• Ei tuloksia

APPENDIX: PERMISSION FOR FIGURES PUBLICATION

9.1 ADAPTED FIGURES

Figure 1.2

Adapted from [V. I. Belinicher, B. I. Sturman, ”The photogalvanic effect in media lacking a center of symmetry”, Soviet Physics – Uspekhi, vol. 23, no. 3, pp. 199–223, (1980).] with permission from Turpion.

Figure 1.5, Figure 2.5, Figure 5.5, Figure 5.9, Figure 5.11

Adapted from [G. M. Mikheev, A. S. Saushin, V. M. Styapshin, Yu. P. Svirko, ”In-terplay of the photon drag and the surface photogalvanic effects in the metal-semiconductor nanocomposite”, Scientific Reports, vol. 8, pp. 8644, (2018).] with permission from Springer Nature.

Figure 2.2

Adapted by permission from Springer Nature Physics of the Solid State [G. M. Mi-kheev, A. S. Saushin, O. Yu. Goncharov, G. A. Dorofeev, F. Z. Gil'mutdinov, R. G.

Zonov, ”Effect of the Burning Temperature on the Phase Composition , Photovolta-ic Response, and ElectrPhotovolta-ical Properties of Ag/Pd Resistive Films”, PhysPhotovolta-ics of the Solid State, vol. 56, no. 11, pp. 2286–2293, (2014)]. © 2014, advance online publication, 23.04.2014.

Figure 2.3

Adapted from [A. S. Saushin, K. G. Mikheev, E. V. Aleksandrovich, V. S.

Pozdnyakov, G. M. Mikheev, ”Polyarizatsionno-chuvstvitel'nyy fototok v rezistivnykh plonkakh Ag/Pd: vliyaniye vremeni i temperatury vzhiganiya pasty [Polarization-sensitive photocurrent in Ag/Pd resistive films: the effect of time and temperature of paste firing]”, Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy], vol. 17, pp. 4, pp. 642–650, (2015).] with permission of Udmurt Federal Research Center of the UB RAS.

Figure 2.4

Adapted from [K. G. Mikheev, A. S. Saushin, A. G. Nasibulin, G. M. Mikheev,

”Photon-drag in single-walled carbon nanotube and silver-palladium films : the effect of polarization”, Journal of Nanophotonics, vol. 10, pp. 012505–012509, (2016).]

with permission of SPIE.

124

Figure 4.4, Figure 4.10, Figure 5.1, Figure 6.1, Figure 6.12, Figure 6.14

Adapted from [A. S. Saushin, R. G. Zonov, E. V. Aleksandrovich, K. G. Mikheev, R.

Ali, V. V. Vanyukov, G. M. Mikheev, ”Influence of Electrochemical Hydrogenation on the Circular Photocurrent in the Ag/Pd Nanocomposite”, Physica Status Solidi B, vol. 256, no. 9, pp. 1800671, (2019).] with permission of John Wiley & Sons, Inc.

Figure 5.3

Adapted from [A. S. Saushin, G. M. Mikheev, ”Vliyaniye polyarizatsii izlucheniya na parametry fotovol'taicheskikh impul'sov v nanostrukturirovanykh serebro-palladiyevykh rezistivnykh plonkakh [Influence of radiation polarization on the parameters of photovoltaic pulses in nanostructured silver-palladium resistive films]”, Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy], vol. 15, no. 1, pp. 127–137, (2013).] with permission of Udmurt Federal Research Center of the UB RAS.

Figure 5.15

Adapted from [A. S. Saushin, R. G. Zonov, E. V. Aleksandrovich, N. V. Kostenkov, G. M. Mikheev, ”Vliyaniye temperaturnogo vozdeystviya v vakuume na polyarizatsionno-oriyentatsionno chuvstvitel'nyy fototok v nanokompozitnykh Ag/Pd plonkakh [Influence of temperature action in vacuum on polarization-orientation-sensitive photocurrent in nanocomposite Ag/Pd films]”, Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy], vol. 21, no. 1, pp. 75–85, (2019).]

with permission of Udmurt Federal Research Center of the UB RAS.

Figure 6.8

Adapted from [G. M. Mikheev, A. S. Saushin, V. V. Vanyukov, ”Helicity-dependent photocurrent in the resistive Ag/Pd films excited by IR laser radiation”, Quantum Electronics, vol. 45, no. 7, pp. 635-639, (2015).] with permission of Turpion.

Figure 6.10, Figure 6.13

Adapted by permission from Springer Nature Technical Physics Letters [A. S.

Saushin, R. G. Zonov, K. G. Mikheev, E. V. Aleksandrovich, G. M. Mikheev, ”The influence of PdO content on circular photocurrent in resistive Ag/Pd films”, Technical Physics Letters, vol. 42, no. 9, pp. 963–966, (2016)]. © 2016, advance online publication, 25.04.2016.

125

9.2 REPRINTED FIGURES

Figure 1.4

Reprinted from Solid State Communications, vol. 30, V. M. Asnin, A. A. Bakun, A. M.

Danishevskii, E. L. Ivchenko, G. E. Pikus, A. A. Rogachev, ”Circular photogalanic effect in optically active crystalls”, pp. 565–570, © (1979) with permission from El-sivier.

Figure 1.7, Figure 1.8

Reprinted with permission from [C. Jiang, V. A. Shalygin, V. Yu. Panevin, S. N.

Danilov, M. M. Glazov, R. Yakimova, S. Lara-Avila, S. Kubatkin, S. D. Ganichev,

”Helicity-dependent photocurrents in graphene layers excited by midinfrared radiation of a CO2 laser”, Physical Review B, vol. 84, no. 12, pp. 125429, (2011)] © 2011 by the American Physical Society.

Figure 2.6, Figure 2.8

Reprinted by permission from Springer Nature Physics of the Solid State [G. M.

Mikheev, A. S. Saushin, O. Yu. Goncharov, G. A. Dorofeev, F. Z. Gil'mutdinov, R.

G. Zonov, ”Effect of the Burning Temperature on the Phase Composition , Photo-voltaic Response, and Electrical Properties of Ag/Pd Resistive Films”, Physics of the Solid State, vol. 56, no. 11, pp. 2286–2293, (2014)] © 2014, advance online publication, 23.04.2014.

Figure 2.10

Reprinted from [K. G. Mikheev, A. S. Saushin, A. G. Nasibulin, G. M. Mikheev,

”Photon-drag in single-walled carbon nanotube and silver-palladium films : the effect of polarization”, Journal of Nanophotonics, vol. 10, pp. 012505–012509, (2016).]

with permission of SPIE.

Figure 5.6, Figure 5.7

Reprinted from [G. M. Mikheev, A. S. Saushin, V. M. Styapshin, Yu. P. Svirko, ”In-terplay of the photon drag and the surface photogalvanic effects in the metal-semiconductor nanocomposite”, Scientific Reports, vol. 8, pp. 8644, (2018).] with the permission of Springer Nature.

Figure 5.16

Reprinted from [A. S. Saushin, R. G. Zonov, E. V. Aleksandrovich, N. V. Kostenkov, G. M. Mikheev, ”Vliyaniye temperaturnogo vozdeystviya v vakuume na polyarizatsionno-oriyentatsionno chuvstvitel'nyy fototok v nanokompozitnykh Ag/Pd plonkakh [Influence of temperature action in vacuum on polarization-orientation-sensitive photocurrent in nanocomposite Ag/Pd films]”, Khimicheskaya

126

fizika i mezoskopiya [Chemical Physics and Mesoscopy], vol. 21, no. 1, pp. 75–85, (2019).]

with permission of Udmurt Federal Research Center of the UB RAS.

Figure 6.8

Reprinted from [G. M. Mikheev, A. S. Saushin, V. V. Vanyukov, K. G. Mikheev, Yu.

P. Svirko, ”Femtosecond circular photon drag effect in the Ag/Pd nanocomposite”, Nanoscale Research Letters, vol. 12, no. 39, pp. 1–7, (2017).], with the permission of Springer Nature.

Figure 6.10

Reprinted from [A. S. Saushin, K. G. Mikheev, V. M. Styapshin, G. M. Mikheev,

”Direct measurement of the circular photocurrent in the Ag/Pd nanocomposites”, Journal of Nanophotonics, vol. 11, no. 3, pp. 032508, (2017).] with permission of SPIE CC BY 4.0.

Figure 6.12, Figure 6.16, Figure 6.17

Reprinted from [A. S. Saushin, R. G. Zonov, E. V. Aleksandrovich, K. G. Mikheev, R. Ali, V. V. Vanyukov, G. M. Mikheev, ”Influence of Electrochemical Hydrogena-tion on the Circular Photocurrent in the Ag/Pd Nanocomposite”, Physica Status Solidi B, vol. 256, no. 9, pp. 1800671, (2019).] with permission of John Wiley & Sons.

uef.fi

PUBLICATIONS OF

THE UNIVERSITY OF EASTERN FINLAND Dissertations in Forestry and Natural Sciences

ISBN 978-952-61-3670-7 ISSN 1798-5668

Dissertations in Forestry and Natural Sciences

DISSERTATIONS | ALEKSANDR SAUSHIN | POLARIZATION-SENSITIVE PHOTORESPONSE OF METAL-SEMICONDUCTOR... | No 411

ALEKSANDR SAUSHIN

Polarization-sensitive photoresponse of metal-semiconductor

nanocomposite film

PUBLICATIONS OF

THE UNIVERSITY OF EASTERN FINLAND

The Thesis is devoted to the investigation of the polarization sensitive photoresponse of

silver-palladium (Ag/Pd) nanocomposite films in the ultraviolet, visible, and infrared spectral ranges

at nanosecond and femtosecond excitation.

Based on results it was shown that the photocurrent in Ag/Pd films can be described

by photon drag and surface photogalvanic effects. It was shown that polarization sensitive

photoresponse of Ag/Pd films is of great interest for photonics and optoelectronics, in particular, for the development of new types of

polarization analyzers.

ALEKSANDR SAUSHIN