• Ei tuloksia

The studies indicate that nutrient-poor (oligo-ombrotrophic) sites are often at risk of increased export of P after restoration, while on nutrient-rich sites there can be high release of any of the three elements (DOC, N, P) studied here. These impacts could at least initially be high enough to compromise the improvement in water purification processes, which is one of the expected positive outcomes of restoration of forestry-drained peatlands. In particular, the very high exports from some fertile sites (II) raise concern as these are among the most bio-diverse wetland ecosystems and thus encounter specific restoration need. Even though these restored swamps will later turn from sources to nutrient sinks, it will plausibly take a very long time before the sinks fully compensate for the nutrients initially released due to restora-tion measures, as well as before the receiving water courses fully recover from the impacts of restoration. Furthermore, as wetlands (both pristine and restored) rather produce DOC into water courses that retain it from surrounding mineral soil areas, it may be, because of initial release of DOC and no later retention, that the overall effect of restoration is increased DOC input into receiving water courses.

Whether there is a risk of very high P export seems to depend on whether the peat Fe and Al suffice to re-adsorb the released easily-soluble and redox-sensitive P. The risk of high exports of DOC and P could be connected to the fact that spruce swamps usually have large mineral soil up-slope catchments, which supply them with substantial water input after the ditches bordering the peatland and the mineral soil catchment are filled in. This in connection with the decomposed and poorly water-conducting surface peat could create a situation where the water level rapidly rises, perhaps to higher level than in an undrained state, and anoxic conditions form in the surface layers of the restored swamp. Besides increasing the release of water-borne nutrients and DOC, these pools may increase the emissions of CH4(IV).

Small brooks or other discharge channels are often present in spruce swamps in their pris-tine state. These are often straightened and deepened in connection with the drainage opera-tions and are treated as any other ditch in connection to the restoration operaopera-tions. It should be investigated whether these could instead of being completely filled in and/or dammed, be restored with less intensive measures. These measures could allow some surface flow to occur and the very surface peat layers to remain partly aerobic after restoration, such as they plausibly are in respective pristine swamps. This could also prevent the high CH4emissions observed in study IV.

Redox conditions in peat have not thus far been connectedin situto exports of nutrients or CH4emissions in drained peatland forests restoration status notwithstanding; neither have the conditions present in restored forestry-drained peatlands been compared to those present in undrained sites. This is a definite gap in the understanding of processes connected to water quality in restored sites. In addition, active mitigation measures such as two-staged restoration where a small portion of the catchment is first restored to provide a wetland buffer zone for the main restoration operations, should be investigated.

REFERENCES

Ahtiainen M. (1990). Avohakkuun ja metsäojituksen vaikutukset purovesien laatuun. Vesi-ja ympäristöhallitus.

Ahtiainen M., Huttunen P. (1999). Long-term effects of forestry managements on water quality and loading in brooks. Boreal Environment Research 4: 101–114.

Arnold K.V., Weslien P., Nilsson M., Svensson B.H., Klemedtsson L. (2005). Fluxes of CO2, CH4 and N2O from drained coniferous forests on organic soils. Forest Ecology and Management 210: 239–254. doi:10.1016/j.foreco.2005.02.031.

Blodau C., Moore T.R. (2003). Experimental response of peatland carbon dynamics to a water table fluctuation. Aquatic Sciences - Research Across Boundaries 65: 47–62. doi:

10.1007/s000270300004.

Brookes P.C., Powlson D.S., Jenkinson D.S. (1982). Measurement of microbial biomass phosphorus in soil. Soil biology and biochemistry 14: 319–329.

Chapman S., Buttler A., Francez A.J., Laggoun-Défarge F., Vasander H., Schloter M., Mitchell, Combe J., Grosvernier P., Harms H., Epron D., Gilbert D., Mitchell E. (2003).

Exploitation of northern peatlands and biodiversity maintenance: a conflict between econ-omy and ecology. Frontiers in Ecology and the Environment 1: 525–532.

Darke A.K., Walbridge M.R. (2000). Al and Fe biogeochemistry in a floodplain forest: im-plications for P retention. Biogeochemistry 51: 1–32.

EC (2011). Our Life in Insurance, our Natural Capital: An EU Biodiversity Strategy to 2020.

COM (2011) 244: 17.

Forsmann D.M., Kjaergaard C. (2014). Phosphorus release from anaerobic peat soils during convective discharge — Effect of soil Fe:P molar ratio and preferential flow. Geoderma 223-225: 21–32. doi:10.1016/j.geoderma.2014.01.025.

Freeman C., Ostle N., Kang H. (2001). An enzymic ’latch’ on a global carbon store. Nature 409: 149. doi:10.1038/35051650.

Gore A.J.P. (ed.) (1983). Ecosystems of the World 4A: Mires: Swamp, Bog, Fen and Moor.

Elsevier Scientific Publishing Company, Amsterdam. ISBN 0-444-42003-7, 440 pp.

Grip H. (1982). Water chemistry and runoff in forest streams at Kloten [nitrogen fertilization, clear-cutting, leaching, simulation, Birkenes model, Sweden]. Uppsala Univ.

Grybos M., Davranche M., Gruau G., Petitjean P., Pédrot M. (2009). Increasing pH drives organic matter solubilization from wetland soils under reducing conditions. Geoderma 154: 13–19. doi:10.1016/j.geoderma.2009.09.001.

Haapanen M., Kenttämies K., Porvari P., Sallantaus T. (2006). Kivennäismaan uudis-tushakkuun vaikutus kasvinravinteiden ja orgaanisen aineen huuhtoutumiseen; raportti Ku-russa ja Janakkalassa sijaitsevien tutkimusalueiden tuloksista. Suomen ympäristö 816:

43–59.

Hahn-Schöfl M., Zak D., Minke M., Gelbrecht J., Augustin J., Freibauer A. (2011). Organic sediment formed during inundation of a degraded fen grassland emits large fluxes of CH4 and CO2. Biogeosciences 8: 1539–1550. doi:10.5194/bg-8-1539-2011.

Huttunen J., Nykänen H., Martikainen P.J., Nieminen M. (2003). Fluxes of nitrous oxide and methane from drained peatlands following forest clear-felling in southern Finland. Plant and Soil : 457–462.

Jaatinen K., Laiho R., Vuorenmaa A., del Castillo U., Minkkinen K., Pennanen T., Penttilä T., Fritze H. (2008). Responses of aerobic microbial communities and soil respiration to water-level drawdown in a northern boreal fen. Environmental Microbiology 10: 339–353.

doi:10.1111/j.1462-2920.2007.01455.x.

Joensuu S., Ahti E., Vuollekoski M. (1999). The effects of peatland forest ditch maintenance on suspended solids in runoff. Boreal Environment Research 4: 343–355.

Joensuu S., Ahti E., Vuollekoski M. (2002). Effects of Ditch Network Maintenance on the Chemistry of Run-off Water from Peatland Forests. Scandinavian Journal of Forest Re-search 17: 238–247. doi:10.1080/028275802753742909.

Joosten H., Clarke D. (2002). Wise use of Mires and Peatlands. International Mire Conser-vation Group, International Peat Society, Saarijärvi. ISBN 9519774483, 304 pp.

Joosten H., Tapio-Biström M.L., Tol S. (eds.) (2012). Peatlands - guidance for climate change mitigation through conservation, rehabilitation and sustainable use. FAO and Wetlands International, Rome, 112 pp.

Juottonen H., Hynninen A., Nieminen M., Tuomivirta T.T., Tuittila E.S., Nousiainen H., Kell D.K., Yrjälä K., Tervahauta A., Fritze H. (2012). Methane-cycling microbial communi-ties and methane emission in natural and restored peatlands. Applied and environmental microbiology 78: 6386–9. doi:10.1128/AEM.00261-12.

Kettunen A., Kaitala V., Lehtinen A., Lohila A., Alm J., Silvola J., Martikainen P.J.

(1999). Methane production and oxidation potentials in relation to water table fluc-tuations in two boreal mires. Soil Biology and Biochemistry 31: 1741–1749. doi:

10.1016/S0038-0717(99)00093-0.

Kiikkilä O., Smolander A., Kitunen V. (2013). Degradability, molecular weight and adsorp-tion properties of dissolved organic carbon and nitrogen leached from different types of decomposing litter. Plant and Soil 373: 787–798. doi:10.1007/s11104-013-1837-3.

Koh H.S., Ochs C.a., Yu K. (2009). Hydrologic gradient and vegetation controls on CH4 and CO 2 fluxes in a spring-fed forested wetland. Hydrobiologia 630: 271–286. doi:

10.1007/s10750-009-9821-x.

Koivusalo H., Ahti E., Laurén A., Kokkonen T., Karvonen T., Nevalainen R., Finér L. (2008).

Impacts of ditch cleaning on hydrological processes in a drained peatland forest. Hydrol-ogy and Earth System Sciences 12: 1211–1227. doi:10.5194/hess-12-1211-2008.

Komulainen V.M., Tuittila E.S., Vasander H., Laine J. (1999). Restoration of drained peat-lands in southern Finland: initial effects on vegetation change and CO2 balance. Journal of Applied Ecology 36: 634–648. doi:10.1046/j.1365-2664.1999.00430.x.

Laine J., Vasander H., Laiho R. (1995). Long-Term Effects of Water Level Drawdown on the Vegetation of Drained Pine Mires in Southern Finland. Journal of Applied Ecology 32:

785–802.

Laurén A., Heinonen J., Koivusalo H., Sarkkola S., Tattari S., Mattsson T., Ahtiainen M., Joensuu S., Kokkonen T., Finér L. (2009). Implications of uncertainty in a pre-treatment dataset when estimating pre-treatment effects in paired catchment studies: Phos-phorus loads from forest clear-cuts. Water, Air, and Soil Pollution 196: 251–261. doi:

10.1007/s11270-008-9773-1.

Löfgren S., Ring E., von Brömssen C., Sørensen R., Högbom L. (2009). Short-term Effects of Clear-cutting on the Water Chemistry of Two Boreal Streams in Northern Sweden: A Paired Catchment Study. AMBIO: A Journal of the Human Environment 38: 347–356.

doi:10.1579/0044-7447-38.7.347.

Lucchese M., Waddington J., Poulin M., Pouliot R., Rochefort L., Strack M. (2010). Organic matter accumulation in a restored peatland: Evaluating restoration success. Ecological Engineering 36: 482–488. doi:10.1016/j.ecoleng.2009.11.017.

Maanavilja L. (2015). Restoration of ecosystem structure and function in boreal spruce swamp forests. Dissertationes Forestales 191: 1. doi:10.14214/df.191.

Maanavilja L., Kangas L., Mehtätalo L., Tuittila E.S. (2015). Rewetting of drained boreal spruce swamp forests results in rapid recovery of Sphagnum production. Journal of Ap-plied Ecology 52: 1355–1363. doi:10.1111/1365-2664.12474.

Mattsson T., Kortelainen P., Lepistö A., Räike A. (2007). Organic and minerogenic acidity in Finnish rivers in relation to land use and deposition. Science of the Total Environment 383: 183–192. doi:10.1016/j.scitotenv.2007.05.013.

Ministry of Agriculture and Forestry (2011). Ehdotus soiden ja turvemaiden kestävän ja vastuullisen käytön ja suojelun kansalliseksi strategiaksi.

Minkkinen K., Korhonen R., Savolainen I., Laine J. (2002). Carbon balance and radiative forcing of Finnish peatlands 1900–2100–the impact of forestry drainage. Global Change Biology 8: 785–799.

Minkkinen K., Laine J. (1998). Effect of forest drainage on the peat bulk density of pine mires in Finland. Canadian Journal of Forest Research 28: 178–186. doi:10.1139/x97-206.

Minkkinen K., Laine J. (2006). Vegetation heterogeneity and ditches create spatial variability in methane fluxes from peatlands drained for forestry. Plant and Soil 285: 289–304. doi:

10.1007/s11104-006-9016-4.

Minkkinen K., Laine J., Nykänen H., Martikainen P.J. (1997). Importance of drainage ditches in emissions of methane from mires drained for forestry. Canadian Journal of Forest Re-search 952: 949–952.

Minkkinen K., Vasander H., Jauhiainen S., Karsisto M., Laine J. (1999). Post-drainage changes in vegetation composition and carbon balance in Lakkasuo mire, Central Finland.

Plant and Soil 207: 107–120. doi:10.1023/a:1004466330076.

Nieminen M. (2003). Effects of clear-cutting and site preparation on water quality from a drained Scots pine mire in southern Finland. Boreal environment research 8: 53–59.

Nieminen M. (2004). Export of dissolved organic carbon, nitrogen and phosphorus following clear-cutting of three Norway spruce forests growing on drained peatlands in southern Finland. Silva Fennica 38: 123–132.

Nieminen M., Ahti E., Nousiainen H., Joensuu S., Vuollekoski M. (2005). Does the use of riparian buffer zones in forest drainage sites to reduce the transport of solids simultaneously increase the export of solutes? Boreal Environment Research 10: 191–201.

Nieminen M., Jarva M. (1996). Phosphorus adsorption by peat from drained mires in southern Finland. Scandinavian Journal of Forest Research 11: 321–326.

Nykänen H., Alm J., Silvola J., Tolonen K., Martikainen P.J. (1998). Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering.

Global Biogeochemical Cycles 12: 53–69.

Ojanen P., Minkkinen K., Alm J., Penttilä T. (2010). Soil–atmosphere CO2, CH4 and N2O fluxes in boreal forestry-drained peatlands. Forest Ecology and Management 260: 411–

421. doi:10.1016/j.foreco.2010.04.036.

Ojanen P., Minkkinen K., Penttilä T. (2013). The current greenhouse gas impact of forestry-drained boreal peatlands. Forest Ecology and Management 289: 201–208. doi:10.1016/j.

foreco.2012.10.008.

Palviainen M., Finér L., Laurén A., Launiainen S., Piirainen S., Mattsson T., Starr M. (2014).

Nitrogen, Phosphorus, Carbon, and Suspended Solids Loads from Forest Clear-Cutting and Site Preparation: Long-Term Paired Catchment Studies from Eastern Finland. AMBIO 43:

218–233. doi:10.1007/s13280-013-0439-x.

Priha O., Smolander A. (1997). Microbial biomass and activity in soil and litter under Pinus sylvestris, Picea abies and Betula pendula at originally similar field afforestation sites.

Biology and fertility of soils 24: 45–51.

Psenner R., Pucsko R., Sager M. (1984). Die Fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten: Versuch einer Definition ökologisch wichtiger Fraktionen. Archiv fur Hydrobiologie, Supplement 70: 111–155.

Qualls R., Haines B. (1991). Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystem. Soil Science Society of America . . . 1123: 1112–1123.

Raunio A., Schulman A., Kontula T. (2008). Suomen luontotyyppien uhanalaisuus. Osa 1, Tulokset ja arvioinnin perusteet/Assessment of endangered habitat types in Finland. Part 1, Results and basis for assessment. Finnish Environment Institute, Helsinki. ISBN 978-952-11-3027-4, 264 s pp.

Rochefort L., Quinty F., Campeau S., Johnson K., Malterer T. (2003). North American approach to the restoration of Sphagnum dominated peatlands. Wetlands Ecology and Management 11: 3–20. doi:10.1023/A:1022011027946.

Rosén K., Aronson J.A., Eriksson H.M. (1996). Effects of clear-cutting on streamwater quality in forest catchments in central Sweden. Forest Ecology and Management 83: 237–

244. doi:http://dx.doi.org/10.1016/0378-1127(96)03718-8.

Roulet N., Moore T.R. (1995). The effect of forestry drainage practices on the emission of methane from northern peatlands. Canadian journal of forest research 25: 491–499.

Sallantaus T. (1992). Leaching in the material balance of peatlands - preliminary results. Suo 43: 253–258.

Sallantaus T. (2004). Hydrochemical impacts set contstraints on mire restoration. In: J. Päivä-nen (ed.) Wise use of peatlands. Proceedings of the 12th International Peat Congress, Tam-pere, Finland, 6–11 June 2014, vol. 1. International Peat Society, volume 1, pp. 68–73.

Sallantaus T. (2014). The impacts of peatland restoration on water quality. In: M. Similä, K. Aapala, J. Penttinen (eds.) Ecological restoration in drained peatlands – best practices from Finland, Metsähallitus. pp. 12–14.

Silván N., Sallantaus T., Vasander H., Laine J. (2005). Hydraulic nutrient transport in a restored peatland buffer. Boreal Environment Research 10: 203–210.

Silvola J., Alm J., Ahlholm U., Nykanen H., Martikainen P.J. (1996). CO2 Fluxes from Peat in Boreal Mires under Varying Temperature and Moisture Conditions. Journal of Ecology 84: pp. 219–228.

Similä M., Aapala K., Penttinen J. (eds.) (2014). Ecological restoration in drained peatlands.

Metsähallitus, Natural Heritage Services. ISBN 9789522950727, 84 pp.

Tuittila E.S., Komulainen V.M., Vasander H., Nykänen H., Martikainen P.J., Laine J. (2000).

Methane dynamics of a restored cut-away peatland. Global Change Biology 6: 569–581.

doi:10.1046/j.1365-2486.2000.00341.x.

Turunen J. (2008). Development of Finnish peatland area and carbon storage 1950-2000.

Boreal environment research 6095: 319–334.

Turunen J., Tomppo E., Tolonen K., Reinikainen A. (2002). Estimating carbon accumulation rates of undrained mires in Finland – application to boreal and subarctic regions. The Holocene 12: 69–80. doi:10.1191/0959683602hl522rp.

Urbanová Z., Picek T., Bárta J. (2011). Effect of peat re-wetting on carbon and nutrient fluxes, greenhouse gas production and diversity of methanogenic archaeal community. Ecological Engineering 37: 1017–1026. doi:10.1016/j.ecoleng.2010.07.012.

Vance E.D., Brookes P.C., Jenkinson D.S. (1987). An extraction method for measuring soil microbial biomass C. Soil biology and Biochemistry 19: 703–707.

Vanselow-Algan M., Schmidt S.R., Greven M., Fiencke C., Kutzbach L., Pfeiffer E.M.

(2015). High methane emissions dominated annual greenhouse gas balances 30 years after bog rewetting. Biogeosciences 12: 4361–4371. doi:10.5194/bg-12-4361-2015.

Vasander H., Tuittila E.S., Lode E., Lundin L., Ilomets M., Sallantaus T., Heikkilä R., Pitkä-nen M.L., Laine J. (2003). Status and restoration of peatlands in northern Europe. Wetlands Ecology and Management 11: 51–63. doi:10.1023/A:1022061622602.

Wilson D., Alm J., Laine J., Byrne K.A., Farrell E.P., Tuittila E.S. (2009). Rewetting of Cutaway Peatlands: Are We Re-Creating Hot Spots of Methane Emissions? Restoration Ecology 17: 796–806. doi:10.1111/j.1526-100X.2008.00416.x.

Wilson D., Farrell C., Mueller C., Hepp S., Renou-Wilson F. (2013). Rewetted industrial cutaway peatlands in western Ireland: a prime location for climate change mitigation.

Mires and Peat 11: 1–22.

Yu Z., Loisel J., Brosseau D.P., Beilman D.W., Hunt S.J. (2010). Global peatland dy-namics since the Last Glacial Maximum. Geophysical Research Letters 37. doi:

10.1029/2010GL043584.

Zak D., Gelbrecht J. (2007). The mobilisation of phosphorus, organic carbon and ammonium in the initial stage of fen rewetting (a case study from NE Germany). Biogeochemistry 85:

141–151. doi:10.1007/s10533-007-9122-2.

Zak D., Gelbrecht J., Wagner C., Steinberg C.E.W. (2008). Evaluation of phosphorus mo-bilization potential in rewetted fens by an improved sequential chemical extraction proce-dure. European journal of soil science 59: 1191–1201.