• Ei tuloksia

The study deepens our understanding of particle formation in varying atmospheric con-ditions. The model simulations concentrate on microscale processes while the long-term observations describe as well synoptic scale conditions.

The probability of new particle formation events is presented as a function of mean mi-croscale variables at the top of the ABL. The most essential variables are condensation sink and temporal change of temperature. The values of variables in the upper ABL have been derived from surface measurements which can, to a large degree, explain the consistency with earlier studies. The presented calculations are based on several simplifications, e.g. constant concentration of dry particles in an ascending air parcel and a non-existent entrainment zone above the ABL. Lagrange type box model sim-ulations would have allowed the description of particle dynamics in an ascending air parcel. Furthermore, 1D or 3D model simulations would have also given more reliable meteorological profiles.

The observations at Tumbarumba field station highlight the importance of spatially varying conditions in new particle formation. In the studied case latent heat flux far from the measurement station most probably determines the probability of new particle formation. The significance of air mass history in synoptic scale should be noticed when, e.g. results of column model simulations are evaluated and analysed.

The theoretical model study verifies that temporal or spatial variation in temperature and vapour concentrations can increase the mean binary water-sulphuric acid nucle-ation rate by orders of magnitude. The effect of this varinucle-ation has been parametrised with a correction factor. Under atmospheric conditions, however, the factor is signifi-cant only in limited cases. The factor is largest at high temperature and low humidity while these conditions inhibit binary H2O–H2SO4 nucleation. Even if binary nucle-ation could reach a significant level locally or momentarily, the varinucle-ation cannot ex-plain the orders of magnitude difference between observed and theoretical nucleation rates. Therefore, the sub-grid scale variation can be ignored in most of nucleation calculations in large scale models.

The further developed column models SOSA and MALTE succeed to produce reliable

physical and chemical conditions in the ABL. The main result of column model sim-ulations is that conventional H2SO4-induced kinetic nucleation is unlikely the primary particle formation mechanism in the ABL in the presence of organic vapours in the boreal forest. The results encourage continued studies on organic-induced nucleation.

The column model simulations highlight especially the importance of atmospheric mixing and local micrometeorological conditions in aerosol studies – the conclusions on possible nucleation mechanisms in the ABL are based on vertical vapour and par-ticle profiles. Several studies have suggested that new parpar-ticle formation take place near the ABL top. Therefore, the role of large eddies and mixing between the ABL and the free troposphere should receive greater attention. A representation for large eddies in MALTE should be considered in future. This could enable studies on the significance of dilution in new particle formation that are more reliable than with the present model version. Measured vertical profiles of precursor vapours and particle number distributions would allow evaluation of model results.

R EFERENCES

ABDELLA, K. ANDMCFARLANE, N. (1997). A new second-order turbulence closure scheme for the planetary boundary layer.J. Atmos. Sci.,54, 1850–1867.

BIRMILI, W. AND WIEDENSOHLER, A. (2000). New particle formation in the continental boundary layer: Meteorological and gas phase parameter influence.Geophys. Res. Lett.,27, 3325–3328.

BIRMILI, W., BERRESHEIM, H., PLASS-D ¨ULMER, C., ELSTE, T., GILGE, S., WIEDENSOHLER, A.

AND UHRNER, U. (2003). The Hohenpeissenberg aerosol formation experiment (HAFEX): a long-term study including size-resolved aerosol, H2SO4, OH, and monoterpenes measurements.Atmos.

Chem. Phys.,3, 361–376.

BOY, M.AND KULMALA, M. (2002). The part of the solar spectrum with the highest influence on the formation of SOA in the continental boundary layer.Atmos. Chem. Phys.,2, 375–386.

BOY, M., RANNIK, U., LEHTINEN, K.E.J., TARVAINEN, V., HAKOLA, H. AND KULMALA, M.

(2003). Nucleation events in the continental boundary layer: Long-term statistical analyses of aerosol relevant characteristics.J. Geophys. Res.,108, 4667.

BOY, M., HELLMUTH, O., KORHONEN, H., NILSSON, E.D., REVELLE, D., TURNIPSEED, A., ARNOLD, F.ANDKULMALA, M. (2006). MALTE – model to predict new aerosol formation in the lower troposphere.Atmos. Chem. Phys.,6, 4499–4517.

BUZORIUS, G., RANNIK, U., AALTO, P., DALMASO, M., NILSSON, E.D., LEHTINEN, K.E.J.AND

KULMALA, M. (2003). On particle formation prediction in continental boreal forest using micro-meteorological parameters.J. Geophys. Res.,108.

CLARKE, A.D., VARNER, J.L., EISELE, F., MAULDIN, R.L., TANNER, D.ANDLITCHY, M. (1998).

Particle production in the remote marine atmosphere: Cloud outflow and subsidence during ACE 1.

J. Geophys. Res.,103, 16397–16409.

CLARKE, A.D., EISELE, F., KAPUSTIN, V.N., MOORE, K., TANNER, D., MAULDIN, L., LITCHY, M., LIENERT, B., CARROLL, M.A.ANDALBERCOOK, G. (1999). Nucleation in the equatorial free troposphere: Favorable environments during PEM-Tropics.J. Geophys. Res.,104, 5735–5744.

DAL MASO, M., KULMALA, M., RIIPINEN, I., WAGNER, R., HUSSEIN, T., AALTO, P.P. AND

LEHTINEN, K.E.J. (2005). Formation and growth of fresh atmospheric aerosols: eight yeas of aerosols size distribution data from SMEAR II, Hyyti¨al¨a, Finland.Boreal Environ. Res.,10, 323–

336.

EASTER, R.C.ANDPETERS, L.K. (1994). Binary homogeneous nucleation: Temperature and relative humidity fluctuations, nonlinearity, and aspects of new particle production in the atmosphere.J. Appl.

Meteorol.,33, 775–784.

REFERENCES

GOLDSTEIN, A.H.AND GALBALLY, I.E. (2007). Known and unexplored organic constituents in the Earth’s atmosphere.Environmental Science & Technology,41, 1514–1521.

GUENTHER, A., KARL, T., HARLEY, P., WIEDINMYER, C., PALMER, P.I.AND GERON, C. (2006).

Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature).Atmos. Chem. Phys.,6, 3181–3210.

HAN, J. AND BYUN, D.W. (2005). An improvement of the two-stream model for vertical mixing of passive tracer in the convective boundary layer.Atmos. Environ.,39, 1775 – 1788.

HEALD, C.L., JACOB, D.J., PARK, R.J., ALEXANDER, B., FAIRLIE, T.D., YANTOSCA, R.M.AND

CHU, D.A. (2006). Transpacific transport of Asian anthropogenic aerosols and its impact on surface air quality in the United States.J. Geophys. Res.,111.

HELLMUTH, O. (2006a). Columnar modelling of nucleation burst evolution in the convective boundary layer – first results from a feasibility study Part I: Modelling approach.Atmos. Chem. Phys.,6, 4175–

4214.

HELLMUTH, O. (2006b). Columnar modelling of nucleation burst evolution in the convective boundary layer – first results from a feasibility study Part III: Preliminary results on physicochemical model performance using two “clean air mass” reference scenarios.Atmos. Chem. Phys.,6, 4231–4251.

HUANG, J., LIN, B., MINNIS, P., WANG, T., WANG, X., HU, Y., YI, Y.ANDAYERS, J.K. (2006).

Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over east asia.Geophys. Res. Lett.,33.

HUANG, J., ZHANG, C.ANDPROSPERO, J.M. (2010). African dust outbreaks: A satellite perspective of temporal and spatial variability over the tropical Atlantic Ocean.J. Geophys. Res.,115.

HYVONEN¨ , S., JUNNINEN, H., LAAKSO, L., DALMASO, M., GRONHOLM¨ , T., BONN, B., KERO

-NEN, P., AALTO, P., HILTUNEN, V., POHJA, T., LAUNIAINEN, S., HARI, P., MANNILA, H.AND

KULMALA, M. (2005). A look at aerosol formation using data mining techniques.Atmos. Chem.

Phys.,5, 3345–3356.

JUNG, J., FOUNTOUKIS, C., ADAMS, P.J.ANDPANDIS, S.N. (2010). Simulation of in situ ultrafine particle formation in the eastern United States using PMCAMx-UF.J. Geophys. Res.,115.

KHOSRAWI, F. AND KONOPKA, P. (2003). Enhanced particle formation and growth due to mixing processes in the tropopause region.Atmos. Environ.,37, 903–910.

KOPONEN, I.K., VIRKKULA, A., HILLAMO, R., KERMINEN, V.M. AND KULMALA, M. (2003).

Number size distributions and concentrations of the continental summer aerosols in Queen Maud Land, Antarctica.J. Geophys. Res.,108, 4587.

KORHONEN, H., LEHTINEN, K.E.J. ANDKULMALA, M. (2004). Multicomponent aerosol dynamics model UHMA: model development and validation.Atmos. Chem. Phys.,4, 757–771.

KUKKONEN, J., POHJOLA, M., SOKHI, R.S., LUHANA, L., KITWIROON, N., FRAGKOU, L., RANTAMAKI¨ , M., BERGE, E., ØDEGAARD, V., SLØRDAL, L.H., DENBY, B.AND FINARDI, S.

(2005). Analysis and evaluation of selected local-scale PM10 air pollution episodes in four European cities: Helsinki, London, Milan and Oslo.Atmos. Environ.,39, 2759–2773.

KULMALA, M., PIRJOLA, L.ANDM ¨AKELA¨, J.M. (2000). Stable sulphate clusters as a source of new atmospheric particles.Nature,404, 66–69.

REFERENCES

KULMALA, M., H ¨AMERI, K.K., AALTO, P., M ¨AKELA¨, J., PIRJOLA, L., NILSSON, E.D., BUZO

-RIUS, G., RANNIK, ¨U., DALMASO, M., SEIDL, W., HOFFMANN, T., JANSSON, R., HANSSON, H.C., O’DOWD, C.AND VIISANEN, Y. (2001). Overview of the international project on biogenic aerosol formation in the boreal forest (biofor).Tellus B,53, 324–343.

KULMALA, M., KERMINEN, V.M., ANTTILA, T., LAAKSONEN, A.ANDO’DOWD, C.D. (2004a).

Organic aerosol formation via sulphate cluster activation.J. Geophys. Res.,109.

KULMALA, M., LAAKSO, L., LEHTINEN, K.E.J., RIIPINEN, I., DAL MASO, M., ANTTILA, T., KERMINEN, V.M., H ˜ORRAK, U., VANA, M.AND TAMMET, H. (2004b). Initial steps of aerosol growth.Atmos. Chem. Phys.,4, 2553–2560.

KULMALA, M., VEHKAMAKI¨ , H., PETAJ¨ A¨, T., MASO, M.D., LAURI, A., KERMINEN, V.M., BIR

-MILI, W.ANDMCMURRY, P.H. (2004c). Formation and growth rates of ultrafine atmospheric par-ticles: a review of observations.J. Aerosol Sci.,35, 143 – 176.

KULMALA, M., LEHTINEN, K.E.J. AND LAAKSONEN, A. (2006). Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration.Atmos. Chem. Phys.,6, 787–793.

KURTEN´ , T., LOUKONEN, V., VEHKAMAKI¨ , H. AND KULMALA, M. (2008). Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia.Atmos. Chem. Phys.,8, 4095–4103.

LAAKSO, L., GRONHOLM¨ , T., KULMALA, L., HAAPANALA, S., HIRSIKKO, A., LOVEJOY, E.R., KAZIL, J., KURTEN´ , T., BOY, M., NILSSON, E.D., SOGACHEV, A., RIIPINEN, I., STRATMANN, F. ANDKULMALA, M. (2007). Hot-air balloon as a platform for boundary layer profile measure-ments during particle formation.Boreal Environ. Res.,12, 279–294.

LOUKONEN, V., KURTEN´ , T., ORTEGA, I.K., VEHKAMAKI¨ , H., P ´ADUA, A.A.H., SELLEGRI, K.

AND KULMALA, M. (2010). Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water – a computational study.Atmos. Chem. Phys.,10, 4961–4974.

MANKTELOW, P.T., MANN, G.W., CARSLAW, K.S., SPRACKLEN, D.V.ANDCHIPPERFIELD, M.P.

(2007). Regional and global trends in sulfate aerosol since the 1980s.Geophys. Res. Lett.,34.

MCMURRY, P.H. (1980). Photochemical aerosol formation from SO2: A theoretical analysis of smog chamber data.J. Colloid Interface Sci.,78, 513–527.

METZGER, A., VERHEGGEN, B., DOMMEN, J., DUPLISSY, J., PREVOT, A.S.H., WEINGARTNER, E., RIIPINEN, I., KULMALA, M., SPRACKLEN, D.V., CARSLAW, K.S.ANDBALTENSPERGER, U.

(2010). Evidence for the role of organics in aerosol particle formation under atmospheric conditions.

Proc. Natl. Acad. Sci. U.S.A.,107, 6646–6651.

M ¨ONKKONEN¨ , P., KOPONEN, I.K., LEHTINEN, K.E.J., H ¨AMERI, K., UMA, R.ANDKULMALA, M.

(2005). Measurements in a highly polluted Asian mega city: observations of aerosol number size distribution, modal parameters and nucleation events.Atmos. Chem. Phys.,5, 57–66.

NAPARI, I., NOPPEL, M., VEHKAMAKI¨ , H.AND KULMALA, M. (2002). An improved model for ternary nucleation of sulfuric acid-ammonia-water.J. Chem. Phys.,116, 4221–4227.

NILSSON, E.D., PAATERO, J.AND BOY, M. (2001a). Effects of air masses and synoptic weather on aerosol formation in the continental boundary layer.Tellus,53B, 462–478.

REFERENCES

NILSSON, E.D., RANNIK, U., KULMALA, M., BUZORIUS, G. AND O’DOWD, C.D. (2001b). Ef-fects of continental boundary layer evolution, convection, turbulence and entrainment, on aerosol formation.Tellus,53B, 441–461.

NOH, Y., CHEON, W.G., HONG, S.Y.ANDRAASCH, S. (2003). Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data.Boundary Layer Meteorol., 107, 401–427.

O’DOWD, C.D., H ¨AMERI, K., M ¨AKELA¨, J., V ¨AKEVA¨, M., AALTO, P.,DELEEUW, G., KUNZ, G.J., BECKER, E., HANSSON, H.C., ALLEN, A.G., HARRISON, R.M., BERRESHEIM, H., KLEEFELD, C., GEEVER, M., JENNINGS, S.G.AND KULMALA, M. (2002). Coastal new particle formation:

Environmental conditions and aerosol physicochemical characteristics during nucleation bursts.J.

Geophys. Res.,107, 8107.

PAASONEN, P., SIHTO, S.L., NIEMINEN, T., VUOLLEKOSKI, H., RIIPINEN, I., PLASS-D ¨ULMER, C., BERRESHEIM, H., BIRMILI, W.ANDKULMALA, M. (2009). Connection between new particle formation and sulphuric acid at Hohenpeissenberg (Germany) including the influence of organic compounds.Boreal Environ. Res.,14, 616–629.

PARIS, J.D., ARSHINOV, M.Y., CIAIS, P., BELAN, B.D. AND N ´EDELEC´ , P. (2009). Large-scale aircraft observations of ultra-fine and fine particle concentrations in the remote Siberian troposphere:

New particle formation studies.Atmos. Environ.,43, 1302–1309.

PERLWITZ, J.AND MILLER, R.L. (2010). Cloud cover increase with increasing aerosol absorptivity:

A counterexample to the conventional semidirect aerosol effect.J. Geophys. Res.,115.

PETER, J.R., SIEMS, S.T., JENSEN, J.B., GRAS, J.L., ISHIZAKA, Y.AND HACKER, J.M. (2010).

Airborne observations of the effect of a cold front on the aerosol particle size distribution and new particle formation.Q. J. R. Meteorol. Soc..

PETROFF, A., MAILLIAT, A., AMIELH, M. AND ANSELMET, F. (2008). Aerosol dry deposition on vegetative canopies. Part II: A new modelling approach and applications.Atmos. Environ.,42, 3654–

3683.

PETAJ¨ A¨, T., MAULDINIII, R.L., KOSCIUCH, E., MCGRATH, J., NIEMINEN, T., PAASONEN, P., BOY, M., ADAMOV, A., KOTIAHO, T.ANDKULMALA, M. (2009). Sulfuric acid and OH concen-trations in a boreal forest site.Atmos. Chem. Phys.,9, 7435–7448.

PLEIM, J.E. (2007). A combined local and nonlocal closure model for the atmospheric boundary layer.

Part I: Model description and testing.J. Appl. Meteor. Climatol.,46, 1383–1395.

RIIPINEN, I., SIHTO, S.L., KULMALA, M., ARNOLD, F., DALMASO, M., BIRMILI, W., SAARNIO, K., TEINILA¨, K., KERMINEN, V.M., LAAKSONEN, A.ANDLEHTINEN, K.E.J. (2007). Connec-tions between atmospheric sulphuric acid and new particle formation during QUEST III–IV cam-paigns in Heidelberg and Hyyti¨al¨a.Atmos. Chem. Phys.,7, 1899–1914.

ROSE, D., NOWAK, A., ACHTERT, P., WIEDENSOHLER, A., HU, M., SHAO, M., ZHANG, Y., AN

-DREAE, M.O. AND P ¨OSCHL, U. (2010). Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 1: Size-resolved measurements and im-plications for the modeling of aerosol particle hygroscopicity and CCN activity.Atmos. Chem. Phys., 10, 3365–3383.

REFERENCES

SIEBERT, H., WEHNER, B., HELLMUTH, O., STRATMANN, F., BOY, M., AND KULMALA, M.

(2007). New-particle formation in connection with a nocturnal low-level jet: Observations and mod-eling results.Geophys. Res. Lett.,34, L16822.

SIEBESMA, A.P., SOARES, P.M.M.ANDTEIXEIRA, J. (2007). A combined eddy-diffusivity mass-flux approach for the convective boundary layer.J. Atmos. Sci.,64, 1230–1248.

SIHTO, S.L., KULMALA, M., KERMINEN, V.M., DALMASO, M., PETAJ¨ A¨, T., RIIPINEN, I., KO

-RHONEN, H., ARNOLD, F., JANSON, R., BOY, M., LAAKSONEN, A. AND LEHTINEN, K.E.J.

(2006). Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measure-ments for nucleation and early growth mechanisms.Atmos. Chem. Phys.,6, 4079–4091.

SIPILA¨, M., BERNDT, T., PETAJ¨ A¨, T., BRUS, D., VANHANEN, J., STRATMANN, F., PATOKOSKI, J., MAULDINIII, R.L., HYVARINEN¨ , A.P., LIHAVAINEN, H. ANDKULMALA, M. (2010). The role of sulphuric acid in atmospheric nucleation.Science,327, 1243–1246.

SKAMAROCK, W.C., KLEMP, J.B., DUDHIA, J., GILL, D.O., BARKER, D.M., WANG, W. AND

POWERS, J.G. (2005). A description of the advanced research WRF version 2. Tech. rep., NCAR Tech Notes-468+STR.

SMITH, S.J.,VANAARDENNE, J., KLIMONT, Z., ANDRES, R., VOLKE, A.ANDDELGADOARIAS, S. (2010). Anthropogenic sulfur dioxide emissions: 1850–2005.Atmos. Chem. Phys. Discuss.,10, 16111–16151.

SOGACHEV, A. (2009). A note on two-equation closure modelling of canopy flow.Boundary Layer Meteorol.,130, 423–435.

SOGACHEV, A., MENZHULIN, G.V., HEIMANN, M. AND LLOYD, J. (2002). A simple three-dimensional canopy - planetary boundary layer simulation model for scalar concentrations and fluxes.

Tellus,54B, 784–819.

SOGACHEVA, L., DAL MASO, M., KERMINEN, V.M. AND KULMALA, M. (2005). Probability of nucleation events and aerosol particle concentration in different air mass types arriving at Hyyti¨al¨a, southern Finland, based on back trajectories analysis.Boreal Environ. Res.,10, 479–491.

STRATMANN, F., SIEBERT, H., SPINDLER, G., WEHNER, B., ALTHAUSEN, D., HEINTZENBERG, J., HELLMUTH, O., RINKE, R., SCHMIEDER, U., SEIDEL, C., TUCH, T., UHRNER, U., WIEDEN

-SOHLER, A., WANDINGER, U., WENDISCH, M., SCHELL, D. AND STOHL, A. (2003). New-particle formation events in a continental boundary layer: first results from the SATURN experiment.

Atmos. Chem. Phys.,3, 1445–1459.

STULL, R.B. (1993). Review of non-local mixing in turbulent atmospheres: Transilient turbulence theory.Boundary-Layer Meteorol.,62, 21–96, 10.1007/BF00705546.

TWOHY, C.H., CLEMENT, C.F., GANDRUD, B.W., WEINHEIMER, A.J., CAMPOS, T.L., BAUM

-GARDNER, D., BRUNE, W.H., FALOONA, I., SACHSE, G.W., VAY, S.A.,AND TAN, D. (2002).

Deep convection as a source of new particles in the midlatitude upper troposphere.J. Geophys. Res., 107, 4560.

VAUTARD, R., MAIDI, M., MENUT, L., BEEKMANN, M.ANDCOLETTE, A. (2007). Boundary layer photochemistry simulated with a two-stream convection scheme.Atmos. Environ.,41, 8275–8287.

VESTRENG, V., MYHRE, G., FAGERLI, H., REIS, S.ANDTARRASON´ , L. (2007). Twenty-five years of continuous sulphur dioxide emission reduction in europe.Atmos. Chem. Phys.,7, 3663–3681.

REFERENCES

VUOLLEKOSKI, H., NIEMINEN, T., PAASONEN, P., SIHTO, S.L., BOY, M., MANNINEN, H., LEHTI

-NEN, K., KERMINEN, V.M.ANDKULMALA, M. (2010). Atmospheric nucleation and initial steps of particle growth: Numerical comparison of different theories and hypotheses.Atmospheric Research, 98, 229–236.

WEBER, R., MARTI, J., MCMURRY, P., EISELE, F., TANNER, D.ANDJEFFERSON, A. (1996). Mea-sured atmospheric new particle formation rates: Implications for nucleation mechanisms.Chem. Eng.

Commun.,151, 53–64.

WEBER, R., MARTI, J., MCMURRY, P., EISELE, F., TANNER, D.ANDJEFFERSON, A. (1997). Mea-surements of new particle formation and ultrafine particle growth rates at a clean continental site.J.

Geophys. Res.,102, 4375–4385.

WEHNER, B., SIEBERT, H., ANSMANN, A., DITAS, F., SEIFERT, P., STRATMANN, F., WIEDEN

-SOHLER, A., APITULEY, A., SHAW, R.A., MANNINEN, H.E.ANDKULMALA, M. (2010). Obser-vations of turbulence-induced new particle formation in the residual layer.Atmos. Chem. Phys.,10, 4319–4330.

YOON, Y.J., O’DOWD, C.D., JENNINGS, S.G.ANDLEE, S.H. (2006). Statistical characteristics and predictability of particle formation events at Mace Head.J. Geophys. Res.,111.

YOUNG, L.H., BENSON, D.R., MONTANARO, W.M., LEE, S.H., PAN, L.L., ROGERS, D.C., JENSEN, J., STITH, J.L., DAVIS, C.A., CAMPOS, T.L., BOWMAN, K.P., COOPER, W.A. AND

LAIT, L.R. (2007). Enhanced new particle formation observed in the northern midlatitude tropopause region.J. Geophys. Res.,112.