• Ei tuloksia

Suggestions for future work

The application of battery packs in HEVs and hybrid mobile working machines will be more attractive in the future especially if the price of Li-ion batteries comes down. The operation of the battery pack with a high operating current in such systems requires an appropriate cooling system to prevent the battery pack overheating, which will affect the battery pack operating characteristics, and in the worst case, set it on fire. The requirements for the compact placement of the battery pack in HEVs and hybrid mobile working machines may limit the use of the air cooling system. Therefore, main attention should be placed on liquid cooling systems or combinations of traditional and two-phase cooling methods.

In addition, the combination of the cooling and heating systems should be considered, as the operation of the battery pack at temperatures below zero degrades the efficiency, capacity and lifetime of the battery pack. Controlling the battery pack operating temperature and keeping it close to the optimal operating temperature (close to 23 °C) may significantly improve the operating characteristics of the battery pack when applied to HEVs and other hybrid mobile working machines.

The use of heat flux sensors to measure the heat dissipation from the battery pack may also enhance the operation of the battery pack in HEVs and hybrid mobile working machines. Furthermore, heat flux sensors can be used for the control of the battery pack thermal protection system. Finally, sensors of this kind can be used for the estimation of the battery pack operating characteristics such as internal resistance and ageing of the battery pack.

References

Al Hallaj, S., Maleki, H., Hong, J.S. and Selman, J.R. (1999). Thermal modeling and design considerations of lithium-ion batteries, Journal of Power Sources, 83 (1–2), pp. 1–8.

Andre, D., Meiler, M., Steiner, K., Walz, H., Soczka-Guth, T. and Sauer, D.U. (2011).

Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling, Journal of Power Sources, 196 (12), pp. 5349–5356.

Barré, A., Deguilhem, B., Grolleau, S., Gérard, M., Suard, F. and Riu, D. (2013). A review on lithium-ion battery ageing mechanisms and estimations for automotive applications, Journal of Power Sources, 241 (0), pp. 680–689.

Barsoukov, E., Jang, J.H. and Lee, H. (2002). Thermal impedance spectroscopy for Li-ion batteries using heat-pulse response analysis, Journal of Power Sources, 109 (2), pp. 313–320.

Beattie, S.D., Larcher, D., Morcrette, M., Simon, B. and Tarascon, J.M. (2008). Si Electrodes for Li-Ion Batteries–A New Way to Look at an Old Problem, Journal of the Electrochemical Society, 155 (2), pp. A158–A163.

Beguin, F. and Frackowiak, E. (eds) (2010). Carbons for electrochemical energy storage and conversion systems, CRC Press, Boca Raton, pp. 221–258.

Belt, J.R., Ho, C.D., Miller, T.J., Habib, M.A. and Duong, T.Q. (2005). The effect of temperature on capacity and power in cycled lithium ion batteries, Journal of Power Sources, 142 (1–2), pp. 354–360.

Benger, R., Wenzl, H., Beck, H., Jiang, M., Ohms, D. and Schaedlich, G. (2009).

Electrochemical and thermal modeling of lithium-ion cells for use in HEV or EV application, EVS24 Stavanger, Norway, May, pp. 1–10.

Bernardi, D., Pawlikowski, E. and Newman, J. (1985). A General Energy Balance for Battery Systems, Journal of the Electrochemical Society, 132 (1), pp. 5–12.

Buller, S., Thele, M., De Doncker, R.W.A.A. and Karden, E. (2005). Impedance-based simulation models of supercapacitors and Li-ion batteries for power electronic applications, IEEE Transactions on Industry Applications, 41 (3), pp. 742–747.

Buller, S., Thele, M., Karden, E. and De Doncker, R.W. (2003). Impedance-based non-linear dynamic battery modeling for automotive applications, Journal of Power Sources, 113 (2), pp. 422–430.

Burheim, O.S., Onsrud, M.A., Pharoah, J.G., Vullum-Bruer, F. and Vie, P.J.S. (2014).

Thermal Conductivity, Heat Sources and Temperature Profiles of Li-Ion Batteries, ECS Transactions, 58 (48), pp. 145–171.

Burke, A. and Miller, M. (2009). Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles, EVS24, Stavanger, Norway ,May 13–16, pp. 1–13.

Busche, M.R., Adelhelm, P., Sommer, H., Schneider, H., Leitner, K. and Janek, J.

(2014). Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates, Journal of Power Sources, 259 (0), pp. 289–299.

Chabot, V., Feng, K., Park, H.W., Hassan, F.M., Elsayed, A.R., Yu, A., Xiao, X. and Chen, Z. (2014). Graphene wrapped silicon nanocomposites for enhanced

electrochemical performance in lithium ion batteries, Electrochimica Acta, 130 (0), pp. 127–134.

Chen, S.C., Wan, C.C. and Wang, Y.Y. (2005). Thermal analysis of lithium-ion batteries, Journal of Power Sources, 140 (1), pp. 111–124.

Chen, Y. and Evans, J.W. (1994). Three-Dimensional Thermal Modeling of Lithium-Polymer Batteries under Galvanostatic Discharge and Dynamic Power Profile, Journal of the Electrochemical Society, 141 (11), pp. 2947–2955.

Chiu, K., Lin, C., Yeh, S., Lin, Y., Huang, C. and Chen, K. (2014). Cycle life analysis of series connected lithium-ion batteries with temperature difference, Journal of Power Sources, 263 (0), pp. 75–84.

Crompton, T.R. (2000). Battery reference book, 3rd edn, Newnes, Oxford, chap. 4–5.

Czichos, H., Saito, T. and Smith, L. (2006). Springer handbook of materials measurement methods, Springer, Berlin, pp. 400-407.

Davidson, J.N., Stone, D.A. and Foster, M.P. (2014). Required Cauer network order for modelling of thermal transfer impedance, Electronics Letters, 50 (4), pp. 260–262.

Derrien, G., Hassoun, J., Panero, S. and Scrosati, B. (2007). Nanostructured Sn-C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries, Advanced Materials, 19 (17), pp. 2336–2340.

Dongmei Li, Zhang, G.Q., Kailin Pan, Xiaosong Ma, Lei Liu and Jinxue Cao (2009).

Numerical simulation on heat pipe for high power LED multi-chip module

packaging, International Conference on Electronic Packaging Technology & High Density Packaging, 2009. ICEPT-HDP '09, pp. 393–397.

Doyle, M., Fuller, T.F. and Newman, J. (1993). Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell, Journal of the Electrochemical Society, 140 (6), pp. 1526–1533.

Dustmann, C. (2004). Advances in ZEBRA batteries, Journal of Power Sources, 127 (1–2), pp. 85–92.

EA-4/02 M (2014). Evaluation of the Uncertainty of Measurement in Calibration, [Online], [Accessed 5 March 2015], available at http://www.european-accreditation.org.

ECODaily Electric (2015), Iveco, [Online], [Accessed 25 March 2015], available at http://www.iveco.com.

Esfahanian, V., Ansari, A.B. and Torabi, F. (2015). Simulation of lead-acid battery using model order reduction, Journal of Power Sources, 279 (0), pp. 294–305.

Fetcenko, M.A., Ovshinsky, S.R., Reichman, B., Young, K., Fierro, C., Koch, J., Zallen, A., Mays, W. and Ouchi, T. (2007). Recent advances in NiMH battery technology, Journal of Power Sources, 165 (2), pp. 544–551.

Fleckenstein, M., Fischer, S., Bohlen, O. and Bäker, B. (2013). Thermal Impedance Spectroscopy - A method for the thermal characterization of high power battery cells, Journal of Power Sources, 223 (0), pp. 259–267.

Fleischer, C., Waag, W., Heyn, H. and Sauer, D.U. (2014a). On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models part 2. Parameter and state estimation, Journal of Power Sources, 262 (0), pp. 457–482.

Fleischer, C., Waag, W., Heyn, H. and Sauer, D.U. (2014b). On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models: Part 1. Requirements, critical review of methods and modeling, Journal of Power Sources, 260 (0), pp. 276–291.

Forgez, C., Vinh Do, D., Friedrich, G., Morcrette, M. and Delacourt, C. (2010).

Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery, Journal of Power Sources, 195 (9), pp. 2961–2968.

Fuller, T.F., Doyle, M. and Newman, J. (1994). Simulation and Optimization of the Dual Lithium Ion Insertion Cell, Journal of the Electrochemical Society, 141 (1), pp. 1–10.

Gerssen-Gondelach, S.J. and Faaij, A.P.C. (2012). Performance of batteries for electric vehicles on short and longer term, Journal of Power Sources, 212 (0), pp. 111–129.

Gerver, R.E. and Meyers, J.P. (2011). Three-Dimensional Modeling of Electrochemical Performance and Heat Generation of Lithium-Ion Batteries in Tabbed Planar Configurations, Journal of the Electrochemical Society, 158 (7), pp. A835–A843.

Gibbard, H.F. (1978). Thermal Properties of Battery Systems, Journal of the Electrochemical Society, 125 (3), pp. 353–358.

Giuliano, M.R., Advani, S.G. and Prasad, A.K. (2011). Thermal analysis and

management of lithium–titanate batteries, Journal of Power Sources, 196 (15), pp.

6517–6524.

Gomez, J., Nelson, R., Kalu, E.E., Weatherspoon, M.H. and Zheng, J.P. (2011).

Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects, Journal of Power Sources, 196 (10), pp. 4826–4831.

Greenleaf, M. (2014), Phenomenological Equivalent Circuit Modelling of Various Energy Storage Devices. Electronic Theses, Treatises and Dissertations. Paper 8794.

Greco, A., Cao, D., Jiang, X. and Yang, H. (2014). A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes, Journal of Power Sources, 257 (0), pp. 344–355.

Harding Energy Inc (2015). Battery technology handbook, [online], [Accessed 11 June 2015], available at http://hardingenergy.com/handbook/.

Hariharan, K.S. and Senthil Kumar, V. (2013). A nonlinear equivalent circuit model for lithium ion cells, Journal of Power Sources, 222 (0), pp. 210–217.

Häring, P. and Giess, H. (2001). High rate recharge of stationary VRLA batteries, Journal of Power Sources, 95 (1–2), pp. 153–161.

He, Y., Liu, M., Huang, Z., Zhang, B., Yu, Y., Li, B., Kang, F. and Kim, J. (2013).

Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries, Journal of Power Sources, 239 (0), pp. 269–276.

Huang, Z. and Du, G. (2015). "Chapter 4 – Nickel-based batteries for medium- and large-scale energy storage" in Advances in Batteries for Medium and Large-Scale Energy Storage, ed. C.M.S.M. Lim, Woodhead Publishing, , pp. 73–90.

Incropera, F.P. (2013). Principles of heat and mass transfer, 7th International Student Version edn, Wiley, Hoboken, NJ.

Jarrett, A. 2011, Multi-Objective Design Optimization of Electric Vehicle Battery Cooling Plates Considering Thermal and Pressure Objective Functions. Queen's University.

Javani, N., Dincer, I., Naterer, G.F. and Yilbas, B.S. (2014). Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles, International Journal of Heat and Mass Transfer, 72 (0), pp. 690–703.

Käbitz, S., Gerschler, J.B., Ecker, M., Yurdagel, Y., Emmermacher, B., André, D., Mitsch, T. and Sauer, D.U. (2013). Cycle and calendar life study of a

graphite|LiNi1/3Mn1/3Co1/3O2 Li-ion high energy system. Part A: Full cell characterization, Journal of Power Sources, 239 (0), pp. 572–583.

Kim, U.S., Shin, C.B. and Kim, C. (2009). Modeling for the scale-up of a lithium-ion polymer battery, Journal of Power Sources, 189 (1), pp. 841–846.

Kim, U.S., Shin, C.B. and Kim, C. (2008). Effect of electrode configuration on the thermal behavior of a lithium-polymer battery, Journal of Power Sources, 180 (2), pp. 909–916.

Kim, U.S., Yi, J., Shin, C.B., Han, T. and Park, S. (2011). Modelling the thermal behaviour of a lithium-ion battery during charge, Journal of Power Sources, 196 (11), pp. 5115–5121.

Kwon, K.H., Shin, C.B., Kang, T.H. and Kim, C. (2006). A two-dimensional modeling of a lithium-polymer battery, Journal of Power Sources, 163 (1), pp. 151–157.

Liang, B., Liu, Y. and Xu, Y. (2014). Silicon-based materials as high capacity anodes for next generation lithium ion batteries, Journal of Power Sources, 267 (0), pp.

469–490.

Lienhard, J.H. and Lienhard, J.H. (2011). A heat transfer textbook, 4th edn, Dover Publications, Mineola, N.Y.

Lin, X., Perez, H.E., Mohan, S., Siegel, J.B., Stefanopoulou, A.G., Ding, Y. and Castanier, M.P. (2014). A lumped-parameter electro-thermal model for cylindrical batteries, Journal of Power Sources, 257 (0), pp. 1–11.

Liu, S., Xiong, L. and He, C. (2014a). Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode, Journal of Power Sources, 261 (0), pp. 285–291.

Liu, Y., Gao, P., Bu, X., Kuang, G., Liu, W. and Lei, L. (2014b). Nanocrosses of lead sulphate as the negative active material of lead acid batteries, Journal of Power Sources, 263 (0), pp. 1–6.

Lu, X., Xia, G., Lemmon, J.P. and Yang, Z. (2010). Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives, Journal of Power Sources, 195 (9), pp. 2431–2442.

Maleki, H., Hallaj, S.A., Selman, J.R., Dinwiddie, R.B. and Wang, H. (1999). Thermal Properties of Lithium-Ion Battery and Components, Journal of the Electrochemical Society, 146 (3), pp. 947–954.

Mauracher, P. and Karden, E. (1997). Dynamic modelling of lead/acid batteries using impedance spectroscopy for parameter identification, Journal of Power Sources, 67 (1–2), pp. 69–84.

Meissner, E. and Richter, G. (2005). The challenge to the automotive battery industry:

the battery has to become an increasingly integrated component within the vehicle electric power system, Journal of Power Sources, 144 (2), pp. 438–460.

Mikolajczak, C. et al., (2011). Lithium-ion batteries hazard and use assessment, SpringerBriefs in Fire, Fire Protection Research Foundation, New York, chap. 5.

Mityakov, A.V., Sapozhnikov, S.Z., Mityakov, V.Y., Snarskii, A.A., Zhenirovsky, M.I.

and Pyrhönen, J.J. (2012). Gradient heat flux sensors for high temperature environments, Sensors and Actuators A: Physical, 176 (0), pp. 1–9.

Moseley, P.T. and Garche, J. (eds) (2014). Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Elsevier, USA.

Murashko, K., Pyrhönen, J. and Laurila, L. (2013). Three-Dimensional Thermal Model of a Lithium Ion Battery for Hybrid Mobile Working Machines: Determination of the Model Parameters in a Pouch Cell, IEEE Transactions on Energy Conversion, 28 (2), pp. 335–343.

Murashko, K.A., Mityakov, A.V., Pyrhönen, J., Mityakov, V.Y. and Sapozhnikov, S.S.

(2014). Thermal parameters determination of battery cells by local heat flux measurements, Journal of Power Sources, 271 (0), pp. 48–54.

Nerg, J., Rilla, M. and Pyrhönen, J. (2008). Thermal Analysis of Radial-Flux Electrical Machines With a High Power Density, IEEE Transactions on Industrial

Electronics, 55 (10), pp. 3543–3554.

Newman, J. and Thomas-Alyea, K.E. (2004). Electrochemical systems, 3rd edn, Wiley, Hoboken NJ.

Pekhovich , A.I. and Zhidkikh, V.M. (eds) (1976). Calculation of the Solids Thermal Condition, Second edn, Energy, Leningrad.

Pesaran, A.A. and Keyser, M. (2001). Thermal Characteristics of Selected EV and HEV Batteries, Annual Battery Conference: Advances and Applications, Long Beach, California, January 9-12.

Prosini, P.P. (2011). Iron phosphate materials as cathodes for lithium batteries: the use of environmentally friendly iron in lithium batteries, Springer, London, pp. 1–9.

Ramadass, P., Haran, B., White, R. and Popov, B.N. (2002). Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance, Journal of Power Sources, 112 (2), pp. 606–613.

Rao, L. and Newman, J. (1997). Heat-Generation Rate and General Energy Balance for Insertion Battery Systems, Journal of the Electrochemical Society, 144 (8), pp.

2697–2704.

Reddy, T.B. (eds) (2011). Linden's Handbook of batteries, 4rd edn, McGraw-Hill, New York, chap. 15–26.

Rosheim, M.E. (ed) (1994). Robot Evolution: The Development of Anthrobotics, John Wiley & Sons, Inc., Canada.

Ryu, H.S., Ahn, H.J., Kim, K.W., Ahn, J.H., Lee, J.Y. and Cairns, E.J. (2005). Self-discharge of lithium–sulfur cells using stainless-steel current-collectors, Journal of Power Sources, 140 (2), pp. 365–369.

Ryu, H., Ahn, H., Kim, K., Ahn, J., Cho, K., Nam, T., Kim, J. and Cho, G. (2006).

Discharge behavior of lithium/sulfur cell with TEGDME based electrolyte at low temperature, Journal of Power Sources, 163 (1), pp. 201–206.

Samba, A., Omar, N., Gualous, H., Capron, O., Van den Bossche, P. and Van Mierlo, J.

(2014a). Impact of Tab Location on Large Format Lithium-Ion Pouch Cell Based on Fully Coupled Tree-Dimensional Electrochemical-Thermal Modeling,

Electrochimica Acta, 147 (0), pp. 319–329.

Samba, A., Omar, N., Gualous, H., Firouz, Y., Van den Bossche, P., Van Mierlo, J. and Boubekeur, T.I. (2014b). Development of an Advanced Two-Dimensional Thermal Model for Large size Lithium-ion Pouch Cells, Electrochimica Acta, 117 (0), pp.

246–254.

Sapozhnikov, S.Z., Mityakov, V.Y., Mityakov, A.V., Pokhodun, A.I., Sokolov, N.A.

and Matveev, M.S. (2012). The calibration of gradient heat flux sensors, Measurement Techniques, 54 (10), pp. 1155–1159.

Schalkwijk, W.A. and Scrosati, B. (2002). Advances in lithium-ion batteries, Kluwer Academic/Plenum, New York, pp. 345–393.

Schmidt, J.P., Manka, D., Klotz, D. and Ivers-Tiffée, E. (2011). Investigation of the thermal properties of a Li-ion pouch-cell by electrothermal impedance

spectroscopy, Journal of Power Sources, 196 (19), pp. 8140–8146.

Scrosati, B. and Garche, J. (2010). Lithium batteries: Status, prospects and future, Journal of Power Sources, 195 (9), pp. 2419–2430.

Shukla, A.K., Venugopalan, S. and Hariprakash, B. (2001). Nickel-based rechargeable batteries, Journal of Power Sources, 100 (1–2), pp. 125–148.

Siniard, K., Xiao, M. and Choe, S. (2010). One-dimensional dynamic modeling and validation of maintenance-free lead-acid batteries emphasizing temperature effects, Journal of Power Sources, 195 (20), pp. 7102–7114.

Smart, M.C., Ratnakumar, B.V., Whitcanack, L.D., Chin, K.B., Surampudi, S., Croft, H., Tice, D. and Staniewicz, R. (2003). Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes, Journal of Power Sources, 119–121 (0), pp. 349–358.

Smith, K.A., Rahn, C.D. and Chao-Yang Wang (2010). Model-Based Electrochemical Estimation and Constraint Management for Pulse Operation of Lithium Ion

Batteries, Control Systems Technology, IEEE Transactions on, 18 (3), pp. 654–663.

Smith, K.A., Rahn, C.D. and Chao-Yang Wang (2008). Model-based electrochemical estimation of lithium-ion batteries, IEEE International Conference on Control Applications, CCA 2008, pp. 714–719.

Spotnitz, R. (2003). Simulation of capacity fade in lithium-ion batteries, Journal of Power Sources, 113 (1), pp. 72–80.

Sun, H., Wang, X., Tossan, B. and Dixon, R. (2012). Three-dimensional thermal modeling of a lithium-ion battery pack, Journal of Power Sources, 206 (0), pp.

349–356.

Sun, L., Wang, J., Jiang, K. and Fan, S. (2014). Mesoporous Li4Ti5O12 nanoclusters as high performance negative electrodes for lithium ion batteries, Journal of Power Sources, 248 (0), pp. 265–272.

Taheri, P., Mansouri, A., Yazdanpour, M. and Bahrami, M. (2014). Theoretical

Analysis of Potential and Current Distributions in Planar Electrodes of Lithium-ion Batteries, Electrochimica Acta, 133 (0), pp. 197–208.

Taniguchi, A., Fujioka, N., Ikoma, M. and Ohta, A. (2001). Development of

nickel/metal-hydride batteries for EVs and HEVs, Journal of Power Sources, 100 (1–2), pp. 117–124.

Tao, H., Fan, L., Mei, Y. and Qu, X. (2011). Self-supporting Si/Reduced Graphene Oxide nanocomposite films as anode for lithium ion batteries, Electrochemistry Communications, 13 (12), pp. 1332–1335.

Teranishi, R., Si, Q., Mizukoshi, F., Kawakubo, M., Matsui, M., Takeda, Y.,

Yamamoto, O. and Imanishi, N. (2015). Silicon anode for rechargeable aqueous lithium–air batteries, Journal of Power Sources, 273 (0), pp. 538–543.

Tran, T., Harmand, S., Desmet, B. and Filangi, S. (2014). Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery, Applied Thermal Engineering, 63 (2), pp. 551–558.

Tredeau, F.P. and Salameh, Z.M. (2003). Characterization of Evertroll nickel-zinc batteries, Large Engineering Systems Conference on Power Engineering, pp. 165–

171.

Urbain, M., Hinaje, M., Raël, S., Davat, B. and Desprez, P. (2010). Energetical Modeling of Lithium-Ion Batteries Including Electrode Porosity Effects, IEEE Transactions on Energy Conversion, 25 (3), pp. 862–872.

Viswanathan, V.V., Choi, D., Wang, D., Xu, W., Towne, S., Williford, R.E., Zhang, J., Liu, J. and Yang, Z. (2010). Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management, Journal of Power Sources, 195 (11), pp. 3720-–3729.

Waldmann, T., Wilka, M., Kasper, M., Fleischhammer, M. and Wohlfahrt-Mehrens, M.

(2014). Temperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study, Journal of Power Sources, 262 (0), pp. 129–135.

Wang, J., Liu, P., Hicks-Garner, J., Sherman, E., Soukiazian, S., Verbrugge, M., Tataria, H., Musser, J. and Finamore, P. (2011). Cycle-life model for graphite-LiFePO4 cells, Journal of Power Sources, 196 (8), pp. 3942–3948.

Wang, Q., Jiang, B., Xue, Q.F., Sun, H.L., Li, B., Zou, H.M. and Yan, Y.Y. (2014).

Experimental investigation on EV battery cooling and heating by heat pipes, Applied Thermal Engineering, (0), pp. 1–7.

Wilhelm, E. and Letcher, T.M. (2009). Heat capacities: liquids, solutions and vapours, Royal Society of Chemistry, Cambridge, pp. 1–22.

Xiao, P., Gao, W., Qiu, X., Zhu, W., Sun, J. and Chen, L. (2008). Thermal behaviors of NiMH batteries using a novel impedance spectroscopy, Journal of Power Sources, 182 (1), pp. 377–382.

Ye, Y., Shi, Y., Cai, N., Lee, J. and He, X. (2012). Electro-thermal modeling and experimental validation for lithium ion battery, Journal of Power Sources, 199 (0), pp. 227–238.

Yoon, S., Macphee, D.E. and Imbabi, M.S. (2014). Estimation of the thermal properties of hardened cement paste on the basis of guarded heat flow meter measurements, Thermochimica Acta, 588 (0), pp. 1–10.

Yoshizawa, H. and Ohzuku, T. (2007). An application of lithium cobalt nickel manganese oxide to high-power and high-energy density lithium-ion batteries, Journal of Power Sources, 174 (2), pp. 813–817.

Yuan, X., Liu, H. and Zhang, J. (eds) (2011). Lithium-Ion Batteries: Advanced Materials and Technologies,CRC Press, Taylor & Francis Group, New York.

Zhao, R., Gu, J. and Liu, J. (2015). An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries, Journal of Power Sources, 273 (0), pp. 1089–1097.

Zhu, C., Li, X., Song, L. and Xiang, L. (2013a). Development of a theoretically based thermal model for lithium ion battery pack, Journal of Power Sources, 223 (0), pp.

155–164.

Zhu, W.H., Zhu, Y., Davis, Z. and Tatarchuk, B.J. (2013b). Energy efficiency and capacity retention of Ni–MH batteries for storage applications, Applied Energy, 106 (0), pp. 307–313.

ACTA UNIVERSITATIS LAPPEENRANTAENSIS

648. MAKKONEN, MARI. Cross-border transmission capacity development – Experiences from the Nordic electricity markets. 2015. Diss.

649. UUSITALO, ULLA-MAIJA. Show me your brain! Stories of interdisciplinary knowledge creation in practice. Experiences and observations from Aalto Design Factory, Finland.

2015. Diss.

650. ROOZBAHANI, HAMID. Novel control, haptic and calibration methods for teleoperated electrohydraulic servo systems. 2015. Diss.

651. SMIRNOVA, LIUDMILA. Electromagnetic and thermal design of a multilevel converter with high power density and reliability. 2015. Diss.

652. TALVITIE, JOONAS. Development of measurement systems in scientific research: Case study. 2015. Diss.

653. ZUBEDA, MUSSA. Variational ensemble kalman filtering in hydrology. 2015. Diss.

654. STEPANOV, ALEXANDER. Feasibility of industrial implementation of laser cutting into paper making machines. 2015. Diss.

655. SOKOLOV, MIKHAIL. Thick section laser beam welding of structural steels: methods for improving welding efficiency. 2015. Diss.

656. GORE, OLGA. Impacts of capacity remunerative mechanisms on cross-border trade.

2015. Diss.

657. AURINKO, HANNU. Risk assessment of modern landfill structures in Finland. 2015. Diss.

658. KAIJANEN, LAURA. Capillary electrophoresis: Applicability and method validation for biorefinery analytics. 2015. Diss.

659. KOLHINEN, JOHANNA. Yliopiston yrittäjämäisyyden sosiaalinen rakentuminen. Case:

Aalto-yliopisto. 2015. Diss.

660. ANNALA, SALLA. Households’ willingness to engage in demand response in the Finnish retail electricity market: an empirical study. 2015. Diss.

661. RIABCHENKO, EKATERINA. Generative part-based Gabor object detector. 2015. Diss.

662. ALKKIOMÄKI, VILLE. Role of service and data reuse in enterprises. 2015. Diss.

663. VÄNTSI, OLLI. Utilization of recycled mineral wool as filler in wood plastic composites.

2015. Diss.

664. KLEMOLA, KATJA. Tuottavuuden, vaikuttavuuden ja kustannusvaikuttavuuden arviointi alueellisesti integroiduissa sosiaali- ja terveyspalveluissa – palvelujen käyttöön perustuva malli ja esimerkkejä. 2015. Diss.

665. HEROLD, KRISTIINA. Impact of Word-of-Mouth on consumer decision-making: An information processing perspective in the context of a high-involvement service. 2015.

Diss.

666. OLABODE, MUYIWA. Weldability of high strength aluminium alloys. 2015. Diss.

667. VANHALA, ERNO. The role of business model in computer game development organizations. 2015. Diss.

668. SALAMPASIS, DIMITRIOS. Trust-embedded open innovation: Towards a human-centric approach in the financial industry. 2015. Diss.

669. DE SMET, DIETER. Innovation ecosystem perspectives on financial services innovation.

2015. Diss.

670. PORRAS, PÄIVI. Utilising student profiles in mathematics course arrangements. 2015.

Diss.

671. SALMINEN, JUHO. The role of collective intelligence in crowdsourcing innovations. 2015.

Diss.

672. ROSAS, SAILA. Co-operative acquisitions – the contextual factors and challenges for

672. ROSAS, SAILA. Co-operative acquisitions – the contextual factors and challenges for