• Ei tuloksia

Topography Fitting Kondo resonance on central Co atom to Fano function

Figure 6.1: r ≈ 2.5 nmcorral grid spectrum. Top left: effective dI/dV map from grid at ∼ 7 mV (marked by vertical line, top right). Top right: six of the 10,000 dI/dV spectra comprising the grid on the left. The shade of the spectra (right) correspond to the location with a dot of the same color (left). For example, on top of the Co (blue and orange, left) corresponds to the most prominent Fano lineshape (blue and orange, right), whereas the spectrum ∼ 1.5 nm from the Co (pink, left) does not show a prominent Fano resonance.Bottom: results from fitting equation 1.6 to grid spectrum.Bottom left:

corral topography.Bottom right:spatial maps of parameters acquired from fitting spectra from within the dashed line box on the left over energy range−15 mV to20 mV, fixing ϵ0 = 8.3 mV. These results can be used to fit, for example, decay ofq as a function of distance from the Co to equation 1.7, or to improve the quality of the data represented in figure 3.10.

100 75 50 25 0 25 50 75 100

Fit initial guess (0,w,q,a,b,c) 6.94, 14.66, 0.22 68.72, -3.57, 223.08 Corral radius: 2.693 nm Distance to Co: 0.054 nm

Ag 2021-08-09 2p5 nm radius/pm 100mV line spectrum across corral Createc2_210809.154356.L0024.VERT

Figure 6.2: Top: Example output from script to extract corral radius from topography.

Bottom: Example output from script to extract parameters from Fano fit to spectral data.

39

(a)8 mVconstant height map of4.5 nmradius corral.

(b)45 mVconstant height map.

(c)125 mVconstant height map. (d)175 mVconstant height map.

Figure 6.3: Constant height dI/dV maps of 4.65 nm radius corral. Set point current 100 pA, lock-in frequency746 Hz, lock-in amplitude1 mV.

References

[1] JMD Coey. Magnetism and Magnetic Materials, volume 12. Springer-Verlag Berlin Heidelberg, 2009.

[2] Charles Kittel and Donald F. Holcomb. Introduction to Solid State Physics. John Wiley and Sons, Inc, Berkeley, CA, eighth edition, 1967.

[3] Q. L. Li, C. Zheng, R. Wang, B. F. Miao, R. X. Cao, L. Sun, D. Wu, Y. Z. Wu, S. C.

Li, B. G. Wang, and H. F. Ding. Role of the surface state in the Kondo resonance width of a Co single adatom on Ag(111). Physical Review B, 97(3):30–35, 2018.

[4] Ivan V. Borzenets, Jeongmin Shim, Jason C.H. Chen, Arne Ludwig, Andreas D.

Wieck, Seigo Tarucha, H. S. Sim, and Michihisa Yamamoto. Observation of the Kondo screening cloud. Nature, 579(7798):210–213, 2020.

[5] A. Lobos and A. A. Aligia. One- and many-body effects on mirages in quan-tum corrals. Physical Review B - Condensed Matter and Materials Physics, 68(3):354111–3541111, 2003.

[6] Juba Bouaziz, Filipe Souza Mendes Guimarães, and Samir Lounis. A new view on the origin of zero-bias anomalies of Co atoms atop noble metal surfaces. Nature Communications, 11(1):1–8, 2020.

[7] M. Moro-Lagares, J. Fernández, P. Roura-Bas, M. R. Ibarra, A. A. Aligia, and D. Serrate. Quantifying the leading role of the surface state in the Kondo effect of Co/Ag(111). Physical Review B, 97(23):1–9, 2018.

[8] Markus Ternes, Andreas J. Heinrich, and Wolf Dieter Schneider. Spectroscopic manifestations of the Kondo effect on single adatoms. Journal of Physics Con-densed Matter, 21(5), 2009.

[9] V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen. Tunnel-ing into a sTunnel-ingle magnetic atom: Spectroscopic evidence of the Kondo resonance.

Science, 280(5363):567–569, 1998.

[10] M. F. Crommie, C. P. Lutz, and D. M. Eigler. Confinement of electrons to quantum corrals on a metal surface. Science, 262(5131):218–220, 1993.

[11] J. Fernández and P. Roura-Bas. Kondo physics of magnetic adatoms on metallic surfaces when the onset of the surface conduction density of states crosses the Fermi level. Physical Review B, 100(16):1–10, 2019.

[12] A. Bendounan, H. Cercellier, Y. Fagot-Revurat, B. Kierren, V. Yu Yurov, and D. Malterre. Modification of Shockley states induced by surface reconstruction in epitaxial Ag films on Cu(111). Physical Review B - Condensed Matter and Materials Physics, 67(16):1–10, 2003.

References 41

[13] Philip Hofmann. Surface Physics: An Introduction. Springer-Verlag Berlin Hei-delberg, 2003.

[14] Anant V. Narlikar. Frontiers in magnetic materials. Springer-Verlag Berlin Hei-delberg, 2005.

[15] S. Crampin, J. Kröger, H. Jensen, R. Berndt, P. Wahl, M. A. Schneider, L. Diekhöner, R. Vogelgesang, and K. Kern. Phase coherence length and quan-tum interference patterns at step edges. Physical Review Letters, 95(2):106802, 2005.

[16] H. Jensen, J. Kröger, R. Berndt, and S. Crampin. Electron dynamics in vacancy islands: Scanning tunneling spectroscopy on Ag(111). Physical Review B - Con-densed Matter and Materials Physics, 71(15):1–5, 2005.

[17] W. J. de Haas, J. de Boer, and G. J. van dën Berg. The electrical resistance of gold, copper and lead at low temperatures. Physica, 1(7-12):1115–1124, 1934.

[18] Myriam P. Sarachik. Pushing Boundaries: My Personal and Scientific Journey.

Annual Review of Condensed Matter Physics, 9:2–16, 2018.

[19] Jun Kondo. Resistance Minimum in Dilute Magnetic Alloys.Progress of Theoret-ical Physics, 32(1):37–49, 1964.

[20] Markus Ternes. Scanning tunneling spectroscopy at the single atom scale. Thesis, 3465:–, 2006.

[21] Wolf Dieter Schneider. Local view of the Kondo effect: scanning tunneling spec-troscopy. Pramana - Journal of Physics, 52(6):537–552, 1999.

[22] H. C. Manoharan, C. P. Lutz, and D. M. Eigler. Quantum mirages formed by coherent projection of electronic structure. Nature, 403(6769):512–515, 2000.

[23] N. Néel, J. Kröger, L. Limot, K. Palotas, W. A. Hofer, and R. Berndt. Conductance and kondo effect in a controlled single-atom contact. Physical Review Letters, 98(1):3–6, 2007.

[24] M. Moro-Lagares, J. Fernández, P. Roura-Bas, M. R. Ibarra, A. A. Aligia, and D. Serrate. Quantifying the leading role of the surface state in the Kondo effect of Co/Ag(111). Physical Review B, 97(23):1–9, 2018.

[25] L. Limot and R. Berndt. Kondo effect and surface-state electrons.Applied Surface Science, 237(1-4):572–576, 2004.

[26] Q. L. Li, R. Wang, K. X. Xie, X. X. Li, C. Zheng, R. X. Cao, B. F. Miao, L. Sun, B. G. Wang, and H. F. Ding. Green’s function approach to the Kondo effect in nanosized quantum corrals. Physical Review B, 97(15):1–10, 2018.

[27] J. Granet, M. Sicot, I. C. Gerber, G. Kremer, T. Pierron, B. Kierren, L. Moreau, Y. Fagot-Revurat, S. Lamare, F. Chérioux, and D. Malterre. Adsorption-Induced Kondo Effect in Metal-Free Phthalocyanine on Ag(111). Journal of Physical Chemistry C, 124(19):10441–10452, 2020.

[28] Florian Pump, Ruslan Temirov, Olga Neucheva, Serguei Soubatch, Stefan Tautz, Michael Rohlfing, and Gianaurelio Cuniberti. Quantum transport through STM-lifted single PTCDA molecules. Applied Physics A: Materials Science and Pro-cessing, 93(2):335–343, 2008.

[29] Q. Li, S. Yamazaki, T. Eguchi, H. Kim, S. J. Kahng, J. F. Jia, Q. K. Xue, and Y. Hasegawa. Direct evidence of the contribution of surface states to the Kondo res-onance.Physical Review B - Condensed Matter and Materials Physics, 80(11):1–5, 2009.

[30] Sergey Trishin, Christian Lotze, Nils Bogdanoff, Felix von Oppen, and Katharina J.

Franke. Moiré Tuning of Spin Excitations: Individual Fe Atoms on MoS 2 / Au ( 111 ) . Physical Review Letters, 127(23):1–6, 2021.

[31] A. Spinelli, M. Gerrits, R. Toskovic, B. Bryant, M. Ternes, and A. F. Otte. Explor-ing the phase diagram of the two-impurity Kondo problem. Nature Communica-tions, 6(December):1–6, 2015.

[32] Yong Hui Zhang, Steffen Kahle, Tobias Herden, Christophe Stroh, Marcel Mayor, Uta Schlickum, Markus Ternes, Peter Wahl, and Klaus Kern. Temperature and magnetic field dependence of a Kondo system in the weak coupling regime.Nature Communications, 4:1–6, 2013.

[33] Sara M. Cronenwett, Tjerk H. Oosterkamp, and Leo P. Kouwenhoven. A tunable Kondo effect of quantum dots. Science, 281(5376):540–544, 1998.

[34] D. Goldhaber-Gordon, Hadas Shtrikmant, D. Mahalu, David Abusch-Magder, U. Meirav, and M. A. Kastner. Kondo effect in a single-electron transistor. Na-ture, 391(6663):156–159, 1998.

[35] Nikolaus Knorr, M. Alexander Schneider, Lars Diekhöner, Peter Wahl, and Klaus Kern. Kondo Effect of Single Co Adatoms on Cu Surfaces. Physical Review Letters, 88(9):4, 2002.

[36] C. A. Büsser, G. B. Martins, L. Costa Ribeiro, E. Vernek, E. V. Anda, and E. Dagotto. Numerical analysis of the spatial range of the Kondo effect. Phys-ical Review B - Condensed Matter and Materials Physics, 81(4):1–13, 2010.

[37] Jeremy Figgins, Laila S. Mattos, Warren Mar, Yi Ting Chen, Hari C. Manoharan, and Dirk K. Morr. Quantum engineered Kondo lattices. Nature Communications, 10(1):1–7, 2019.

References 43

[38] M. A. Schneider, L. Vitali, N. Knorr, and K. Kern. Observing the scattering phase shift of isolated Kondo impurities at surfaces. Physical Review B - Condensed Matter and Materials Physics, 65(12):1–4, 2002.

[39] Q. L. Li, C. Zheng, R. Wang, B. F. Miao, R. X. Cao, L. Sun, D. Wu, Y. Z. Wu, S. C.

Li, B. G. Wang, and H. F. Ding. Role of the surface state in the Kondo resonance width of a Co single adatom on Ag(111). Physical Review B, 97(3):30–35, 2018.

[40] Joseph A. Stroscio and D. M. Eigler. Atomic Manipulation. Science (New York, N.Y.), 254(5036):1319, 1991.

[41] Joseph A Stroscio and Robert J Celotta. Controlling the dynamics of a single atom in lateral atom manipulation. Science, 306(5694):242–247, 2004.

[42] Eigler DM and Schweizer EK. Positioning single atoms with scanning tunnelling microscope. Nature, 344(April):524, 1990.

[43] Berthold Jäck, Yonglong Xie, and Ali Yazdani. Detecting and distinguishing Majo-rana zero modes with the scanning tunnelling microscope.Nature Reviews Physics, 3(8):541–554, 2021.

[44] Eva Liebhaber, Lisa M. Rütten, Gaël Reecht, Jacob F. Steiner, Sebastian Rohlf, Kai Rossnagel, Felix von Oppen, and Katharina J. Franke. Quantum spins and hybridization in artificially-constructed chains of magnetic adatoms on a super-conductor. arXiv, pages 32–34, 2021.

[45] Howon Kim, Alexandra Palacio-Morales, Thore Posske, Levente Rózsa, Krisztian Palotas, Laszla Szunyogh, Michael Thorwart, and Roland Wiesendanger. Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors. Science Advances, 4(5):1–8, 2018.

[46] Kenjiro K. Gomes, Warren Mar, Wonhee Ko, Francisco Guinea, and Hari C.

Manoharan. Designer Dirac fermions and topological phases in molecular graphene. Nature, 483(7389):306–310, 2012.

[47] Florian Klappenberger, Dirk Kühne, Wolfgang Krenner, Inaki Silanes, Andres Arnau, F. De Javier Garcia Abajo, Svetlana Klyatskaya, Mario Ruben, and Jo-hannes V. Barth. Dichotomous array of chiral quantum corrals by a self-assembled nanoporous kagomé network. Nano Letters, 9(10):3509–3514, 2009.

[48] Marlou R. Slot, Thomas S. Gardenier, Peter H. Jacobse, Guido C.P. Van Miert, Sander N. Kempkes, Stephan J.M. Zevenhuizen, Cristiane Morais Smith, Daniel Vanmaekelbergh, and Ingmar Swart. Experimental realization and characterization of an electronic Lieb lattice. Nature Physics, 13(7):672–676, 2017.

[49] S. N. Kempkes, M. R. Slot, S. E. Freeney, S. J.M. Zevenhuizen, D. Vanmaekel-bergh, I. Swart, and C. Morais Smith. Design and characterization of electrons in a fractal geometry. Nature Physics, 15(2):127–131, 2019.

[50] Laura C. Collins, Thomas G. Witte, Rochelle Silverman, David B. Green, and Kenjiro K. Gomes. Imaging quasiperiodic electronic states in a synthetic Penrose tiling. Nature Communications, 8(May):1–6, 2017.

[51] A. J. Heinrich, C. P. Lutz, J. A. Gupta, and D. M. Eigler. Molecule cascades.

Science, 298(5597):1381–1387, 2002.

[52] Taleana Huff, Hatem Labidi, Mohammad Rashidi, Lucian Livadaru, Thomas Di-enel, Roshan Achal, Wyatt Vine, Jason Pitters, and Robert A. Wolkow. Binary atomic silicon logic. Nature Electronics, 1(12):636–643, 2018.

[53] Alexander Ako Khajetoorians, Jens Wiebe, Bruno Chilian, and Roland Wiesen-danger. Realizing all-spin-based logic operations atom by atom. Science, 332(6033):1062–1064, 2011.

[54] Qili Li, Xiaoxia Li, Bingfeng Miao, Liang Sun, Gong Chen, Ping Han, and Haifeng Ding. Kondo-free mirages in elliptical quantum corrals. Nature Communications, 11(1):1–8, 2020.

[55] Roshan Achal, Mohammad Rashidi, Jeremiah Croshaw, David Churchill, Marco Taucer, Taleana Huff, Martin Cloutier, Jason Pitters, and Robert A. Wolkow.

Lithography for robust and editable atomic-scale silicon devices and memories.

Nature Communications, 9(1), 2018.

[56] F. E. Kalff, M. P. Rebergen, E. Fahrenfort, J. Girovsky, R. Toskovic, J. L. Lado, J. Fernández-Rossier, and A. F. Otte. A kilobyte rewritable atomic memory.Nature Nanotechnology, 11(11):926–929, 2016.

[57] Christopher R. Moon, Laila S. Mattos, Brian K. Foster, Gabriel Zeltzer, and Hari C.

Manoharan. Quantum holographic encoding in a two-dimensional electron gas.

Nature Nanotechnology, 4(3):167–172, 2009.

[58] Jens Kügel, Markus Leisegang, Markus Böhme, Andreas Krönlein, Aimee Sixta, and Matthias Bode. Remote single-molecule switching: Identification and nano-engineering of hot electron-induced tautomerization. Nano Letters, 17(8):5106–

5112, 2017.

[59] Saw Wai Hla, Kai Felix Braun, Bernhard Wassermann, and Karl Heinz Rieder.

Controlled low-temperature molecular manipulation of sexiphenyl molecules on Ag(111) using scanning tunneling microscopy. Physical Review Letters, 93(20), 2004.

[60] V. S. Stepanyuk, N. N. Negulyaev, L. Niebergall, R. C. Longo, and P. Bruno.

Adatom self-organization induced by quantum confinement of surface electrons.

Physical Review Letters, 97(18), 2006.

[61] A. Krull, P. Hirsch, C. Rother, A. Schiffrin, and C. Krull. Artificial-intelligence-driven scanning probe microscopy. Communications Physics, 3(1):1–8, 2020.

References 45

[62] Benjamin Alldritt, Fedor Urtev, Niko Oinonen, Markus Aapro, Juho Kannala, Pe-ter Liljeroth, and Adam S. FosPe-ter. Automated Tip Functionalization via Machine Learning in Scanning Probe Microscopy. Computer Physics Communications, 273:108258, 2021.

[63] Robert J. Celotta, Stephen B. Balakirsky, Aaron P. Fein, Frank M. Hess, Gre-gory M. Rutter, and Joseph A. Stroscio. Invited article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope. Re-view of Scientific Instruments, 85(12):1–16, 2014.

[64] Marlou Rosalie Slot. Patterning atomic flatland: Electronic lattices crafted atom by atom. PhD Thesis, 2019.

[65] Benjamin Alldritt, Prokop Hapala, Niko Oinonen, Fedor Urtev, Ondrej Krejci, Fil-ippo Federici Canova, Juho Kannala, Fabian Schulz, Peter Liljeroth, and Adam S.

Foster. Automated structure discovery in atomic force microscopy. Science Ad-vances, 6(9):1–10, 2020.

[66] Jorg Kliewer, Richard Berndt, and S. Crampin. Scanning tunnelling spectroscopy of electron resonators. New Journal of Physics, 3, 2001.

[67] Fabian Stilp, Andreas Bereczuk, Julian Berwanger, Nadine Mundigl, Klaus Richter, and Franz J. Giessibl. Very weak bonds to artificial atoms formed by quantum corrals. Science, 372(6547):1196–1200, 2021.

[68] Christopher R. Moon, Christopher P. Lutz, and Hari C. Manoharan. Single-atom gating of quantum-state superpositions. Nature Physics, 4(6):454–458, 2008.

[69] Saoirse E. Freeney, Samuel T.P. Borman, Jacob W. Harteveld, and Ingmar Swart.

Coupling quantum corrals to form artificial molecules. SciPost Physics, 9(6):1–18, 2020.

[70] Benjamen N. Taber, Christian F. Gervasi, Jon M. Mills, Dmitry A. Kislitsyn, Evan R. Darzi, William G. Crowley, Ramesh Jasti, and George V. Nazin. Quan-tum Confinement of Surface Electrons by Molecular Nanohoop Corrals. Journal of Physical Chemistry Letters, 7(16):3073–3077, 2016.

[71] Knud Seufert, Willi Auwärter, F. J. García De Abajo, David Ecija, Saranyan Vi-jayaraghavan, Sushobhan Joshi, and Johannes V. Barth. Controlled interaction of surface quantum-well electronic states. Nano Letters, 13(12):6130–6135, 2013.

[72] Jiong Lu, Xinnan Peng, Harshitra Mahalingam, Shaoqiang Dong, Pingo Mutombo, Jie Su, Mykola Telychko, Shaotang Song, Pei Wen Ng, Jishan Wu, Pavel Jelenik, Chunyan Chi, Aleksandr Rodin, and Pin Lyi. Visualizing designer quantum states in stable macrocycle quantum corrals. Nature Communications, 12, 2021.

[73] L. Niebergall, V. S. Stepanyuk, J. Berakdar, and P. Bruno. Controlling the spin polarization of nanostructures on magnetic substrates. Physical Review Letters, 96(12), 2006.

[74] Mu Chen, Ye Ping Jiang, Junping Peng, Huimin Zhang, Cui Zu Chang, Xiao Feng, Zhenguo Fu, Fawei Zheng, Ping Zhang, Lili Wang, Ke He, Xu Cun Ma, and Qi Kun Xue. Selective trapping of hexagonally warped topological surface states in a tri-angular quantum corral. Science Advances, 5(5):1–7, 2019.

[75] H. Oka, P. A. Ignatiev, S. Wedekind, G. Rodary, L. Niebergall, V. S. Stepanyuk, D. Sander, and J. Kirschner. Spin-dependent quantum interference within a single magnetic nanostructure. Science, 327(5967):843–846, 2010.

[76] S. L. Silva and F. M. Leibsle. Room temperature quantum corrals.Surface Science, 441(1), 1999.

[77] S. M. York, C. R. Jenkins, S. L. Silva, and F. M. Leibsle. Ag growth on N-modified Cu(111) surfaces: Potential three-dimensional quantum confinement structures.

Surface Science, 464(2-3):0–6, 2000.

[78] Tihomir Tomanic, Michael Schackert, Wulf Wulfhekel, Christoph Sürgers, and Hilbert V. Löhneysen. Two-band superconductivity of bulk and surface states in Ag thin films on Nb. Physical Review B, 94(22):1–6, 2016.

[79] Jan Ravnik, Yevhenii Vaskivskyi, Jaka Vodeb, Polona Aupiˇc, Igor Vaskivskyi, Denis Golež, Yaroslav Gerasimenko, Viktor Kabanov, and Dragan Mihailovic.

Quantum billiards with correlated electrons confined in triangular transition metal dichalcogenide monolayer nanostructures. Nature Communications, 12(1), 2021.

[80] Ignacio Piquero-Zulaica, Jorge Lobo-Checa, Zakaria M. Abd El-Fattah, J. Enrique Ortega, Florian Klappenberger, Willi Auwärter, and Johannes V. Barth. Engineer-ing interfacial quantum states and electronic landscapes by molecular nanoarchi-tectures. arXiv, pages 1–31, 2021.

[81] Alexander A. Khajetoorians, Daniel Wegner, Alexander F. Otte, and Ingmar Swart.

Creating designer quantum states of matter atom-by-atom.Nature Reviews Physics, 1(12):703–715, 2019.

[82] Kathrin Müller, Mihaela Enache, and Meike Stöhr. Confinement properties of 2D porous molecular networks on metal surfaces. Journal of Physics Condensed Matter, 28(15), 2016.

[83] Hirofumi Oka, Oleg O. Brovko, Marco Corbetta, Valeri S. Stepanyuk, Dirk Sander, and Jurgen Kirschner. Spin-polarized quantum confinement in nanostructures:

Scanning tunneling microscopy. Reviews of Modern Physics, 86(4):1127–1168, 2014.

References 47

[84] Christopher R. Moon, Laila S. Mattos, Brian K. Foster, Gabriel Zeltzer, Wonhee Ko, and Hari C. Manoharan. Quantum phase extraction in isospectral electronic nanostructures. Science, 319(5864):782–787, 2008.

[85] Jamie D. Walls and Eric J. Heller. Spin - Orbit coupling induced interference in quantum corrals. Nano Letters, 7(11):3377–3382, 2007.

[86] Alfredo A. Correa, Fernando A. Reboredo, and C. A. Balseiro. Quantum corral wave-function engineering. Physical Review B - Condensed Matter and Materials Physics, 71(3):1–9, 2005.

[87] J. Fernández, P. Roura-Bas, and A. A. Aligia. Theory of Differential Conductance of Co on Cu(111) including Co s and d Orbitals, and Surface and Bulk Cu States.

Physical Review Letters, 126(4):46801, 2021.

[88] J. W. Gadzuk and M. Plihal. Quantum mirages in scanning tunneling spectroscopy of Kondo adsorbates: Vibrational signatures. Physical Review B - Condensed Mat-ter and MaMat-terials Physics, 68(23):1–10, 2003.

[89] V. S. Stepanyuk, L. Niebergall, W. Hergert, and P. Bruno. Ab initio study of mirages and magnetic interactions in quantum corrals. Physical Review Letters, 94(18):1–4, 2005.

[90] A. A. Aligia and A. M. Lobos. Mirages and many-body effects in quantum corrals.

Journal of Physics Condensed Matter, 17(13):1095–1122, 2005.

[91] Fabian Stilp, Andreas Bereczuk, Julian Berwanger, Nadine Mundigl, Klaus Richter, and Franz J. Giessibl. Very weak bonds to artificial atoms formed by quantum corrals. Science, 372(6547):1196–1200, 2021.

[92] M. Van den Broek and F. M. Peeters. Confined states in two-dimensional flat elliptic quantum dots and elliptic quantum wires. Physica E: Low-Dimensional Systems and Nanostructures, 11(4):345–355, 2001.

[93] J. C. Gutiérrez-Vega, R. M. Rodriguez-Dagnino, M. A. Meneses-Nava, and S. Chávez-Cerda. Mathieu functions, a visual approach. American Journal of Physics, 71(3):233–242, 2003.

[94] Peter de Groot. Coherence Scanning Interferometry. Optical Measurement of Surface Topography, pages 187–208, 2011.

[95] N. D. Lang. Spectroscopy of single atoms in the scanning tunneling microscope.

Physical Review B, 34(8):5947–5950, 1986.

[96] Bert Voigtländer. Scanning probe microscopy. Springer Berlin Heidelberg, 2015.

[97] John C. Sutherland.Measurement of circular dichroism and related spectroscopies with conventional and synchrotron light sources: Theory and instrumentation, vol-ume 1. IOS Press: Amsterdam, 2009.

[98] Leonid Lichtenstein, Markus Heyde, Stefan Ulrich, Niklas Nilius, and Hans Joachim Freund. Probing the properties of metal-oxide interfaces: Silica films on Mo and Ru supports.Journal of Physics Condensed Matter, 24(35), 2012.

[99] Rouzhaji Tuerhong, Shawulienu Kezilebieke, Bernard Barbara, and Jean Pierre Bucher. Conductance hysteresis and inelastic excitations at hydrogen decorated cerium atoms and clusters in a tunnel junction. Nano Research, 9(10):3171–3178, 2016.

[100] Saw Wai Hla, Kai Felix Braun, Violeta Iancu, and Aparna Deshpande. Single-atom extraction by scanning tunneling microscope tip crash and nanoscale surface engineering. Nano Letters, 4(10):1997–2001, 2004.

[101] Saw Wai Hla, Kai Felix Braun, and Karl Heinz Rieder. Single-atom manipulation mechanisms during a quantum corral construction.Physical Review B - Condensed Matter and Materials Physics, 67(20):1–4, 2003.

[102] J. Kliewer, R. Berndt, and S. Crampin. Controlled modification of individual ad-sorbate electronic structure. Physical Review Letters, 85(23):4936–4939, 2000.

[103] H. C. Manoharan, C. P. Lutz, and D. M. Eigler. Quantum mirages formed by coherent projection of electronic structure. Nature, 403(6769):512–515, 2000.

[104] Sebastian Frank and David Jacob. Orbital signatures of Fano-Kondo line shapes in STM adatom spectroscopy. Physical Review B - Condensed Matter and Materials Physics, 92(23):1–10, 2015.

[105] M. F. Crommie, C. P. Lutz, D. M. Eigler, and E. J. Heller. Quantum corrals.Physica D: Nonlinear Phenomena, 83(1-3):98–108, 1995.

[106] Qili Li, Xiaoxia Li, Bingfeng Miao, Liang Sun, Gong Chen, Ping Han, and Haifeng Ding. Kondo-free mirages in elliptical quantum corrals. Nature Communications, 11(1):1–8, 2020.

[107] Oded Agam and Avraham Schiller. Projecting the Kondo effect: theory of the quantum mirage. Physical Review Letters, 86(3):484–487, 2001.