. Yaroshetskii, ”Dragging of free carriers by photons in direct interband transitions”, Journal of Experimental and Theoretical Physics, vol. 58, no. 2, pp. 544–550, (1970).

11. V. A. Shalygin, M. D. Moldavskaya, S. N. Danilov, I. I. Farbshtein, L. E. Golub,

”Circular photon drag effect in bulk tellurium”, Physical Review B, vol. 93, no. 4, pp. 045207, (2016).

12. M. M. Glazov, S. D. Ganichev, ”High frequency electric field induced nonlinear

116

effects in graphene”, Physics Reports, vol. 535, no. 3, pp. 101–138, (2014).

13. E. L. Ivchenko, ”Circular photogalvanic effect in nanostructures”, Physics-Uspekhi, vol. 172, no. 12, pp. 1461–1465, (2002).

14. V. I. Belinicher, I. F. Kanaev, V. K. Malinovskii, B. I. Sturman, ”Fotoindutsirovannyye toki v segnetoelektrikakh [Photo-induced currents in ferroelectrics]”, Autometry [Avtometriya], vol. 4, pp. 23–28, (1976).

15. V. L. Gurevich, R. Laiho, ”Photomagnetism of metals: microscopic theory of the photoinduced surface current”, Physical Review B, vol. 48, no. 11, pp. 8307–8315, (1993).

16. V. L. Gurevich, R. Laiho, ”Photomagnetism of metals. first observation of dependence on polarization of light”, Physics of the Solid State, vol. 42, no. 10, pp. 1762–1767, (2000).

17. R. Ya. Rasulov, Yu. E. Salenko, D. Kambarov, ”Linear photovoltaic effect in gyrotropic crystals”, Semiconductors, vol. 36, pp. 141–147, (2002).

18. C. R. Hammond, R. J. Jenkins, C. R. Stanley, ”Optical rectification in tellurium from 10.6 mkm”, Opto-electronics, vol. 4, pp. 189–196, (1972).

19. A. F. Gibson, C. B. Hatch, M. F. Kimmitt, S. Kothari, A. Serafetinides, ”Optical rectification and photon drag in n-type gallium phosphide”, Journal of Physics C: Solid State Physics, vol. 10, pp. 905–916, (1977).

20. M. P. Petrov, A. I. Grachev, ”Photogalvanic effects in bismuth silicate (Bi12SiO20)”, JETP Letters, vol. 30, no. 1, pp. 18–21, (1979).

21. P. G. Kazanskii, A. M. Prokhorov, V. A. Chernykh, ”Direct observation of a circular photocurrent in lithium niobate”, JETP Letters, vol. 41, no. 9, pp. 451-454, (1985).

22. S. D. Ganichev, U. Rössler, W. Prettl, E. L. Ivchenko, V. V. Belkov, R. Neumann, K.

Brunner, G. Abstreiter, ”Removal of spin degeneracy in p-SiGe quantum wells demonstrated by spin photocurrents”, Physical Review B, vol. 66, pp. 075328, (2002).

23. J. Yu, Yo. Chen, Sh. Cheng, Yu. Lai, ”Spectra of circular and linear photogalvanic effect at inter-band excitation in In0.15Ga0.85As/Al0.3Ga0.7As multiple quantum wells”, Physica E: Low-Dimensional Systems and Nanostructures, vol. 49, pp. 92–96, (2013).

24. S. D. Ganichev, H. Ketterl, W. Prettl, E. L. Ivchenko, L. E. Vorobjev, ”Circular photogalvanic effect induced by monopolar spin orientation in p-GaAs/AlGaAs multiple-quantum wells”, Applied Physics Letters, vol. 77, no. 20, pp. 3146–3148, (2000).

25. V. V. Bel'kov, S. D. Ganichev, E. L. Ivchenko, S. A. Tarasenko, W. Weber, S.

Giglberger, M. Olteanu, H. P. Tranitz, S. N. Danilov, P. Schneider, W. Wegscheider, D. Weiss, W. Prettl, “Magneto-Gyrotropic Photogalvanic Effects in Semiconductor Quantum Wells”, Journal of Physics: Condensed Matter, vol. 17, pp. 3405–3428, (2005).

26. Z. Zhang, R. Zhang, B. Liu, Z. L. Xie, X. Q. Xiu, P. Han, H. Lu, Y. D. Zheng, Y. H.

Chen, C. G. Tang, Z. G. Wang, ”Circular photogalvanic effect at inter-band excitation in InN”, Solid State Communications, vol. 145, pp. 159–162, (2008).

27. J. X. Duan, N. Tang, J. D. Ye, F. H. Mei, K. L. Teo, Y. H. Chen, W. K. Ge, B. Shen,

”Anomalous circular photogalvanic effect of the spin-polarized two-dimensional electron gas in Mg0.2Zn0.8O/ZnO heterostructures at room temperature”, Applied Physics Letters, vol. 102, no. 19, pp. 192405, (2013).

28. S. A. Tarasenko, ”Orbital mechanism of the circular photogalvanic effect in quantum wells”, JETP Letters, vol. 85, no. 3, pp. 182–186, (2007).

29. E. L. Ivchenko, G. E. Pikus, ”New photogalvanic effect in gyrotropic crystalls”, JETP

117 Letters, vol. 27, no. 11, pp. 640–643, (1978).

30. V. M. Asnin, A. A. Bakun, A. M. Danishevskii, E. L. Ivchenko, G. E. Pikus, A. A. Rogachev, ”Circular photogalanic effect in optically active crystalls”, Solid State Communications, vol. 30, pp. 565–570, (1979).

31. V. V. Lemanov, S. Kh. Esayan, A. Yu. Maksimov, V. T. Gabrielyan, ”Circular photovoltaic effect in the ferroelectric Pb5Ge3O11”, JETP Letters, vol. 34, no. 8, pp. 423–

425, (1981).

32. A. V. Andrianov, I. D. Yaroshetskii, ”Magnetic-field-induced circular photovoltaic effect in seniconductors”, JETP Letters, vol. 40, no. 4, pp. 882-884, (1984).

33. V. I. Belinicher, ”Space-oscillating photocurrent in crystals without symmetrycenter”, Physics Letters A, vol. 66, no. 3, pp. 213–214, (1978).

34. S. G. Odulov, ”Spatially oscillating photovoltaic current in iron-doped lithium niobate crystals”, JETP Letters, vol. 35, no. 1, pp. 10–12, (1982).

35. N. I. Koroteev, ”Circular photovoltaic effect in optically active liquids”, JETP Letters, vol. 61, no. 2, pp. 87-90, (1995).

36. Z. Zhang, R. Zhang, Z. L. Xie, B. Liu, M. Li, D. Y. Fu, H. N. Fang, X. Q. Xiu, H. Lu, Y. D. Zheng, Y. H. Chen, C. G. Tang, Z. G. Wang, ”Observation of the surface circular photogalvanic effect in InN films”, Solid State Communications, vol. 149, pp. 1004–

1007, (2009).

37. S. D. Ganichev, W. Prettl, ”Spin photocurrents in quantum wells”, Journal of Physics:

Condensed Matter, vol. 15, pp. 935–983, (2003).

38. L. Fu, C. L. Kane, ”Topological insulators with inversion symmetry”, Physical Review B, vol. 76, no. 4, pp. 045302-–045316, (2007).

39. A. M. Essin, J. E. Moore, D. Vanderbilt, ”Magnetoelectric Polarizability and Axion Electrodynamics in Crystalline Insulators”, Physical Review Letters, vol. 102, pp.

146805-1-4, (2009).

40. X. Qi, R. Li, J. Zang, Sh. Zhang, ”Inducing a Magnetic Monopole with Topological Surface States”, Science, vol. 323, pp. 1184–1187, (2009).

41. P. Hosur, ”Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response”, Physical Review B, vol. 83, no. 3, pp. 035309, (2011).

42. D. V. Pshenichnyy, D. V. Zavyalov, ”Tsirkulyarnyy fotogal'vanicheskiy effekt v topologicheskikh izolyatorakh [Circular photovoltaic effect in topological insulators]”, News of VolgGTU [Izvestiya VolgGTU], vol. 11, no. 3, pp. 33–38, (2015).

43. K. N. Okada, N. Ogawa, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, M. Kawasaki, Yo. Tokura, ”Enhanced photogalvanic current in topological insulators via Fermi energy tuning”, Physical Review B, vol. 93, 081403, (2016).

44. J. W. Mciver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, N. Gedik, ”Control over topological insulator photocurrents with light polarization”, Nature Nanotechnology, vol. 7, no. 2, pp. 96–100, (2012).

45. C. Lau, Polarization Dependent Photocurrents in Thin Films of the Topological Insulator Bi2Se3. Massachusetts Institute of Technology, 2012.

46. V. L. Alperovich, V. I. Belinicher, V. N. Novikov, A. S. Terekhov, ”Surface photovoltaic effect in gallium arsenide”, JETP Letters, vol. 31, pp. 546-549, (1980).

47. L. I. Magarill, V. M. Entin, ”Surface photogalvanic effect in metals”, Journal of Experimental and Theoretical Physics, vol. 54, no. 3, pp. 531–535, (1982).

48. G. M. Mikheev, A. S. Saushin, V. M. Styapshin, Yu. P. Svirko, ”Interplay of the photon drag and the surface photogalvanic effects in the metal-semiconductor

118

nanocomposite”, Scientific Reports, vol. 8, pp. 8644, (2018).

49. J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, S. D. Ganichev, ”Dynamic Hall Effect Driven by Circularly Polarized Light in a Graphene Layer”, Physical Review Letters, vol. 105, no. 22, pp. 227402–227406, (2010).

50. A. F. Gibson, M. F. Kimmitt, A. C. Walker, ”Photon drag in germanium”, Physical Review Letters, vol. 17, no. 2, pp. 75–77, (1970).

51. S. Luryi, ”Photon-Drag Effect in Intersubband Absorption by a Two-Dimensional Electron Gas”, Physical Review Letters, vol. 58, no. 21, pp. 2263–2266, (1987).

52. A. A. Grinberg, S. Luryi, ”Comment on ’Light-induced drift of quantum-confined electrons in semiconductor heterostructures’”, Physical Review Letters, vol. 67, no. 1.

pp. 156, (1991).

53. V. M. Shalaev, C. Douketis, M. Moskovits, ”Light-induced drift of electrons in metals”, Physics Letters A, vol. 169, no. 3, pp. 205–210, (1992).

54. P. M. Valov, B. S. Ryvkin, S. M. Ryvkin, I. D. Yaroshetskii, ”An Anisotropic Photon Drag Effect in Nonspherical-Band Cubic Semiconductors”, Physica Status Solidi B, vol. 53, no. 1. pp. 65–70, (1972).

55. A. A. Grinberg, ”Theory of the photoelectric and photomagnetic effec1s produced by light pressure”, Journal of Experimental and Theoretical Physics, vol. 31, no. 3, pp. 531–

534, (1970).

56. S. D. Ganichev, S. A. Emel'yanov, I. D. Yaroshetskii, ”Spectral sign inversion of photon drag at far-IR wavelengths”, JETP letters, vol. 35, no. 7, pp. 297–299, (1982).

57. S. D. Ganichev, E. L. Ivchenko, R. Ya. Rasulov, I. D.Yaroshetskii, B. Ya. Averbukh,

”Linear-circular dichroism of photon drag effect at nonlinear intersubband absorption of light in p-type Ge”, Physics of Solid State, vol. 35, no. 1, pp. 104–108, (1993).

58. R. Ya. Rasulov, ”Linear-circular dichroism of multiphonon intersubband absorption in semiconductors”, Physics of Solid State, vol. 35, no. 6, pp. 843-845, (1993).

59. J. H. Yee, ”Quantum theory of photon-drag transport phenomena in solids and its application to tllurium crystall”, Physical Review B, vol. 9, no. 12, pp. 5209–5216, (1974).

60. G. Ribakovs, A. A. Gundjian, ”TEA CO2 laser radiation induced EMF’s in tellurium”, Journal of Applied Physics, vol. 48, no. 11, pp. 4601–4608, (1977).

61. E. V. Beregulin, P. M. Valov, S. M. Ryvkin, I. D. Yaroshetskii, I. S. Lisker, A. L. Pukshanskii, ”Dragging of electrons by light in semimetals”, JETP Letters, vol. 25, no. 2, pp. 113–116, (1977).

62. S. Marchetti, R. Simili, ”Photon drag detection of 10 μm radiation in Bi thin-films evaporated on amorphous substrates”, Il Nuovo Cimento D, vol. 9, no. 3, pp. 311–318, (1987).

63. A. D. Wieck, H. Sigg, K. Ploog, ”Observation of resonant photon drag in a two-dimensional electron gas”, Physical Review Letters, vol. 64, no. 4, pp. 463–466, (1990).

64. A. P. Dmitriev, S. A. Emel'yanov, S. V. Ivanov, P. S. Kop'ev, Ya. V. Terent'ev, I. D. Yaroshetskii, ”Drag photocurrent in a 2D electron gas near the cyclotron resonance and its first subharmonic”, JETP Letters, vol. 54, no. 8, pp. 462–466, (1991).

65. O. Keller, ”Photon drag in a single-level metallic quantum well”, Physical Review B, vol. 48, no. 7, pp. 4786–4798, (1993).

119 66. E. V. Beregulin, P. M. Voronov, S. V. Ivanov, P. S. Kop'ev, I. D. Yaroshetskii,

”Experimental observation of drag of 2D electrons by far-IR light”, JETP Letters, vol. 59, no. 2, pp. 83–85, (1994).

67. H. Sigg, M. H. Kwakernaak, B. Margotte, D. Emi, P. Van Son, K. Kohler, ”Ultrafast far-infrared GaAs/AlGaAs photon drag detector in microwave transmittion line topology”, Applied Physics Letters, vol. 67, no. 19, pp. 2827–2829, (1995).

68. C. Rodrigues, A. L. A. Fonseca, D. A. Agrello, O. A. C. Nunes, ”The phonon-assisted photon-drag effect in a two-dimensional semiconductor quantum-well structure”, Superlattices and Microstructures, vol. 29, no. 1, pp. 33–42, (2001).

69. R. A. Baltrameyunas, Yu. Yu. Vaitkus, V. Gavryushin, ”Light absorbtion by nonequilibrium, two-photon-generated, free and localized carriers in ZnTe single crystals”, Journal of Experimental and Theoretical Physics, vol. 60, no. 1, pp. 43–48, (1984).

70. N. Noginova, V. Rono, F. J. Bezares, J. D. Caldwell, ”Plasmon drag effect in metal nanostructures”, New Journal of Physics, vol. 15, 113061, (2013).

71. T. Hatano, B. Nishikawa, M. Iwanaga, T. Ishihara, ”Optical rectification effect in 1D metallic photonic crystal slabs with asymmetric unit cell”, Optics Express, vol. 16, no. 11, pp. 8236–8241, (2008).

72. H. Kurosawa, T. Ishihara, ”Surface plasmon drag effect in a dielectrically modulated metallic thin film”, Optics Express, vol. 20, no. 2, pp. 1561-1574, (2012).

73. M. Akbari, T. Ishihara, ”Polarization dependence of transverse photo-induced voltage in gold thin film with random nanoholes”, Optics Express, vol. 25, no. 3, pp. 2143-2152, (2017).

74. M. Akbari, J. Gao, X. Yang, ”Generation of transverse photo-induced voltage in plasmonic metasurfaces of triangle holes”, Optics Express, vol. 26, no. 16, pp. 21194–

21203, (2018).

75. S. V. Kryuchkov, E. I. Kukhar, M. N. Zolotykh, ”Effect of the charge dragging in a graphene-based superlattice under a constant electric field”, Bulletin of the Russian Academy of Sciences: Physics, vol. 75, no. 12. pp. 1582–1584, (2011).

76. V. M. Asnin, A. A. Bakun, A. M. Danishevskii, E. L. Ivchenko, G. E. Pikus, A. A. Rogachev, ”Observation of a photo-emf that depends on the sign of the circular polarization of the light”, JETP Letters, vol. 28, no. 2, pp. 80–84, (1978).

77. V. I. Belinicher, ” On the mechanisms underlying the circular drag effect”, Soviet Physics of the Solid State, vol. 23, no. 11, pp. 3461–3463, (1981).

78. C. Jiang, V. A. Shalygin, V. Yu. Panevin, S. N. Danilov, M. M. Glazov, R. Yakimova, S. Lara-Avila, S. Kubatkin, S. D. Ganichev, ”Helicity-dependent photocurrents in graphene layers excited by midinfrared radiation of a CO2 laser”, Physical Review B, vol. 84, no. 12, pp. 125429, (2011).

79. V. A. Shalygin, H. Diehl, Ch. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, Ch. Gerl, W. Wegscheider, W. Prettl, S. D. Ganichev, ”Spin photocurrent and circular photon drag effect in (110)-grown quantum well structures”, JETP Letters, vol. 84, no. 10, pp. 666–672, (2006).

80. T. Hatano, T. Ishihara, S. G. Tikhodeev, N. A. Gippius, ”Transverse photovoltage induced by circularly polarized light”, Physical Review Letters, vol. 103, no. 10, pp. 103906–103916, (2009).

81. M. Akbari, M. Onoda, T. Ishihara, ”Photo-induced voltage in nano-porous gold thin film”, Optics Express, vol. 23, no. 2, pp. 823–832, (2015).

120

82. V. Kondratyev, ”Preimushchestva i nedostatki rezistorov standartnogo tipa [Advantages and Disadvantages of Standard Type Resistors]”, Elektronnyye komponenty [Electronic components], no. 11, pp. 81–82, (2010).

83. J. Larry, R. Rosenberg, R. Uhler, ”Thick-film Technology: An Introduction to the Materials”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 3, no. 2, pp. 211–225, (1980).

84. L. A. Koledov, Technology and Design of Integrated Circuits, Microprocessors and Microassemblies, St. Petersburg, (1984) [in Russian].

85. V. I. Smirnov, Physico-chemical bases of electronic technology, Ulyanovsk, (2005) [in Russian].

86. O. Yu. Goncharov,Thermodynamic assessment of high-temperature oxidation of Fe-Cr alloys in air”, Inorganic materials, vol. 40, no. 12, pp. 1295–1300, (2004).

87. N. A. Vatolin, G. K. Moiseev, B. G. Trusov, Thermodynamic Modeling in High Temperature Inorganic Systems, Moscow, (1994) [in Russian].

88. L. V. Gurvich, I. V. Veits, V. A. Medvedev, G. A. Bergman, V. S. Yungman, G. A. Khachkuruzov, V. S. Iorish, O. V. Dorofeeva, E. L. Osina, P. I. Tolmach, I. N. Przheval’skii, I. I. Nazarenko, N. M. Aristova, E. A. Shenyavskaya, L. N. Gorokhov, A. L. Rogatskii, M. E. Efimov, V. Ya. Leonidov, Yu. G. Khait, A. G. Efimova, S. E. Tomberg, A. V. Gusarov, N. E. Khandamirova, G. N. Yurkov, L. R. Fokin, L. F. Kuratova, V. G. Ryabova, Thermodynamic Properties of Individual Substances, Moscow,, vols. 1–4, (1978–1982) [in Russian].

89. G. M. Mikheev, A. S. Saushin, O. Yu. Goncharov, G. A. Dorofeev, F. Z. Gil'mutdinov, R. G. Zonov, ”Effect of the Burning Temperature on the Phase Composition , Photovoltaic Response, and Electrical Properties of Ag/Pd Resistive Films”, Physics of the Solid State, vol. 56, no. 11, pp. 2286–2293, (2014).

90. L. J. van der Pauw, ”A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape”, Philips technical review, vol. 13, no. 1, pp. 220–224, (1958).

91. R. B. Burlakov, ”Ogranicheniya geometrii obraztsov dlya izmereniya udel'nogo soprotivleniya metodom van der pau [Limitations of the geometry of samples for measuring resistivity by the van der Pauw method]”, Vestnik omskogo universiteta [Omsk University Bulletin], no. 2, pp. 28–31, (2016).

92. V. Deshpande, A. Kshirsagar, S. Rane, T. Seth, G. J. Phatak, U. P. Mulik, D. P. Amalnerkar, ”Properties of lead-free conductive thick films of co-precipitated silver-palladium powders”, Materials Chemistry and Physics, vol. 93, pp. 320–324, (2005).

93. K. G. Mikheev, A. S. Saushin, A. G. Nasibulin, G. M. Mikheev, ”Photon-drag in single-walled carbon nanotube and silver-palladium films : the effect of polarization”, Journal of Nanophotonics, vol. 10, pp. 012505–012509, (2016).

94. N. P. D’yakonova, E. V. Shelekhov, T. A. Sviridova, A. A. Reznikov, ”Quantitative X-ray Phase Analysis of Weakly Textured Objects”, Industrial laboratory, vol. 63, no. 10, pp. 17, (1997).

95. A. R. Denton, N. W. Ashcroft, ”Vegard’s law”, Physical Review A, vol. 43, no. 6, pp. 3161–3164, (1991).

96. G. A. Dorofeev, A. N. Streletskii, I. V. Povstugar, A. V. Protasov, E. P. Elsukov,

”Determination of nanoparticle sizes by X-ray diffraction”, Colloid journal, vol. 74, no. 6, pp. 675–685, (2012).

97. http://www.casaxps.com/ebooks/ebooks.htm

121 98. J. R. Ferraro, K. Nakamoto, C. W. Brown, Introductory Raman Spectroscopy: Second

Edition, Elsevier, (2003).

99. J. R. McBride, K. C. Hass, W. H. Weber, ”Resonance-Raman and lattice-dynamics studies of single-crystal PdO”, Physical Review B, vol. 44, no. 10, pp. 5016–5028, (1991).

100. L. Landau, E. Lifshitz, V. Berestetskii, L. Pitaevskii, Course of Theoretical Physics, Addison-Wesley, vol. 8, (2005).

101. S. V. Popov, Yu. P. Svirko, N. I. Zheludev, Susceptibility Tensors for Nonlinear Optics, Institute of Physics Publishing, Bristol and Philadelphia, (1995).

102. Y. R. Shen, The Principles of Nonlinear Optics, Wiley-science publication, University of california, Berkeley, (1984).

103. E. Normantas, E. Pikus, ”E. M. F. induced by entrainment current in a magnetic field”, Journal of Experimental and Theoretical Physics, vol. 67, no. 6, pp. 1169–1172, (1988).

104. C. R. Crowell, W. G. Spitzer, L. E. Howarth, E. E. LaBate, ”Attenuation Length Measurements of Hot Electrons and Hot Holes in Metal Films”, Physical Review, vol. 127, no. 6, pp. 2006–2015, (1962).

105. P. Winsemius, F. F. van Kampen, H. P. Lengkeek, C. G. мan Went, ”Temperature dependence of the optical properties of Au, Ag and Cu”, Journal of Physics F: Metal Physics, vol. 6, no. 8, pp. 1583–1606, (1976).

106. S. D. Ganichev, E. L. Ivchenko, W. Prettl, ”Photogalvanic effects in quantum wells”, Physica E, vol. 14, pp. 166–171, (2002).

107. Yu. Masunaka, T. Ishihara, ”Surface Plasmon Drag at Metasurfaces with Periodic Arch Structure”, The Proceedings of the 14th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials'2020), (2020).

108. H. G. Tompkins, E. A. Irene, Handbook of ellipsometry, William Andrew, (2005).

109. A. S. Saushin, R. G. Zonov, E. V. Aleksandrovich, K. G. Mikheev, R. Ali, V. V. Vanyukov, G. M. Mikheev, ”Influence of Electrochemical Hydrogenation on the Circular Photocurrent in the Ag/Pd Nanocomposite”, Physica Status Solidi B, vol. 256, no. 9, pp. 1800671, (2019).

110. G. M. Mikheev, D. I. Maleev, T. N. Mogileva, ”Efficient passively Q -switched single-frequency YAG:Nd3+ laser with polarized coupling out of radiation”, Quantum Electronics, vol. 19, no. 1, pp. 45–47, (1992).

111. R. W. Boyd, Nonlinear Optics, Elsevier, (2008).

112. F. Zernike, J. E. Midwinter, Applied Nonlinear Optics, Wiley-interscience, (1973).

113. O. Svelto, Principles of Lasers, Springer, (2010).

114. Yo. T. Lee, J. M. Lee, Ye. J. Kim, J H. Joe, W. Lee, ”Hydrogen gas sensing properties of PdO thin films with nano-sized cracks”, Nanotechnology, vol. 21, pp. 165503–

165505, (2010).

115. V. A. Aleksandrov, D. G. Kalyuzhnyi, E. V. Aleksandrovich, ”The effect of hydrogen on the conductivity of Ag-Pd thick film resistors”, Technical Physics Letters, vol. 39, no. 1, pp. 95-97, (2013).

116. J. H. Strait, G. Holland, W. Zhu, Ch. Zhang, B. R. Ilic, A. Agrawal, D. Pacifici, H. J.

Lezec,” Revisiting the Photon-Drag Effect in Metal Films”, Physical Review Letters, vol. 123, pp. 053903, (2019).

117. A. A. Snarskii, A. M. Pal'Ti, A. A. Ashcheulov, ”Anisotropic thermocouples article”, Semiconductors, vol. 31, no. 11, pp. 1281–1298, (1997).

122

118. L. Stubbe, B. Gossick, ”Measurements of the Dember Potential in Bulk Germanium”, Journal of Applied Physics, vol. 30, no. 4, pp. 507–508, (1959).

119. P. O. Nilsson, M. S. Shivaraman, ”Optical properties of PdO in the range of 0.5-5.4 eV”, Journal of Physics C: Solid State Physics, vol. 12, no. 7, pp. 1423–1427, (1979).

120. R. Ahuja, S. Auluck, B. Johansson, M. A. Khan, ”Optical properties of PdO and PtO”, Physical Review B, vol. 50, no. 4, pp. 2128–2132, (1994).

121. B. Delley, E. F. Steigmeier, ”Size dependence of band gaps in silicon nanostructures”, Applied Physics Letters, vol. 67, no. 16, pp. 2370–2372, (1995).

122. S. I. Sadovnikov, A. I. Gusev, ”Structure and properties of PbS films”, Journal of Alloys and Compounds, vol. 573, pp. 65–75, (2013).

123. J. W. Lee, D. Yo. Son, T. K. Ahn, H. W. Shin, I. Yo. Kim, S. J. Hwang, M. J. Ko, S. Sul, H. Han, N. G. Park, ”Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent”, Scientific Reports, vol. 3, pp. 1–8, (2013).

124. F. W. Sea, W. Huebner, ”Thermodynamic Modeling of Equilibrium Subsolidy Phase Relations in the Ag-Pd-O2 System”, Journal of the American Ceramic Society, vol. 74, no. 6, pp. 1349–1353, (1991).

125. G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, A. P. Volkov, Yu. P. Svirko, ”Quick-Response Film Photodetector of High-Power Laser Radiation Based on the Optical Rectification Effect”, Technical Physics, vol. 51, no. 9, pp. 1190-1196, (2006).

126. G. M. Mikheev, A. S. Saushin, V. V. Vanyukov, K. G. Mikheev, Yu. P. Svirko,

”Femtosecond circular photon drag effect in the Ag/Pd nanocomposite”, Nanoscale Research Letters, vol. 12, no. 39, pp. 1–7, (2017).

127. G. M. Mikheev, A. S. Saushin, V. V. Vanyukov, ”Helicity-dependent photocurrent in the resistive Ag/Pd films excited by IR laser radiation”, Quantum Electronics, vol. 45, no. 7, pp. 635-639, (2015).

128. S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. N. Murdin, S. D. Ganichev, ”Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures”, Journal of Applied Physics, vol. 105, pp. 013106–013113, (2009).

129. A. S. Saushin, K. G. Mikheev, V. M. Styapshin, G. M. Mikheev, ”Direct measurement of the circular photocurrent in the Ag/Pd nanocomposites”, Journal of Nanophotonics, vol. 11, no. 3, pp. 032508, (2017).

130. A. S. Saushin, R. G. Zonov, K. G. Mikheev, E. V. Aleksandrovich, G. M. Mikheev,

”The influence of PdO content on circular photocurrent in resistive Ag/Pd films”, Technical Physics Letters, vol. 42, no. 9, pp. 963–966, (2016).

123

9 APPENDIX: PERMISSION FOR FIGURES