• Ei tuloksia

Key to Demonstration 3

N/A
N/A
Info
Lataa
Protected

Academic year: 2022

Jaa "Key to Demonstration 3"

Copied!
3
0
0

Kokoteksti

(1)

Key to Demonstration 3

I. Proof. By Theorem 1.4 e), and the fact that |z|= 1, it is easy to get

¯¯

¯¯

¯¯ Z

C

dz 2z2 + 5

¯¯

¯¯

¯¯max

¯¯

¯ 1 2z2+ 5

¯¯

¯

¯¯

¯ Z

C

dz

¯¯

¯=

¯¯

¯ 1

2(−i)2+ 5

¯¯

¯·2π= 2π 3 . II. Key.

Z

C

dz

z24 = 1 4

 Z

C

dz z−2

Z

C

dz z+ 2

.

(a) Z

|z|=1

dz

z24 = 1

4(00) = 0 ;

(b) Z

|z|=4

dz

z24 = 1

4(2πi2πi) = 0 ;

(c) Z

|z−2|=2

dz

z24 = 1

4(2πi0) = πi 2 . III. Key.

Z

C

dz

z21 = 1 2

 Z

C

dz z−1

Z

C

dz z+ 1

.

(a) Z

|z|=13

dz

z21 = 1

2(00) = 0 ;

(b) Z

|z|=3

dz

z21 = 1

2(2πi2πi) = 0 ;

(c) Z

|z−1|=1

dz

z21 = 1

2(2πi0) =πi . IV. Key.

Z

C

dz

z(z−1)(z+ 2) =1 2

Z

C

dz z +1

3 Z

C

dz z−1 +1

6 Z

C

dz z−(−2).

1

(2)

(a) Z

|z|=12

dz

z(z−1)(z+ 2) =1

2·2πi+ 1

3·0 + 1

6·0 = −πi;

(b) Z

|z|=32

dz

z(z−1)(z+ 2) =1

2 ·2πi+ 1

3·2πi+1

6 ·0 =−π 3i;

(c) Z

|z|=52

dz

z(z−1)(z+ 2) =1

2·2πi+1

3 ·2πi+ 1

6·2πi= 0 ;.

(d) Z

|z−1|=12

dz

z(z−1)(z+ 2) =1

2 ·0 + 1

3 ·2πi+1

6 ·0 = 2π 3 i . V. Key. Letz = cosθ+isinθ, = dziz and sinθ = 2i(1z −z), then,

Z

0

3 sinθ+ 5 =

Z

|z|=1

dz

iz(3i2(1z −z) + 5)

= 2 Z

|z|=1

dz

(3z+i)(z+ 3i)

= −i 4

³ Z

|z|=1

dz z+ 3i

Z

|z|=1

dz z+ 3i

´

= −i

4 ·2πi= π 2.

VI. Key. Let z = cosθ+isinθ,dθ = dziz and cosθ= 12(z+1z), then, Z

0

2 + cosθ =

Z

|z|=1

dz

iz(2 + 12(z+1z)) = 2 i

Z

|z|=1

dz z2+ 4z+ 1

=2 i

Z

|z|=1

dz (z(−2 +

3))(z(−2−√ 3))

=2 i

 1 2

3 Z

|z|=1

dz z−(−2 +

3) 1 2

3 Z

|z|=1

dz z−(−2−√

3)

= 2π

3.

2

(3)

VII. Proof. Letz = cosθ+isinθ,dθ = dziz, cosθ = 12(z+ 1z), then Z

0

1 +acosθ = Z

|z|=1

dz/iz

1 + 12a(z+ 1z) = 2 i

Z

|z|=1

dz az2+ 2z+a

=2 ia

Z

|z|=1

¡ dz

z+1+a1−a2¢¡

z+ 1−a1−a2¢

=2 ia

a 2

1−a2

 Z

|z|=1

dz

z+1−a1−a2 Z

|z|=1

dz z+ 1+a1−a2



Since 0 < a <1, we can get −1< −1+a1−a2 <0, because −1+a1−a2 <0 and −1+a1−a2 >

−1 1−a <

1−a2 (1−a2)2 <1−a2 a2−a <0 a(a−1)<0 a <1, thus we can get −1+a1−a2 ∈I(C) and −1−a1−a2 ∈E(C), where C ={z : |z|= 1}. So,

Z

0

1 +acosθ = 1 i√

1−a2(2πi0) = 2π

1−a2 .

3

Viittaukset