• Ei tuloksia

Spectral flow in the free field realization

3.3 Free field realizations

3.3.2 Spectral flow in the free field realization

The bosonic realization (3.165) of the SL(2,R) current algebra provides an interesting tool to examine strings on the BTZ black hole. Since we have seen that the spectral flow is an integral feature in the construction of the string spectrum on the SL(2,R) group manifold, there is a need to clarify the role of spectral flow in the free field realization.

We approach this problem by considering the global properties of the BTZ geometry and solving the periodic identifications for the fields Xa [57]. In this way, we obtain the same values for the spectral flow parameters as in section 3.2.2.

First, we observe that the sigma model form of the WZW action (3.139) can be converted to the BTZ metric (2.24) using the following transformation:

ψ =

The periodic identification of the angular BTZ coordinateθ ∼θ+ 2π translates into the following identifications of (φ, γ,¯γ):

(γ(z),γ(¯¯ z), φ(z,z))¯ ¡

γ(z)e2π∆ , ¯γ(¯z)e2π∆+ , φ(z,z)¯ 2πr+

¢ (3.169)

Notice that in the free field limit, γ = ψ(z) is a function of z only, and ¯γ = χ(¯z) is a function of ¯z only, respectively.

In order to find out the periodicities of the fields Xa, we perform the following trans-formations:

With these transformations, we arrive at the currents (3.165). Bearing in mind that we have rescaled the fieldφ →φ/√

2k0 to obtain the current algebra (3.147), the identification of φ also gets rescaled:

(γ(z),¯γ(¯z), φ(z,z))¯ We find that the periodicity condition (3.171) is satisfied if6

³ Notice that the factors includingrcancel in the identification ofφ(z,z) since we have to¯ include both the holomorphic and the antiholomorphic part ofX1(z,z) in the calculation.¯

6It might appear that the periodicity condition could be imposed on the lightcone coordinateX: (X(z),X˜z))(X(z) +π

2k , X˜z) +π

2k +). However, this would include an unwanted term proportional to −ir+

2klnz in the mode expansion ofX0, that conflicts with the periodicity of the fieldβ (3.170).

The result (3.172) tells us that the field X1 corresponds to a compact coordinate. A natural interpretation is that the U(1) current J2 generated by ∂X1 describes rotations in the compact θ-direction of the BTZ black hole geometry. We need to incorporate the effect of compactness in the mode expansion of X1. This is done by including a shift in the zero modes of the fieldX1:

X1(z,z) = ˆ¯ q1 i 2

³ ˆ

p1−w+ 2k

´

lnz i 2

³ˆ¯p1+w 2k

´

ln¯z+ oscillations (3.173) We have suggestively labeledw± =m∆ (m Z). The apparent difference between the radii of the holomorphic and the antiholomorphic part is an effect of the intrinsic angular momentum of the target space. For a non-rotating black hole, r = 0, and the radii become equal.

What is the meaning of the transformation

³ ˆ p1,ˆ¯p1

´

³ ˆ

p1−w+

2k , ˆ¯p1+w 2k

´

? Let us see how this affects the currents (3.165). We find the following transformation rules for the modes of the currents:

Jn± Jn±iw± + , J¯n± J¯n±iw±

Jn2 Jn2+k2w+δn,0 , J¯n2 J¯n2 k2wδn,0 (3.174) These look familiar. In fact, we have just reproduced the transformation law (3.99) of spectral flow for the modes of the currents. Hence, the spectral flow is generated by twisting of the field X1 in the free field realization (3.165).

Bibliography

[1] J. Polchinski, Dirichlet-Branes and Ramond-Ramond Charges, Phys. Rev. Lett. 75 (1995) 4724 [arXiv:hep-th/9510017].

[2] E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B443 (1995) 85 [arXiv:hep-th/9503124].

[3] J. M. Bardeen, B. Carter and S. W. Hawking, The Four Laws Of Black Hole Me-chanics, Commun. Math. Phys. 31 (1973) 161.

[4] L. Susskind, Some Speculations About Black Hole Entropy In String Theory, arXiv:hep-th/9309145.

[5] A. Strominger and C. Vafa, Microscopic Origin of the Bekenstein-Hawking Entropy, Phys. Lett. B379 (1996) 99 [arXiv:hep-th/9601029].

[6] J. M. Maldacena, The large N limit of superconformal field theories and supergrav-ity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113]

[arXiv:hep-th/9711200].

[7] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [arXiv:hep-th/9802109];

E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [arXiv:hep-th/9802150].

[8] G. ’t Hooft,Dimensional Reduction In Quantum Gravity, in Salamfestschrift: A Col-lection of Talks, World Scientific, Singapore (1993) 0284-296 [arXiv:gr-qc/9310026];

L. Susskind, The World as a Hologram, J. Math. Phys. 36 (1995) 6377 [arXiv:hep-th/9409089].

[9] J. Maldacena and H. Ooguri, Strings in AdS3 and SL(2,R) WZW model 1.: The Spectrum, J. Math. Phys. 42 (2001) 2929 [arXiv:hep-th/0001053].

[10] M. Banados, C. Teitelboim and J. Zanelli, The Black Hole In Three-Dimensional Space-Time, Phys. Rev. Lett.69 (1992) 1849 [arXiv:hep-th/9204099];

M. Banados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2+1) black hole, Phys. Rev. D 48 (1993) 1506 [arXiv:gr-qc/9302012].

[11] J. L. Petersen, Introduction to the Maldacena conjecture on AdS/CFT, Int. J. Mod.

Phys. A 14 (1999) 3597 [arXiv:hep-th/9902131].

[12] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz,Large N field the-ories, string theory and gravity, Phys. Rept.323 (2000) 183 [arXiv:hep-th/9905111].

[13] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cam-bridge University Press, UK (1973)

[14] T. Klosch and T. Strobl,Classical and Quantum Gravity in 1+1 Dimensions, Part II:

The Universal Coverings, Class. Quant. Grav.13(1996) 2395 [arXiv:gr-qc/9511081];

L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The black hole singularity in AdS/CFT, arXiv:hep-th/0306170.

[15] S. Hemming, E. Keski-Vakkuri and P. Kraus,Strings in the extended BTZ spacetime, JHEP 0210 (2002) 006 [arXiv:hep-th/0208003].

[16] S. W. Hawking, Particle Creation By Black Holes, Commun. Math. Phys. 43(1975) 199.

[17] N. D. Birrell and P. C. Davies,Quantum Fields in Curved Space, Cambridge Univer-sity Press, UK (1982)

[18] W. G. Unruh, Notes on black hole evaporation, Phys. Rev.D14 (1976) 870

[19] F. Wilczek, Lectures on Black Hole Quantum Mechanics, Int. J. Mod. Phys. A 13 (1998) 5279.

[20] T. Jacobson,Introduction to Quantum Fields in Curved Spacetime and the Hawking Effect, [arXiv:gr-qc/0308048].

[21] R. M. Wald, The thermodynamics of black holes, Living Rev. Rel. 4 (2001) 6 [arXiv:gr-qc/9912119].

[22] J. D. Bekenstein,Black Holes And The Second Law, Lett. Nuovo Cim. 4 (1972) 737;

J. D. Bekenstein,Black Holes And Entropy, Phys. Rev. D7 (1973) 2333;

J. D. Bekenstein,Generalized Second Law Of Thermodynamics In Black Hole Physics, Phys. Rev. D 9 (1974) 3292.

[23] S. W. Hawking and D. N. Page, Thermodynamics of Black Holes in Anti-de Sitter Space, Commun. Math. Phys.87 (1983) 577.

[24] E. Witten,Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys.2 (1998) 505 [arXiv:hep-th/9803131].

[25] G. T. Horowitz, Comments on black holes in string theory, Class. Quant. Grav. 17 (2000) 1107 [arXiv:hep-th/9910082].

[26] P. C. W. Davies,The Thermodynamic Theory of Black Holes, Proc. Roy. Soc. Lond.

A 353 (1977) 499.

[27] G. W. Gibbons and M. J. Perry, Black Holes And Thermal Green’s Functions, Proc.

Roy. Soc. Lond. A 358 (1978) 467.

[28] P. Kraus and F. Wilczek, A Simple stationary line element for the Schwarzschild Geometry, and some applications, arXiv:gr-qc/9406042;

P. Kraus and F. Wilczek, Self-interaction correction to black hole radiance, Nucl.

Phys. B433 (1995) 403 [arXiv:gr-qc/9408003].

[29] P. Painlev´e, La m´ecanique classique et la th´eorie de la relativit´e, C. R. Acad. Sci.

(Paris)173, 677-680 (1921).

[30] A. Gullstrand,Allgemeine L¨osung des statischen Eink¨orperproblems in der Einstein-schen Gravitationstheorie, Arkiv. Mat. Astron. Fys. 16 (8), 1-15 (1922).

[31] E. Keski-Vakkuri and P. Kraus, Microcanonical D-branes and back reaction, Nucl.

Phys. B491 (1997) 249 [arXiv:hep-th/9610045];

K. Srinivasan and T. Padmanabhan, Particle production and complex path analysis, Phys. Rev. D 60 (1999) 024007 [arXiv:gr-qc/9812028];

S. Hemming and E. Keski-Vakkuri, Hawking radiation from AdS black holes, Phys.

Rev. D 64 (2001) 044006 [arXiv:gr-qc/0005115].

[32] M. K. Parikh and F. Wilczek, Hawking radiation as tunneling, Phys. Rev. Lett. 85 (2000) 5042 [arXiv:hep-th/9907001].

[33] V. Balasubramanian, P. Kraus and A. E. Lawrence, Bulk vs. boundary dynamics in anti-de Sitter spacetime, Phys. Rev. D 59 (1999) 046003 [arXiv:hep-th/9805171].

[34] P. C. W. Davies and S. A. Fulling, Radiation From A Moving Mirror In Two-Dimensional Space-Time Conformal Anomaly, Proc. Roy. Soc. Lond. A 348 (1976) 393.

[35] J. Wess, B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. 37B (1971) 95.

[36] E. Witten, Non-abelian bosonization in two dimensions, Commun. Math. Phys. 92 (1984) 455.

[37] S. Novikov,Multi-valued functions and functionals. An analogue of the Morse Theory, Sov. Math. Dokl. 24 (1981) 222.

[38] S. V. Ketov, Conformal Field Theory, World Scientific, Singapore (1995)

[39] P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer, New York, USA (1997)

[40] H. Sugawara, A Field Theory of Currents, Phys. Rev.170 (1968) 1659.

[41] C. Sommerfield, Currents as Dynamical Variables, Phys. Rev. 176 (1968) 2019.

[42] N. Kaloper,Miens of the three-dimensional black hole, Phys. Rev. D 48 (1993) 2598 [arXiv:hep-th/9303007].

[43] M. Natsuume and Y. Satoh, String theory on three dimensional black holes, Int. J.

Mod. Phys. A 13 (1998) 1229 [arXiv:hep-th/9611041].

[44] N. J. Vilenkin,Special Functions and the Theory of Group Representations, American Mathematical Society, USA (1968).

[45] M. Henningson, S. Hwang, P. Roberts and B. Sundborg, Phys. Lett. B 267 (1991) 350;

S. Hwang and P. Roberts, Proceedings of the 16th Johns Hopkins Workshop, Current Problems in Particle Theory, Goteborg, Sweden (1992) [arXiv:hep-th/9211075].

[46] J. Balog, L. O’Raifeartaigh, P. Forgacs and A. Wipf, Consistency Of String Propa-gation On Curved Space-Times: An SU(1,1) Based Counterexample, Nucl. Phys. B 325, 225 (1989);

P. M. Petropoulos, Comments On SU(1,1) String Theory, Phys. Lett. B 236, 151 (1990);

I. Bars and D. Nemeschansky, String Propagation In Backgrounds With Curved Space-Time, Nucl. Phys. B348, 89 (1991);

S. Hwang, No Ghost Theorem For SU(1,1) String Theories, Nucl. Phys. B 354, 100 (1991);

S. Hwang, Cosets as gauge slices in SU(1,1) strings, Phys. Lett. B 276, 451 (1992)

[arXiv:hep-th/9110039];

J. M. Evans, M. R. Gaberdiel and M. J. Perry, The no-ghost theorem for AdS(3) and the stringy exclusion principle, Nucl. Phys. B 535, 152 (1998) [arXiv:hep-th/9806024];

L. J. Dixon, M. E. Peskin and J. Lykken, N=2 Superconformal Symmetry And SO(2,1) Current Algebra, Nucl. Phys. B325, 329 (1989).

[47] S. Hemming and E. Keski-Vakkuri,The spectrum of strings on BTZ black holes and spectral flow in the SL(2,R) WZW model, Nucl. Phys. B 626 (2002) 363 [arXiv:hep-th/0110252].

[48] J. Kuriyan, N. Mukunda and E. C. G. Sudarshan, Master Analytic Representation:

Reduction of O(2,1)in an O(1,1) Basis, J. Math. Phys. 9 (1968) 2100.

[49] R. Argurio, A. Giveon and A. Shomer,Superstrings on AdS(3) and symmetric prod-ucts, JHEP 0012 (2000) 003 [arXiv:hep-th/0009242].

[50] J. Son, Strings on plane waves and AdS × S, arXiv:hep-th/0312017.

[51] A. Gerasimov, A. Morozov, M. Olshanetsky, A. Marshakov and S. L. Shatashvili, Wess-Zumino-Witten Model As A Theory Of Free Fields, Int. J. Mod. Phys. A 5 (1990) 2495.

[52] K. Hosomichi, K. Okuyama and Y. Satoh, Free field approach to string theory on AdS(3), Nucl. Phys. B 598, 451 (2001) [arXiv:hep-th/0009107].

[53] M. Wakimoto, Fock Representations Of The Affine Lie Algebra A1(1), Commun.

Math. Phys. 104 (1986) 605.

[54] K. Ito and Y. Kazama,Feigin-Fuchs Representations Of A(N)**(1) Affine Lie Alge-bra And The Associated Parafermionic AlgeAlge-bra, Mod. Phys. Lett. A 5 (1990) 215.

[55] Y. Satoh, Ghost-free and modular invariant spectra of a string in SL(2,R) and three-dimensional black hole geometry, Nucl. Phys. B 513 (1998) 213 [arXiv:hep-th/9705208].

[56] D. Gepner and Z. a. Qiu,Modular Invariant Partition Functions For Parafermionic Field Theories, Nucl. Phys. B 285 (1987) 423.

[57] S. Hemming, On free field realizations of strings in BTZ, arXiv:hep-th/0304009.