• Ei tuloksia

A Novel Genetic Marker for the C9orf72 Repeat Expansion in the Finnish Population

N/A
N/A
Info
Lataa
Protected

Academic year: 2022

Jaa "A Novel Genetic Marker for the C9orf72 Repeat Expansion in the Finnish Population"

Copied!
26
0
0

Kokoteksti

(1)

UEF//eRepository

DSpace https://erepo.uef.fi

Rinnakkaistallenteet Luonnontieteiden ja metsätieteiden tiedekunta

2021

A Novel Genetic Marker for the C9orf72 Repeat Expansion in the Finnish Population

Rostalski, H

IOS Press

Tieteelliset aikakauslehtiartikkelit þÿ© 2021 IOS Press

All rights reserved

http://dx.doi.org/10.3233/JAD-210599

https://erepo.uef.fi/handle/123456789/26367

Downloaded from University of Eastern Finland's eRepository

(2)

1 Article

1

A novel genetic marker for the C9orf72 repeat expansion in the Finnish population 2

Hannah Rostalskia, Ville Korhonenb, Teemu Kuulasmaac, Eino Soljed,e, Johanna Krügerf,g, 3

FinnGen, Karri Kaivolah, Per Kristian Eidei, Jean-Charles Lambertj, Valtteri Julkunend,e, 4

Pentti J. Tienarih, Anne M. Remesf,g, Ville Leinonenb, Mikko Hiltunenc*, Annakaisa 5

Haapasaloa* 6

aA. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P. O. Box 1627 7

(Neulaniementie 2), 70211 Kuopio, Finland.

8

bNeurocenter, Neurosurgery, Kuopio University Hospital and University of Eastern Finland, 9

Kuopio, Finland.

10

cInstitute of Biomedicine, Yliopistonranta 1E, University of Eastern Finland, 70211 Kuopio, 11

Finland.

12

dInstitute of Clinical Medicine - Neurology, University of Eastern Finland.

13

eNeuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland.

14

fResearch Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.

15

gMedical Research Center (MRC), Oulu University Hospital, Oulu, Finland.

16

hDepartment of Neurology, Helsinki University Hospital and Translational Immunology 17

Program, Biomedicum, University of Helsinki, Helsinki, Finland.

18

iOslo University Hospital-Rikshospitalet; and Institute of Clinical Medicine, Faculty of 19

Medicine, University of Oslo, Norway.

20

jUniv. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE facteurs de risque 21

et déterminants moléculaires des maladies liés au vieillissement, Lille, France.

22

(3)

2

*These authors contributed equally to this work 23

Corresponding authors:

24

*Annakaisa Haapasalo, PhD, Adjunct Professor, Research Director 25

Email: annakaisa.haapasalo@uef.fi; Tel: +358403552768 26

and 27

*Mikko Hiltunen, PhD, Professor 28

Email: mikko.hiltunen@uef.fi; Tel: +358403552014 29

30

Running title: A novel C9orf72 repeat expansion-associated SNP 31

32

Disclosure of support for the work:

33

This work was supported by the Academy of Finland, under grant numbers 315459 (AH), 34

315460 (AMR), and 307866 (MH); the Strategic Neuroscience Funding of the University of 35

Eastern Finland; Finnish Brain Foundation (ES), Sigrid Juselius Foundation (ES, MH), 36

Instrumentarium Science Foundation (ES), Orion Research Foundation (ES). This publication 37

is part of a project that has received funding from the European Union’s Horizon 2020 research 38

and innovation programme under the Marie Skłodowska-Curie grant agreement No 740264.

39

40

41

(4)

3 Abstract

42

Background: C9orf72 repeat expansion (C9exp) is the most common genetic cause underlying 43

frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, 44

detection of the C9exp requires elaborative methods. Objective: Identification of C9exp carriers 45

from genotyped cohorts could be facilitated by using single nucleotide polymorphisms (SNPs) 46

as markers for the C9exp. Methods: We elucidated the potential of the previously described 47

Finnish risk haplotype, defined by the SNP rs3849942, to identify potential C9exp carriers 48

among 218,792 Finns using the FinnGen database. The haplotype approach was first tested in 49

an idiopathic normal pressure hydrocephalus (iNPH) patient cohort (European Alzheimer’s 50

Disease DNA BioBank) containing C9exp carriers by comparing intermediate (15-30) and full- 51

length (> 60 repeats) C9exp carriers (n = 41) to C9exp negative patients (< 15 repeats, n = 801).

52

Results: In this analysis, rs3849942 was associated with carriership of C9exp (OR 8.44, 53

p < 2×10-15), while the strongest association was found with rs139185008 (OR 39.4, p < 5×10- 54

18). Unbiased analysis of rs139185008 in FinnGen showed the strongest association with FTLD 55

(OR 4.38, 3×10-15) and motor neuron disease ALS (OR 5.19, 3×10-21). rs139185008 was the 56

top SNP in all diseases (iNPH, FTLD, ALS), and further showed a strong association with ALS 57

in the UK Biobank (p = 9.0×10-8). Conclusion: Our findings suggest that rs139185008 is a 58

useful marker to identify potential C9exp carriers in the genotyped cohorts and biobanks 59

originating from Finland.

60

61

Keywords: Amyotrophic lateral sclerosis; C9orf72; DNA Repeat Expansion; Frontotemporal 62

lobar degeneration; Motor neuron disease; Polymorphism, Single Nucleotide 63

64

(5)

4 Introduction

65

Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are 66

neurodegenerative disorders sharing genetic and neuropathological similarities [1]. C9orf72 67

hexanucleotide repeat expansion (C9exp), the most common genetic cause of FTLD and ALS 68

[2,3], is exceptionally prevalent in Finnish FTLD and ALS patients [4,5]. Previous studies have 69

suggested that more than 30 units of the C9exp are pathogenic [3,6]. Recently, the C9exp was 70

shown to be an important genetic etiology for idiopathic normal pressure hydrocephalus (iNPH) 71

[7], which is the most common form of hydrocephalus and characterized by progressive gait 72

impairment, cognitive decline, and loss of bladder control [8]. Because it is not possible to 73

sequence the expanded region using whole genome-sequencing, the presence and estimated 74

length of the C9exp can only be determined using repeat-primed PCR, Southern blotting or long- 75

read sequencing [9,10]. The discovery of specific single nucleotide polymorphisms (SNPs) and 76

groups of SNPs (haplotypes) associating with the C9exp would enable identification of potential 77

C9exp carriers from large genotyped cohorts from which the C9exp cannot be detected using 78

current methods. Previously, a Finnish risk haplotype of 42 single nucleotide polymorphisms 79

(SNP) was reported to associate with ALS in Finland [11]. Moreover, another risk haplotype of 80

20 SNPs has been shown to associate with FTLD, ALS, and the C9exp in other European and 81

U.S. cohorts [12]. Here, we aimed to identify a SNP that could be used as a genetic marker to 82

identify C9exp carriers in Finnish cohorts. Our findings showed that the variant rs139185008 83

distinguishes C9exp carriers from non-carriers in the European Alzheimer’s Disease DNA 84

BioBank (EADB) and associates with the clinical diagnoses of FTLD and ALS in the large 85

population-based FinnGen database and UK Biobank. This suggests that rs139185008 might 86

be a powerful genetic marker for the identification of C9exp carriers in other Finnish cohorts as 87

well.

88

(6)

5 Subjects and Methods

89

Cohorts, genotyping and imputations of EADB samples, and clinical endpoints 90

This study includes GWAS data from the EADB and the FinnGen database. EADB data were 91

processed as previously described [13]. Finnish iNPH patients included in the EADB GWAS 92

were diagnosed according to published guidelines and procedures [14,15]. C9exp genotyping 93

was performed using repeat-primed PCR and amplicon length analysis [3]. Previous studies 94

have suggested a pathological threshold of > 30 units [3,6] or > 45 units [16] for the C9exp. 95

However, smaller repeats of < 30 units may also associate with disease [4,6,16,17]. In these 96

studies, the minimum lengths of the C9exp have been identified as 7 [4] and 17 [16,17] repeats 97

on the longer allele. Here, we chose a threshold of 15 repeats to define individuals positive for 98

the C9exp. The iNPH cohort contains 41 C9exp carriers [7 full-length (> 60 repeats) and 34 99

intermediate C9exp carriers (15-30 repeats)] and 801 controls (< 15 repeats). Forty-eight percent 100

of C9exp carriers and controls were male.

101

Detailed information of the FinnGen data is described at https://www.finngen.fi/fi. Genome and 102

clinical data from 218,792 individuals were obtained from FinnGen study data release 5.

103

Clinical diagnoses were derived from the International Statistical Classification of Diseases and 104

Related Health Problems, version 10 (ICD-10) codes in Finnish national hospital registries and 105

cause-of-death registry as part of FinnGen project. UK Biobank data were used for validation 106

of the identified SNPs and haplotypes.

107

Generation of risk haplotypes associating with C9exp 108

Trans-Omics for Precision Medicine (TOPMed) imputed genotype data from EADB 109

consortium was used [13]. Genotypes were phased with Eagle v2.4105 and imputed with 110

Minimac4 v4-1.0.2. Only SNPs having Hardy-Weinberg equilibrium p > 10-5 and imputation 111

quality greater than 0.6 were considered. The imputation quality score for rs139185008 was 112

0.75. The previously published 20-SNP Finnish risk haplotype [12] was used to test for 113

(7)

6

association with the C9exp (iNPH cohort) and clinical diagnoses (“motor neuron disease” for 114

ALS, “circumscribed brain atrophy” for FTLD; FinnGen). Additional upstream and 115

downstream SNPs were added to create longer haplotypes that were able to distinguish C9exp

116

carriers better from non-carriers. The SNP selection was conducted based on a side by side 117

inspection of an individual C9exp carrier and non-carrier haplotypes of the phased and imputed 118

most probable genotype data. Minor and major alleles included in the haplotypes are presented 119

in Supplementary Table 1.

120

Analysis of SNP and haplotype association with C9exp and clinical endpoints 121

Both LD-statistics (D’) and case vs. control logistic regression analysis with covariates were 122

conducted on pre-processed imputed genotypes using PLINK software [version 1.9; [18]]. For 123

iNPH cohort, only principal component (PC) 1-2, and for FinnGen PC1-5 were used as 124

covariates. UK Biobank data were extracted through

125

http://big.stats.ox.ac.uk/variant/9:27491942-T-C and http://big.stats.ox.ac.uk/pheno/traits_011.

126

Data Presentation 127

Manhattan and regional association plots were drawn using LocusZoom software (v0.12.0). For 128

LD calculation, European reference population was used. Images were modified using 129

LibreOffice Draw (version: 6.0.2.1). Bar graphs and geographical plot of minor allele 130

frequencies (MAFs) were generated, and Pearson’s Chi-square test on minor vs. major allele 131

counts among Finnish regions was performed using RStudio software (version: 1.1.463) and 132

ggplot2 [19] and geofi packages [20].

133

Data availability 134

Data are available on reasonable request from the corresponding authors. Due to privacy 135

policies, the data are not publicly available.

136

(8)

7 Ethics statement

137

All experimental procedures complied with the standards of the Declaration of Helsinki. The 138

Ethics Committee of Hospital District of Northern Savo approved the iNPH study and all 139

patients provided an informed consent. Patients and controls in FinnGen provided informed 140

consent for biobank research, based on the Finnish Biobank Act (https://www.finngen.fi/fi). All 141

DNA samples and data were pseudonymized (iNPH cohort and FinnGen cohort).

142

(9)

8 Results

143

C9exp associates with SNPs near MOB3B and C9orf72 genes 144

Based on genotype data obtained from a global screening array, SNP association analysis was 145

performed in a well-characterized iNPH patient cohort, comprising intermediate (15-30) and 146

full-length (> 60 repeats) C9exp carriers (n = 41) who were compared to non-carriers (< 15 147

repeats, n = 801). Except for two SNPs, all significantly C9exp-associated SNPs (p < 5×10-8) 148

were located on chromosome 9 (Figure 1A). Several of these were close or within the MOB 149

kinase activator 3B (MOB3B) or C9orf72 genes, spanning an approx. 94 kb region, and showed 150

a strong linkage disequilibrium (LD) (r2 ≥ 0.8) with the reference SNP rs3849942 (Figure 1B), 151

a previously reported surrogate marker for the chromosome 9p risk haplotype [2,12].

152

Interestingly, rs139185008 (odds ratio, OR = 39.4, 95% CI [17.2-90.5], p = 4.6×10-18), 153

localizing within a recombination-poor region 81 541 bp upstream of the C9exp, showed the 154

strongest single SNP association with C9exp carriership. Also, rs139185008 (MAF 0.016) was 155

in complete LD (D’ = 1.00) with the reference SNP rs3849942 (MAF 0.17), which showed a 156

weaker association with C9exp carriership (OR 8.44, 95% CI [4.99-140.29], p = 2.0×10-15).

157

Importantly, rs139185008 was highly abundant in C9exp carriers (minor allele frequency, MAF 158

for full-length and intermediate carriers = 0.21 and 0.19, respectively), but rare in non-carriers 159

(< 15 repeats, MAF = 0.008). Several C9exp-associated haplotypes were significantly 160

overrepresented in C9exp carriers as compared to non-carriers in the iNPH cohort (Table 1).

161

rs139185008 was part of the haplotypes 2, 5, 6, 8 and 10 showing the most prominent risk 162

effects (OR > 42.0). Moreover, as compared to the previously reported 20-SNP Finnish risk 163

haplotype, including e.g., rs868856, rs7046653, rs2814707, rs3849942, and rs774359 [12]

164

(Figure 1B), the inclusion of rs139185008 to haplotypes (“haplo”) 2, 5, 6, 8 and 10 markedly 165

improved the specificity to identify C9exp carriers from non-carriers in the iNPH cohort (Table 166

1, Supplementary Table 1). E.g., the OR for haplotype 2 (OR = 11.33, 95% CI [6.38-20.14], 167

(10)

9

p = 1.28×10-16) substantially increased after the inclusion of rs139185008 (OR = 42.74, 95%

168

CI [18.35-99.53], p = 3.16×10-18).

169

rs139185008 strongly associates with FTLD and ALS in FinnGen 170

Next, we unbiasedly examined in the FinnGen database which clinical diagnoses associate with 171

the SNPs and haplotypes identified in the iNPH cohort. The FinnGen database contains 172

comprehensive genome-wide genotype data and life-long medical history from >200,000 Finns.

173

However, FinnGen does not include genetic data on complex genomic alterations, such as 174

C9exp. rs139185008 and haplotypes 2, 5, 6, 8, and 10 containing the minor allele of rs139185008 175

strongly associated with ALS and FTLD (Table 1). In comparison, the previously reported 20- 176

SNP Finnish risk haplotype [12] showed a weaker association with ALS and FTLD (haplo 2, 177

Table 1). In FinnGen, rs139185008 was the top SNP that associated with ALS and FTLD, 178

confirming the result obtained in the iNPH GWAS (Figure 1B). Importantly, rs139185008 also 179

significantly associated with ALS in UK Biobank (p = 9.0×10-8), but it was not among the top 180

SNPs associated with ALS (beta value = -0.4; p values ≤ 1.2×10-18; Supplementary Figure 1).

181

rs139185008 is regionally enriched to South-Eastern Finland 182

Finally, we used FinnGen data to calculate the MAF of the rs139185008 according to the region 183

of birth in Finland (Figure 2). Geographically, the rs139185008 minor allele showed the highest 184

prevalence in Southern Savonia (MAF = 0.025) and the lowest in Ostrobothnia (MAF = 0.008) 185

(Figure 2). Pearson’s Chi-square test of the frequency of rs139185008 minor allele revealed 186

significant differences in the geographic distribution of rs139185008 in Finland (p < 2.2×10-16, 187

X2 = 282.43, df = 18).

188

Discussion 189

We report that rs139185008 strongly associates with C9exp in a cohort of iNPH cases, suggesting 190

surrogate marker potential for identifying C9exp carriers in large population-based cohorts and 191

(11)

10

biobank databases. rs139185008 indicated stronger association with FTLD and ALS clinical 192

diagnoses in FinnGen (OR 4.4 and 5.2, respectively) as compared to the previously reported 193

C9exp proxy marker rs3849942 (OR 1.2 and 1.6 respectively). The top SNPs differed in FinnGen 194

and UK Biobank, which indicates that there are differences in the C9exp haplotype structures 195

among European populations. In Finland, the frequency of rs139185008 minor allele was 196

highest in South-Eastern Finland, and lowest in the west-coastal Ostrobothnia, which represent 197

genetically different geographical regions. The regional distribution of rs139185008 in Finland 198

is consistent with the most enriched areas of haplotypes of Finnish Heritage Diseases in regard 199

of the low enrichment in the west coast area and high enrichment in Savonia regions [21], a 200

phenomenon traceable back to the population migration history within Finland and the resulting 201

genetic isolation due to bottleneck events and founder effects [22]. However, rs139185008 is 202

also highly prevalent in Helsinki and surrounding areas and showed a link to ALS in the UK 203

Biobank, consisting of a more heterogeneous population. In this context, however, it should be 204

emphasized that the beta-value provided by UK Biobank for rs139185008 was negative, 205

indicating an odds ratio below one for this SNP. Importantly, similar results (negative beta- 206

values) were also observed with some other SNPs significantly associated with ALS in the UK 207

Biobank in the MOB3B/C9orf72 region. Thus, further investigations on the prevalence of 208

rs139185008 and its association with C9exp-linked diseases in other populations and cohorts are 209

warranted in the future to evaluate its importance beyond Finland and the UK Biobank.

210

Collectively, the present data suggest that specific haplotypes containing rs139185008 are 211

useful proxy markers to identify potential C9exp carriers. Since gene-based therapies are 212

emerging in C9exp-linked diseases, rs139185008 may be utilized in the identification of 213

potential C9exp carriers already at an early phase from biobanks and population cohorts for 214

confirmatory C9exp genotyping and subsequent clinical trials in the future.

215

Acknowledgements 216

(12)

11

HR is a PhD student in the GenomMed and Molecular Medicine (DPMM) Doctoral Programs 217

of the University of Eastern Finland, Kuopio, Finland. This study is part of the research 218

activities of the Finnish FTD Research Network (FinFTD).

219

Conflict of Interest 220

Pentti J. Tienari holds a patent on C9orf72 in diagnostics and treatment of ALS/FTLD. The 221

other authors have no conflicts of interest to disclose.

222

Funding 223

This work was supported by the Academy of Finland, under grant numbers 315459 (AH), 224

315460 (AMR), and 307866 (MH); the Strategic Neuroscience Funding of the University of 225

Eastern Finland; Finnish Brain Foundation (ES), Sigrid Juselius Foundation (ES, MH, PJT), 226

Finnish Cultural Foundation (KK) Instrumentarium Science Foundation (ES), Orion Research 227

Foundation (ES). This work was supported by a grant (European Alzheimer DNA BioBank, 228

EADB) from the EU Joint Programme – Neurodegenerative Disease Research (JPND). Inserm 229

UMR1167 is also funded by Inserm, Institut Pasteur de Lille, the Lille Métropole Communauté 230

Urbaine, the French government’s LABEX DISTALZ program (development of innovative 231

strategies for a transdisciplinary approach to Alzheimer’s disease). This publication is part of a 232

project that has received funding from the European Union’s Horizon 2020 research and 233

innovation programme under the Marie Skłodowska-Curie grant agreement No 740264.

234

References 235

[1] Van Langenhove T, van der Zee J, Van Broeckhoven C (2012) The molecular basis of the 236

frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. Ann Med 44, 817- 237

828.

238

[2] DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, 239

Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GY, 240

(13)

12

Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, 241

Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, 242

Rademakers R (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of 243

C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245-256.

244

[3] Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick 245

JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, 246

Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, 247

Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, 248

Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister JB, 249

Toulson G, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna 250

T, Jansson L, Isoviita VM, Kaivorinne AL, Holtta-Vuori M, Ikonen E, Sulkava R, Benatar M, 251

Wuu J, Chio A, Restagno G, Borghero G, Sabatelli M, ITALSGEN Consortium, Heckerman 252

D, Rogaeva E, Zinman L, Rothstein JD, Sendtner M, Drepper C, Eichler EE, Alkan C, 253

Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, Singleton A, Williams NM, Heutink P, 254

Pickering-Brown S, Morris HR, Tienari PJ, Traynor BJ (2011) A hexanucleotide repeat 255

expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257- 256

268.

257

[4] van der Zee J, Gijselinck I, Dillen L, Van Langenhove T, Theuns J, Engelborghs S, 258

Philtjens S, Vandenbulcke M, Sleegers K, Sieben A, Baumer V, Maes G, Corsmit E, Borroni 259

B, Padovani A, Archetti S, Perneczky R, Diehl-Schmid J, de Mendonca A, Miltenberger- 260

Miltenyi G, Pereira S, Pimentel J, Nacmias B, Bagnoli S, Sorbi S, Graff C, Chiang HH, 261

Westerlund M, Sanchez-Valle R, Llado A, Gelpi E, Santana I, Almeida MR, Santiago B, 262

Frisoni G, Zanetti O, Bonvicini C, Synofzik M, Maetzler W, Vom Hagen JM, Schols L, 263

Heneka MT, Jessen F, Matej R, Parobkova E, Kovacs GG, Strobel T, Sarafov S, Tournev I, 264

Jordanova A, Danek A, Arzberger T, Fabrizi GM, Testi S, Salmon E, Santens P, Martin JJ, 265

Cras P, Vandenberghe R, De Deyn PP, Cruts M, Van Broeckhoven C, van der Zee J, 266

Gijselinck I, Dillen L, Van Langenhove T, Theuns J, Philtjens S, Sleegers K, Baumer V, 267

Maes G, Corsmit E, Cruts M, Van Broeckhoven C, van der Zee J, Gijselinck I, Dillen L, Van 268

Langenhove T, Philtjens S, Theuns J, Sleegers K, Baumer V, Maes G, Cruts M, Van 269

Broeckhoven C, Engelborghs S, De Deyn PP, Cras P, Engelborghs S, De Deyn PP, 270

Vandenbulcke M, Vandenbulcke M, Borroni B, Padovani A, Archetti S, Perneczky R, Diehl- 271

Schmid J, Synofzik M, Maetzler W, Muller Vom Hagen J, Schols L, Synofzik M, Maetzler 272

W, Muller Vom Hagen J, Schols L, Heneka MT, Jessen F, Ramirez A, Kurzwelly D, 273

Sachtleben C, Mairer W, de Mendonca A, Miltenberger-Miltenyi G, Pereira S, Firmo C, 274

Pimentel J, Sanchez-Valle R, Llado A, Antonell A, Molinuevo J, Gelpi E, Graff C, Chiang 275

HH, Westerlund M, Graff C, Kinhult Stahlbom A, Thonberg H, Nennesmo I, Borjesson- 276

Hanson A, Nacmias B, Bagnoli S, Sorbi S, Bessi V, Piaceri I, Santana I, Santiago B, Santana 277

I, Helena Ribeiro M, Rosario Almeida M, Oliveira C, Massano J, Garret C, Pires P, Frisoni G, 278

Zanetti O, Bonvicini C, Sarafov S, Tournev I, Jordanova A, Tournev I, Kovacs GG, Strobel 279

T, Heneka MT, Jessen F, Ramirez A, Kurzwelly D, Sachtleben C, Mairer W, Jessen F, Matej 280

R, Parobkova E, Danel A, Arzberger T, Maria Fabrizi G, Testi S, Ferrari S, Cavallaro T, 281

Salmon E, Santens P, Cras P, European Early-Onset Dementia Consortium (2013) A pan- 282

European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic 283

instability, and intermediate repeats. Hum Mutat 34, 363-373.

284

[5] Majounie E, Renton AE, Mok K, Dopper EG, Waite A, Rollinson S, Chio A, Restagno G, 285

Nicolaou N, Simon-Sanchez J, van Swieten JC, Abramzon Y, Johnson JO, Sendtner M, 286

Pamphlett R, Orrell RW, Mead S, Sidle KC, Houlden H, Rohrer JD, Morrison KE, Pall H, 287

(14)

13

Talbot K, Ansorge O, Chromosome 9-ALS/FTD Consortium, French research network on 288

FTLD/FTLD/ALS, ITALSGEN Consortium, Hernandez DG, Arepalli S, Sabatelli M, Mora 289

G, Corbo M, Giannini F, Calvo A, Englund E, Borghero G, Floris GL, Remes AM, 290

Laaksovirta H, McCluskey L, Trojanowski JQ, Van Deerlin VM, Schellenberg GD, Nalls 291

MA, Drory VE, Lu CS, Yeh TH, Ishiura H, Takahashi Y, Tsuji S, Le Ber I, Brice A, Drepper 292

C, Williams N, Kirby J, Shaw P, Hardy J, Tienari PJ, Heutink P, Morris HR, Pickering- 293

Brown S, Traynor BJ (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in 294

patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional 295

study. Lancet Neurol 11, 323-330.

296

[6] Van Mossevelde S, van der Zee J, Cruts M, Van Broeckhoven C (2017) Relationship 297

between C9orf72 repeat size and clinical phenotype. Curr Opin Genet Dev 44, 117-124.

298

[7] Korhonen VE, Remes AM, Helisalmi S, Rauramaa T, Sutela A, Vanninen R, Suhonen 299

NM, Haapasalo A, Hiltunen M, Jaaskelainen JE, Soininen H, Koivisto AM, Leinonen V 300

(2019) Prevalence of C9ORF72 Expansion in a Large Series of Patients with Idiopathic 301

Normal-Pressure Hydrocephalus. Dement Geriatr Cogn Disord 47, 91-103.

302

[8] M Das J, Biagioni MC (2021) Normal Pressure Hydrocephalus. In StatPearls, 303

Anonymous StatPearls Publishing LLC, Treasure Island (FL), p. 1.

304

[9] Cochran JN, McKinley EC, Cochran M, Amaral MD, Moyers BA, Lasseigne BN, Gray 305

DE, Lawlor JMJ, Prokop JW, Geier EG, Holt JM, Thompson ML, Newberry JS, Yokoyama 306

JS, Worthey EA, Geldmacher DS, Love MN, Cooper GM, Myers RM, Roberson ED (2019) 307

Genome sequencing for early-onset or atypical dementia: high diagnostic yield and frequent 308

observation of multiple contributory alleles. Cold Spring Harb Mol Case Stud 5, 309

10.1101/mcs.a003491. Print 2019 Dec.

310

[10] Ebbert MTW, Farrugia SL, Sens JP, Jansen-West K, Gendron TF, Prudencio M, 311

McLaughlin IJ, Bowman B, Seetin M, DeJesus-Hernandez M, Jackson J, Brown PH, Dickson 312

DW, van Blitterswijk M, Rademakers R, Petrucelli L, Fryer JD (2018) Long-read sequencing 313

across the C9orf72 'GGGGCC' repeat expansion: implications for clinical use and genetic 314

discovery efforts in human disease. Mol Neurodegener 13, 46-018-0274-4.

315

[11] Laaksovirta H, Peuralinna T, Schymick JC, Scholz SW, Lai SL, Myllykangas L, Sulkava 316

R, Jansson L, Hernandez DG, Gibbs JR, Nalls MA, Heckerman D, Tienari PJ, Traynor BJ 317

(2010) Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide 318

association study. Lancet Neurol 9, 978-985.

319

[12] Mok K, Traynor BJ, Schymick J, Tienari PJ, Laaksovirta H, Peuralinna T, Myllykangas 320

L, Chio A, Shatunov A, Boeve BF, Boxer AL, DeJesus-Hernandez M, Mackenzie IR, Waite 321

A, Williams N, Morris HR, Simon-Sanchez J, van Swieten JC, Heutink P, Restagno G, Mora 322

G, Morrison KE, Shaw PJ, Rollinson PS, Al-Chalabi A, Rademakers R, Pickering-Brown S, 323

Orrell RW, Nalls MA, Hardy J (2012) Chromosome 9 ALS and FTD locus is probably 324

derived from a single founder. Neurobiol Aging 33, 209.e3-209.e8.

325

[13] Bellenguez C, Küçükali F, Jansen I, Andrade V, Moreno-Grau S, Amin N, Naj AC, 326

Grenier-Boley B, Campos-Martin R, Holmans PA, Boland A, Kleineidam L, Damotte V, van 327

der Lee, Sven J., Kuulasmaa T, Yang Q, de Rojas I, Bis JC, Yaqub A, Prokic I, Costa MR, 328

Chapuis J, Ahmad S, Giedraitis V, Boada M, Aarsland D, García-González P, Abdelnour C, 329

(15)

14

Alarcón-Martín E, Alegret M, Alvarez I, Álvarez V, Armstrong NJ, Tsolaki A, Antúnez C, 330

Appollonio I, Arcaro M, Archetti S, Pastor AA, Arosio B, Athanasiu L, Bailly H, Banaj N, 331

Baquero M, Belén Pastor A, Benussi L, Berr C, Besse C, Bessi V, Binetti G, Bizzarro A, 332

Alcolea D, Blesa R, Borroni B, Boschi S, Bossù P, Bråthen G, Bresner C, Brookes KJ, Brusco 333

LI, Bûrger K, Bullido MJ, Burholt V, Bush WS, Calero M, Dufouil C, Carracedo Á, Cecchetti 334

R, Cervera-Carles L, Charbonnier C, Chillotti C, Brodaty H, Ciccone S, Claassen JAHR, 335

Clark C, Conti E, Corma-Gómez A, Costantini E, Custodero C, Daian D, Dalmasso MC, 336

Daniele A, Dardiotis E, Dartigues J, de Deyn PP, de Paiva Lopes K, de Witte LD, Debette S, 337

Deckert J, del Ser T, Denning N, DeStefano A, Dichgans M, Diehl-Schmid J, Diez-Fairen M, 338

Rossi PD, Djurovic S, Duron E, Düzel E, Engelborghs S, Escott-Price V, Espinosa A, Buiza- 339

Rueda D, Ewers M, Tagliavini F, Nielsen SF, Farotti L, Fenoglio C, Fernández-Fuertes M, 340

Hardy J, Ferrari R, Ferreira CB, Ferri E, Fin B, Fischer P, Fladby T, Fließbach K, Fortea J, 341

Fostinelli S, Fox NC, Franco-Macías E, Frank-García A, Froelich L, Galimberti D, García- 342

Alberca JM, Garcia-Madrona S, García-Ribas G, Chene G, Ghidoni R, Giegling I, Giaccone 343

G, Goldhardt O, González-Pérez A, Graff C, Grande G, Green E, Grimmer T, Grünblatt E, 344

Guetta-Baranes T, Haapasalo A, Hadjigeorgiou G, Haines JL, Hamilton-Nelson KL, Hampel 345

H, Hanon O, Hartmann AM, Hausner L, Harwood J, Heilmann-Heimbach S, Helisalmi S, 346

Heneka MT, Hernández I, Herrmann MJ, Hoffmann P, Holmes C, Holstege H, Vilas RH, 347

Hulsman M, Humphrey J, Biessels GJ, Johansson C, Kehoe PG, Kilander L, Ståhlbom AK, 348

Kivipelto M, Koivisto A, Kornhuber J, Kosmidis MH, Kuksa PP, Kunkle BW, Lage C, 349

Laukka EJ, Lauria A, Lee C, Lehtisalo J, Satizabal CL, Lerch O, Lleó A, Lopez R, Lopez O, 350

de Munain AL, Love S, Löwemark M, Luckcuck L, Macías J, MacLeod CA, Maier W, 351

Mangialasche F, Spallazzi M, Marquié M, Marshall R, Martin ER, Martín Montes A, 352

Rodríguez CM, Masullo C, Mayeux R, Mead S, Mecocci P, Medina M, Meggy A, Mendoza 353

S, Menéndez-González M, Mir P, Periñán MT, Mol M, Molina-Porcel L, Montrreal L, 354

Morelli L, Moreno F, Morgan K, Nöthen MM, Muchnik C, Nacmias B, Ngandu T, Nicolas G, 355

Nordestgaard BG, Olaso R, Orellana A, Orsini M, Ortega G, Padovani A, Caffarra P, 356

Papenberg G, Parnetti L, Pasquier F, Pastor P, Pérez-Cordón A, Pérez-Tur J, Pericard P, 357

Peters O, Pijnenburg YAL, Pineda JA, Piñol-Ripoll G, Pisanu C, Polak T, Popp J, Posthuma 358

D, Priller J, Puerta R, Quenez O, Quintela I, Thomassen JQ, Rábano A, Rainero I, Ramakers 359

I, Real LM, Reinders MJT, Riedel-Heller S, Riederer P, Rodriguez-Rodriguez E, Rongve A, 360

Allende IR, Rosende-Roca M, Royo JL, Rubino E, Rujescu D, Sáez ME, Sakka P, Saltvedt I, 361

Sanabria Á, Sánchez-Arjona MB, Sanchez-Garcia F, Mehrabian S, Sánchez-Juan P, Sánchez- 362

Valle R, Sando SB, Scamosci M, Scarmeas N, Scarpini E, Scheltens P, Scherbaum N, Scherer 363

M, Schmid M, Schneider A, Schott JM, Selbæk G, Sha J, Shadrin AA, Skrobot O, Snijders 364

GJL, Soininen H, Solfrizzi V, Solomon A, Sorbi S, Sotolongo-Grau O, Spalletta G, Spottke 365

A, Squassina A, Tartari JP, Tárraga L, Tesí N, Thalamuthu A, Tegos T, Traykov L, 366

Tremolizzo L, Tybjærg-Hansen A, Uitterlinden A, Ullgren A, Ulstein I, Valero S, Van 367

Broeckhoven C, van der Lugt A, Van Dongen J, van Rooij J, van Swieten J, Vandenberghe R, 368

Verhey F, Vidal J, Vogelgsang J, Vyhnalek M, Wagner M, Wallon D, Wang L, Wang R, 369

Weinhold L, Wiltfang J, Windle G, Woods B, Yannakoulia M, Zhao Y, Zulaica M, Serrano- 370

Rios M, Seripa D, Stordal E, Farrer LA, Psaty BM, Ghanbari M, Raj T, Sachdev P, Mather K, 371

Jessen F, Ikram MA, de Mendonça A, Hort J, Tsolaki M, Pericak-Vance M, Amouyel P, 372

Williams J, Frikke-Schmidt R, Clarimon J, Deleuze J, Rossi G, Seshadri S, Andreassen OA, 373

Ingelsson M, Hiltunen M, Sleegers K, Schellenberg GD, van Duijn CM, Sims R, van der 374

Flier, Wiesje M., Ruiz A, Ramirez A, Lambert J (2020) New insights on the genetic etiology 375

of Alzheimer’s and related dementia. medRxiv, 2020.10.01.20200659. unpublished data.

376

[14] Junkkari A, Luikku AJ, Danner N, Jyrkkanen HK, Rauramaa T, Korhonen VE, Koivisto 377

AM, Nerg O, Kojoukhova M, Huttunen TJ, Jaaskelainen JE, Leinonen V (2019) The Kuopio 378

(16)

15

idiopathic normal pressure hydrocephalus protocol: initial outcome of 175 patients. Fluids 379

Barriers CNS 16, 21-019-0142-9.

380

[15] Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM (2005) Diagnosing 381

idiopathic normal-pressure hydrocephalus. Neurosurgery 57, S4-16; discussion ii-v.

382

[16] Kaivola K, Salmi SJ, Jansson L, Launes J, Hokkanen L, Niemi A, Majamaa K, Lahti J, 383

Eriksson JG, Strandberg T, Laaksovirta H, Tienari PJ (2020) Carriership of two copies of 384

C9orf72 hexanucleotide repeat intermediate-length alleles is a risk factor for ALS in the 385

Finnish population. Acta Neuropathologica Communications 8, 187.

386

[17] Cali CP, Patino M, Tai YK, Ho WY, McLean CA, Morris CM, Seeley WW, Miller BL, 387

Gaig C, Vonsattel JPG, White CL,3rd, Roeber S, Kretzschmar H, Troncoso JC, Troakes C, 388

Gearing M, Ghetti B, Van Deerlin VM, Lee VM, Trojanowski JQ, Mok KY, Ling H, Dickson 389

DW, Schellenberg GD, Ling SC, Lee EB (2019) C9orf72 intermediate repeats are associated 390

with corticobasal degeneration, increased C9orf72 expression and disruption of autophagy.

391

Acta Neuropathol 138, 795-811.

392

[18] Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second- 393

generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7-015- 394

0047-8. eCollection 2015.

395

[19] Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, Woo K, Yutani 396

H, Dunnington D (2016) ggplot2: Elegant Graphics for Data Analysis.

397

[20] Kainu M, Lehtomaki J, Parkkinen J, Miettinen J, Kantanen P, Lahti L (2015-2021) geofi:

398

Access Finnish Geospatial Data.

399

[21] Martin AR, Karczewski KJ, Kerminen S, Kurki MI, Sarin AP, Artomov M, Eriksson JG, 400

Esko T, Genovese G, Havulinna AS, Kaprio J, Konradi A, Koranyi L, Kostareva A, 401

Mannikko M, Metspalu A, Perola M, Prasad RB, Raitakari O, Rotar O, Salomaa V, Groop L, 402

Palotie A, Neale BM, Ripatti S, Pirinen M, Daly MJ (2018) Haplotype Sharing Provides 403

Insights into Fine-Scale Population History and Disease in Finland. Am J Hum Genet 102, 404

760-775.

405

[22] de la Chapelle A, Wright FA (1998) Linkage disequilibrium mapping in isolated 406

populations: the example of Finland revisited. Proc Natl Acad Sci U S A 95, 12416-12423.

407

408

(17)

16

Table 1. Haplotypes and individual SNPs significantly associating with C9orf72 repeat expansion (C9exp) in the iNPH cohort and ALS and FTLD in the FinnGen cohort

Haplotype/

SNP

iNPH cohort (C9orf72 repeat expansion) Motor neuron disease ALS (FinnGen) Frontotemporal lobar degeneration (FinnGen)

OR (95% CI) p MAF in

C9exp carriers

MAF in control

OR (95% CI) p MAF in

disease

MAF in control

OR (95% CI) p MAF in

disease

MAF in control haplo 1 10.04 (5.79-17.39) 2.01×10-16 0.5119 0.1038 1.68 (1.34-2.12) 8.40×10-06 0.1933 0.1239 1.39 (1.09-1.77) 7.74×10-3 0.1653 0.1248 haplo 2 11.33 (6.38-20.14) 1.28×10-16 0.5000 0.0943 1.81 (1.43-2.28) 7.05×10-07 0.1849 0.1110 1.49 (1.16-1.90) 1.8×10-3 0.1570 0.1115 haplo 2* 42.74 (18.35-99.53) 3.16×10-18 0.1905 0.0071 5.26 (3.72-7.42) 4.05×10-21 0.0777 0.0156 4.41 (3.06-6.36) 1.97×10-15 0.0641 0.0159 haplo 3 7.08 (4.04-12.41) 7.59×10-12 0.3452 0.0802 1.94 (1.51-2.49) 2.72×10-07 0.1534 0.0847 1.59 (1.22-2.08) 0.7×10-3 0.1281 0.0857 haplo 4 7.08 (4.04-12.41) 7.59×10-12 0.3452 0.0802 1.94 (1.51-2.5) 2.57×10-07 0.1534 0.0846 1.59 (1.22-2.08) 6.77×10-4 0.1281 0.0856 haplo 5 8.23 (4.64-14.63) 6.45×10-13 0.3690 0.0820 2.12 (1.66-2.71) 1.65×10-09 0.1660 0.0860 1.62 (1.24-2.11) 4.23×10-4 0.1302 0.0862 haplo 5* 46.76 (19.71-110.9) 2.67×10-18 0.1905 0.0065 5.12 (3.61-7.26) 5.40×10-20 0.0756 0.0155 4.57 (3.19-6.56) 1.43×10-16 0.0661 0.0158 haplo 6 8.23 (4.64-14.63) 6.45×10-13 0.3690 0.0820 2.12 (1.66-2.71) 1.64×10-09 0.1660 0.0860 1.62 (1.24-2.11) 4.23×10-4 0.1302 0.0862 haplo 6* 46.76 (19.71-110.9) 2.67×10-18 0.1905 0.0065 5.12 (3.61-7.26) 5.40×10-20 0.0756 0.0155 4.57 (3.19-6.56) 1.43×10-16 0.0661 0.0158 haplo 7 7.12 (4.07-12.47) 6.73×10-12 0.3452 0.0796 1.94 (1.51-2.5) 2.40×10-07 0.1534 0.0844 1.57 (1.2-2.05) 1.15×10-3 0.1260 0.0854 haplo 8 9.48 (5.12-17.56) 8.87×10-13 0.3333 0.0696 2.15 (1.66-2.79) 8.82×10-09 0.1429 0.0714 1.74 (1.32-2.31) 9.32×10-5 0.1178 0.0720 haplo 8* 46.76 (19.71-110.9) 2.67×10-18 0.1905 0.0065 5.12 (3.61-7.27) 5.27×10-20 0.0756 0.0155 4.42 (3.07-6.38) 1.71×10-15 0.0641 0.0158 haplo 9 9.87 (5.32-18.32) 3.94×10-13 0.3333 0.0666 2.23 (1.72-2.89) 1.85×10-09 0.1429 0.0690 1.81 (1.37-2.39) 3.33×10-5 0.1178 0.0697 haplo 10 7.68 (4.13-14.3) 1.24×10-10 0.2500 0.0495 2.39 (1.83-3.13) 2.24×10-10 0.1303 0.0589 1.86 (1.39-2.5) 3.17×10-5 0.1054 0.0597 haplo 10* 46.51 (19.09-113.3) 2.88×10-17 0.1786 0.0059 5.68 (3.98-8.1) 1.12×10-21 0.0735 0.0137 4.84 (3.33-7.02) 1.13×10-16 0.0620 0.0140 rs139185008 39.41 (17.17-90.49) 4.58×10-18 0.1905 0.007665 5.19 (3.69-7.3) 2.57×10-21 0.0798 0.0163 4.38 (3.05-6.28) 1.08×10-15 0.0661 0.0166 rs3849942 8.44 (4.99-14.29) 2.04×10-15 0.5595 0.1486 1.58 (1.28-1.95) 1.94×10-05 0.2437 0.1698 1.22 (0.97-1.53) 8.53×10-2 0.1983 0.1704 Notes: iNPH cohort Ncarriers/control = 41/801; Motor neuron disease ALS Ncases/control = 238/111,855; Frontotemporal lobar degeneration Ncases/control = 242/214,474; * denotes that variant chr9_27491944_T_C (rs139185008) was added to haplotype analysis; chromosomal positions of SNPs constituting haplotypes are listed in Supplementary Table 1

Abbreviations: CI, confidence interval; FTLD, frontotemporal lobar degeneration; haplo, haplotype; iNPH, idiopathic normal pressure hydrocephalus; MAF, minor allele frequency; N, number of subjects; OR, odds ratio; SNP, single-nucleotide polymorphism

(18)

17

(19)

18

Figure 1: SNPs associating with the C9orf72 repeat expansion in iNPH cohort locate near the MOB3B and C9orf72 genes. Manhattan plot of genome-wide association (GWA) of SNPs associated with the C9orf72 expansion in a Finnish iNPH cohort. Chromosome numbers are indicated below the x-axis (A). Regional association plot of chromosome 9 locus, which contained significant association from the GWA study. SNPs of the previously described Finnish risk haplotype [12] and rs139185008 (arrow) are indicated above the plot. Significantly associated SNPs are indicated in bold. Linkage disequilibrium is indicated as color-coded r2 values. Recombination rates are depicted by continuous line. The reference variant rs3849942 is shown as a diamond. (B). Gray lines indicate significance level (p < 5×10-8). Abbreviations: iNPH, idiopathic normal pressure hydrocephalus; SNP, single nucleotide polymorphism

(20)

19

(21)

20

Figure 2: Geographical distribution of rs139185008 minor allele frequencies in different regions in Finland. Minor allele frequencies (MAF) of rs139185008 in Finland.

Pearson’s Chi-square test revealed statistically significant deviation (p < 2.2×10-16, X2 = 282.43, df = 18) of the geographical distribution of the minor allele counts of rs139185008. Genotyped population sizes are given for each region. Mean MAF for all regions is indicated as black vertical line (A). MAF of rs139185008 within Finnish regions showed geographical clustering of high (dark magenta) and low (white) frequencies (B).

Supplementary file

Supplementary Table 1. List of SNPs included in haplotypes

Supplementary Figure 1. Manhattan plot of genome-wide association (GWA) of SNPs associated with ALS in the UK Biobank

Supplementary Information. List of FinnGen authors and their affiliation

(22)

21 Supplementary Table 1. List of SNPs included in haplotypes

Haplotypes listed in Table 1; SNPs which are included in haplotypes are marked with alternative allele (gray); "*" in haplotype name denotes that SNP rs139185008 was added to haplotype analysis

position SNP reference alternative haplo 1 haplo 2 haplo 2* haplo 3 haplo 4 haplo 5 haplo 5* haplo 6 haplo 6* haplo 7 haplo 8 haplo 8* haplo 9 haplo 10 haplo 10*

27451484 rs4879507 C T C C

27453329 rs10812599 C T C C

27455825 rs10967945 C T C C

27456930 rs7021930 G A G G

27461738 rs76444167 A G A A

27463312 rs62542379 G A G G

27467672 rs10757663 G A A A A A A A A

27468264 rs61349511 A G A A A A A A A

27474216 rs10967952 T C T T T T T T T

27477876 rs1444533 C T T T T T T T T

27478054 rs1822723 C T C C C C C C C

27478711 rs4879514 T C C C C C C C C C C

27482237 rs4879515 C T T T T T T T T T T T T

27484498 rs10812602 A G A A A A A A A A A A A

27488094 rs17779457 T G G G G G G G G G G G

27489253 rs868856 A G A A A A A A A A A A A A A A A

27490969 rs7046653 A G A A A A A A A A A A A A A A A

27491944 rs139185008 T C C C C C C

27495475 G A G G G G G G G

27502988 rs1977661 C A C C C C C C C C C C C C C C C

27508689 rs2166128 T C C C C C C C C C C C

27510494 rs2477522 C T T T T T T T T T T T T

27513838 rs74439636 C T C C C C C C C C C C

27521398 rs75741240 C T C C C C C C C C C C

27527739 rs117257581 T C T T T T T T T T T T

27529318 rs903603 G A G G G G G G G G G G G

27533986 rs10812610 C A C C C C C C C C C C C

27536399 rs2814707 C T T T T T T T T T T T T T T T T

27543283 rs3849942 T C T T T T T T T T T T T T T T T

27543384 rs3849943 C T C C C C C C C C C C

27546892 rs13691 G A G G G G G G G G G G

27549487 rs80067552 G T G G G G G G G G G G

27553878 rs12349820 T C T T T T T T T T T T T T T T T

(23)

22

27556782 rs10122902 G A G G G G G G G G G G G G G G G

27556833 rs62538126 C A C C C C C C C C C C

27557532 rs76925759 T C T T T T T T T T T T

27557921 rs10757665 T C T T T T T T T T T T T

27559735 rs1565948 G A G G G G G G G G G G G

27561051 rs774359 T C C C C C C C C C C C C C C C C

27572257 rs2282241 C A C C C C C C C C C C C C C C C

27575787 rs1948522 C T C C C C C C C C C C C

27579562 rs1982915 A G G G G G G G G G G G G

27580676 rs12350076 A C C C C C C C C C C C C

27582805 rs17769370 C T C C C C C C C C C C

27583130 rs7864502 G C C C C C C C C C

27583296 rs702230 T A A A A A A A A A

27583756 rs28522676 G T T T T T T T T T

27583819 rs4879585 A C A A A A A A A A A A

27584061 rs34555425 G C G

27585699 rs36062268 G A G G G G G G G G G

27586164 rs2453556 A G G G G G G G G G G G G

27586447 rs7848063 G A A A A A A A A A A A A

27587790 rs3910852 T C T T T T T T T T T T

27588733 rs702231 C A A A A A A A A A A A A

27589659 rs696826 A G G G G G G G G G G G G

27589698 rs112001877 T C T T T T T T T T

27591128 rs9792688 T A T T

27601619 rs75747155 G A G G

(24)

23

Supplementary Figure 1. Manhattan plot of genome-wide association (GWA) of SNPs associated with ALS in the UK Biobank

Viittaukset

LIITTYVÄT TIEDOSTOT

Irja &amp; Tuulia NUMMI, Tampere, Finland Tapio NUMMI, University of Tampere, Finland Ingram OLKIN, Stanford LJniversity, California MatjaZ OMLADId, University of

William Farebrother (Victoria University of Manchester, Manchester, England, UK), Simo Puntanen (University of Tampere, Tampere, Finland), and Hans Joachim Werner (University

The First International Tampere Seminar on Linear Statistical Models and their Applications was held at the University of Tampere, Tampere, Finland, during the period August

continents, viz., Mississippi State University (MSU), University fo the Philippines (UP) in Manila, University of Indonesia (UI) at Jakarta, and University of Tampere (UT) in

a Department of Applied Physics, University of Eastern Finland, Kuopio, b Department of Clinical Radiology, Kuopio University Hospital, Kuopio, c Department of

University of Tampere, Medical School Tampere School of Public Health Tampere University Hospital Finland.

Pentti Haukkanen: Department of Mathematics, Statistics and Philosophy, University of Tampere, 33014 Tampere, Finland. E-mail

Martin Boiko, University of Latvia, Riga, Latvia Petri Hoppu, University of Tampere, Finland Marko Jouste, University of Tampere, Finland. Chris Kemp, Buckinghamshire