• Ei tuloksia

The concept of completely interchangeable LPWAN data links was found to have significant limitations in downlink payload sizes and downlink frequency. End-nodes in the Sigfox network are limited to 8-byte downlink responses and a downlink

transmission frequency of 1, 2 or 4 per 24 h, depending on the subscription level.

The same limitations must then be applied to all LPWANs in use, as the upstream application server has no way of knowing which network a specific end-node uses.

End-nodes are not, however, limited in their uplink payload sizes or frequencies, and may send as much or as often as their LPWAN API allows.

References

[1] S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain and K. Kwak, ‘The inter-net of things for health care: A comprehensive survey’, IEEE Access, vol. 3, pp. 678–708, 2015, issn: 2169-3536.doi:10.1109/ACCESS.2015.2437951. [2] M. Centenaro, L. Vangelista, A. Zanella and M. Zorzi, ‘Long-range

commu-nications in unlicensed bands: The rising stars in the IoT and smart city scen-arios’, IEEE Wireless Communications, vol. 23, no. 5, pp. 60–67, Oct. 2016, issn: 1536-1284.doi: 10.1109/MWC.2016.7721743.

[3] Y.-P. E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship, J. Bergman and H. S. Razaghi, ‘A primer on 3GPP narrowband internet of things’, IEEE Communications Magazine, vol. 55, no. 3, pp. 117–123, Mar.

2017, issn: 0163-6804. doi: 10.1109/MCOM.2017.1600510CM.

[4] J. Bardyn, T. Melly, O. Seller and N. Sornin, ‘IoT: The era of LPWAN is start-ing now’, in ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, Sep. 2016, pp. 25–30.doi:10.1109/ESSCIRC.2016.7598235. [5] bmeriwether-mydevices, Cayenne Low Power Payload, https://github.com/

myDevicesIoT/cayenne- docs/blob/master/docs/LORA.md#cayenne- low-power-payload, [Online; Accessed commit 37d6154d], 2017.

[6] G. Laput, Y. Zhang and C. Harrison, ‘Synthetic sensors: Towards general-purpose sensing’, inProceedings of the 2017 CHI Conference on Human Factors in Computing Systems, ser. CHI ’17, Denver, Colorado, USA: ACM, 2017, pp. 3986–3999, isbn: 978-1-4503-4655-9. doi: 10 . 1145 / 3025453 . 3025773. [Online]. Available: http://doi.acm.org/10.1145/3025453.3025773.

[7] Sigfox S.A. (2018). Sigfox technology overview, [Online]. Available: https://

www.sigfox.com/en/sigfox-iot-technology-overview (visited on 2nd Oct.

2018).

[8] K. E. Nolan, W. Guibene and M. Y. Kelly, ‘An evaluation of low power wide area network technologies for the internet of things’, in 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), Sep.

2016, pp. 439–444. doi: 10.1109/IWCMC.2016.7577098.

[9] Sigfox S.A. (2017). Sigfox technical overview, [Online]. Available: https : / / storage.sbg1.cloud.ovh.net/v1/AUTH_669d7dfced0b44518cb186841d7cbd75/

dev_medias/build_technicalOverview.pdf (visited on 20th Oct. 2018).

[10] ——, (2018). Downlink information, [Online]. Available:https://resources.

sigfox.com/document/downlink-information (visited on 25th Oct. 2018).

[11] ——, (2017). Sigfox white paper security, [Online]. Available: https://www.

sigfox.com/sites/default/files/1701- SIGFOX- White_Paper_Security.

pdf (visited on 20th Oct. 2018).

[12] ——, (2018). Sequence number: General knowledge, [Online]. Available:https:

//support.sigfox.com/docs/sequence- number:- general- knowledge (vis-ited on 20th Nov. 2018).

[13] A. Laya, C. Kalalas, F. Vazquez-Gallego, L. Alonso and J. Alonso-Zarate,

‘Goodbye, aloha!’, IEEE Access, vol. 4, pp. 2029–2044, 2016,issn: 2169-3536.

doi:10.1109/ACCESS.2016.2557758.

[14] P. Gotthard,Compact server for private LoRaWAN networks,https://github.

com/gotthardp/lorawan-server, [Online; Accessed commit 822b3ca3], 2018.

[15] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui and T. Watteyne, ‘Understanding the limits of lorawan’, IEEE Communications Magazine, vol. 55, no. 9, pp. 34–40, Sep. 2017,issn: 0163-6804.doi:10.1109/

MCOM.2017.1600613.

[16] L. Casals, B. Mir, R. Vidal and C. Gomez, ‘Modeling the energy performance of lorawan’,Sensors (Basel), vol. 17, no. 10, p. 2364, Oct. 2017, PMC5677147[pmcid], issn: 1424-8220.doi:10.3390/s17102364. [Online]. Available: https://www.

ncbi.nlm.nih.gov/pubmed/29035347.

[17] J. Petajajarvi, K. Mikhaylov, A. Roivainen, T. Hanninen and M. Pettissalo,

‘On the coverage of lpwans: Range evaluation and channel attenuation model for lora technology’, in 2015 14th International Conference on ITS Telecom-munications (ITST), Dec. 2015, pp. 55–59.doi:10.1109/ITST.2015.7377400. [18] LoRa Alliance Technical Committee. (2017). LoRaWAN™ 1.1 specification, [Online]. Available: https : / / lora - alliance . org / sites / default / files / 2018-04/lorawantm_specification_-v1.1.pdf (visited on 20th Oct. 2018).

[19] A. Augustin, J. Yi, T. Clausen and W. M. Townsley, ‘A study of LoRa: Long range & low power networks for the internet of things’,Sensors (Basel), vol. 16, no. 9, p. 1466, Sep. 2016, PMC5038744[pmcid],issn: 1424-8220.doi:10.3390/

s16091466. [Online]. Available: https : / / www . ncbi . nlm . nih . gov / pubmed / 27618064.

[20] J. Stokking. (2017). Firmware updates over low-power wide area networks, [Online]. Available: https://www.thethingsnetwork.org/article/firmware-updates-over-low-power-wide-area-networks (visited on 18th Dec. 2018).

[21] EN 300 220-2 V3.2.1, ‘Short range devices (SRD) operating in the frequency range 25 MHz to 1 000 MHz; part 2: Harmonised standard for access to radio spectrum for non specific radio equipment’, European Telecommunications Standards Institute, Tech. Rep., 2018.

[22] S. Sakane, LoRa/LoRaWAN time on air calculator, https : / / github . com / tanupoo/lorawan_toa, [Online; Accessed commit f42009fb], 2018.

[23] SX1272/3/6/7/8: LoRa modem; designers guide, AN1200.13, Rev. 1, Semtech Corporation, Jul. 2013.

[24] LoRa Alliance Technical Committee Regional Parameters Workgroup. (2017).

LoRaWAN™ 1.1 regional parameters rev. b, [Online]. Available: https : / / lora alliance . org / resource hub / lorawantm regional parameters -v11rb (visited on 27th Oct. 2018).

[25] F. Delobel, N. E. Rachkidy and A. Guitton, ‘Analysis of the delay of con-firmed downlink frames in Class B of LoRaWAN’, in85th Vehicular Technology Conference (VTC), IEEE, Sydney, Australia, Jun. 2017. [Online]. Available:

https://hal-clermont-univ.archives-ouvertes.fr/hal-01471673.

[26] O. Brocaar, LoRa Server, https://github.com/brocaar/loraserver, [On-line; Accessed commit b7e724e8], 2018.

[27] D. Flore. (2016). 3GPP standards for the internet-of-things, [Online]. Avail-able: http://www.3gpp.org/images/presentations/3GPP_Standards_for_

IoT.pdf (visited on 27th Oct. 2018).

[28] S. Lien, K. Chen and Y. Lin, ‘Toward ubiquitous massive accesses in 3GPP machine-to-machine communications’,IEEE Communications Magazine, vol. 49, no. 4, pp. 66–74, Apr. 2011, issn: 0163-6804. doi: 10 . 1109 / MCOM . 2011 . 5741148.

[29] GSMA Mobile IoT Initiative participants. (2016). 3GPP low power wide area technologies, [Online]. Available: https://www.gsma.com/iot/wp- content/

uploads/2016/10/3GPP-Low-Power-Wide-Area-Technologies-GSMA-White-Paper.pdf (visited on 25th Oct. 2018).

[30] The LTE network architecture; a comprehensive tutorial, CPG0599090904, Alcatel Lucent, 2009.

[31] Definition Networks. (2016). 3GPP SCEF primer, [Online]. Available: http:

/ / definitionnetworks . com / products / 3gpp - scef - primer/ (visited on 25th Sep. 2018).

[32] Narrowband internet of things whitepaper, 1MA266, Ver. 0e, Rohde & Schwarz, Aug. 2016.

[33] GSM Association. (2018). NB-IoT deployment guide to basic feature set re-quirements, version 2.0, [Online]. Available:https://www.gsma.com/newsroom/

wp-content/uploads//CLP.28-v2.0.pdf (visited on 25th Oct. 2018).

[34] TS 33.187 V14.1.0, ‘Security aspects of machine-type communications (MTC) and other mobile data applications communications enhancements (release 14)’, 3rd Generation Partnership Project, Tech. Rep., 2018.

[35] E. Rescorla, ‘The Transport Layer Security (TLS) protocol version 1.3’, RFC Editor, RFC 8446, Aug. 2018.

[36] TS 133 401 V15.5.0, ‘LTE; 3GPP system architecture evolution (SAE); secur-ity architecture’, 3rd Generation Partnership Project, Tech. Rep., 2018.

[37] LPWA technology security comparison, Ver. 1.0.1, Franklin Heath Ltd, May 2017.

[38] J. Postel, ‘Transmission control protocol’, RFC Editor, STD 7, Sep. 1981.

[Online]. Available: http://www.rfc-editor.org/rfc/rfc793.txt.

[39] J. Postel, ‘User datagram protocol’, RFC Editor, STD 6, Aug. 1980, http://

www.rfc-editor.org/rfc/rfc768.txt. [Online]. Available: http://www.rfc-editor.org/rfc/rfc768.txt.

[40] E. Rescorla, H. Tschofenig and N. Modadugu, ‘The Datagram Transport Layer Security (DTLS) protocol version 1.3’, IETF Secretariat, Internet-Draft draft-ietf-tls-dtls13-28, Jul. 2018. [Online]. Available: http : / / www . ietf . org / internet-drafts/draft-ietf-tls-dtls13-28.txt.

[41] T. Dierks and E. Rescorla, ‘The transport layer security (tls) protocol version 1.2’, RFC Editor, RFC 5246, Aug. 2008. [Online]. Available: http://www.rfc-editor.org/rfc/rfc5246.txt.

[42] E. Rescorla and N. Modadugu, ‘Datagram transport layer security version 1.2’, RFC Editor, RFC 6347, Jan. 2012, http : / / www . rfc - editor . org / rfc/rfc6347.txt. [Online]. Available: http://www.rfc- editor.org/rfc/

rfc6347.txt.

[43] P. Miranda, M. Siekkinen and H. Waris, ‘TLS and energy consumption on a mobile device: A measurement study’, in2011 IEEE Symposium on Computers and Communications (ISCC), Jun. 2011, pp. 983–989. doi: 10.1109/ISCC.

2011.5983970.

[44] J. Reschke, ‘The ’basic’ HTTP authentication scheme’, RFC Editor, RFC 7617, Sep. 2015.

[45] P. Eronen and H. Tschofenig, ‘Pre-shared key ciphersuites for transport layer security (tls)’, RFC Editor, RFC 4279, Dec. 2005, http://www.rfc-editor.

org/rfc/rfc4279.txt. [Online]. Available: http://www.rfc- editor.org/

rfc/rfc4279.txt.

[46] H. Tschofenig and T. Fossati, ‘Transport layer security (tls) / datagram trans-port layer security (dtls) profiles for the internet of things’, RFC Editor, RFC 7925, Jul. 2016.

[47] MME administration guide, StarOS release 21.5, Chapter: Power Saving Mode (PSM) in UEs, Cisco Systems, Inc., Jun. 2018.

[48] S. Nyberg, ‘Energy Consumption of Low Power Wide Area Networks’, Master’s thesis, Åbo Akademi, Finland, 2018.

[49] The JSON data interchange syntax, ECMA-404, 2nd ed., ECMA International, Dec. 2017.

[50] T. Bray, ‘Extensible markup language (XML) 1.0 (fifth edition)’, W3C Re-commendation, Nov. 2008. [Online]. Available: https : / / www . w3 . org / TR / 2008/REC-xml-20081126/.

[51] C. Bormann and P. Hoffman, ‘Concise binary object representation (cbor)’, RFC Editor, RFC 7049, Oct. 2013.

[52] msgpack,MessagePack specification,https://github.com/msgpack/msgpack/

blob/master/spec.md, [Online; Accessed commit 56673202], 2018.

[53] B. Petersen, H. Bindner, S. You and B. Poulsen, ‘Smart grid serialization comparison: Comparision of serialization for distributed control in the context of the internet of things’, in 2017 Computing Conference, Jul. 2017, pp. 1339–

1346. doi:10.1109/SAI.2017.8252264.

[54] C. Jennings, Z. Shelby, J. Arkko, A. Keranen and C. Bormann, ‘Sensor meas-urement lists (senml)’, RFC Editor, RFC 8428, Aug. 2018.

[55] IPSO Alliance, IP for smart objects - IPSO objects, https://github.com/

IPSO-Alliance/pub, [Online; Accessed commit34166481], 2018.

[56] E. Ptak. (2018). Cayenne LPP 2.0, [Online]. Available: https://community.

mydevices.com/t/cayenne-lpp-2-0/7510 (visited on 20th Nov. 2018).

[57] Z. Shelby, K. Hartke and C. Bormann, ‘The constrained application protocol (coap)’, RFC Editor, RFC 7252, Jun. 2014. [Online]. Available: http://www.

rfc-editor.org/rfc/rfc7252.txt.

[58] A. Bhattacharyya, S. Bandyopadhyay, A. Pal and T. Bose, ‘Constrained ap-plication protocol (coap) option for no server response’, RFC Editor, RFC 7967, Aug. 2016.

[59] G. Selander, J. Mattsson, F. Palombini and L. Seitz, ‘Object security for con-strained restful environments (oscore)’, IETF Secretariat, Internet-Draft draft-ietf-core-object-security-15, Aug. 2018. [Online]. Available:http://www.ietf.

org/internet-drafts/draft-ietf-core-object-security-15.txt.

[60] J. Mattsson and F. Palombini, ‘Comparison of coap security protocols’, IETF Secretariat, Internet-Draft draft-mattsson-lwig-security-protocol-comparison-01, Mar. 2018. [Online]. Available: http://www.ietf.org/internet-drafts/

draft-mattsson-lwig-security-protocol-comparison-01.txt.

[61] Docker Inc. (2018). Docker engine, [Online]. Available:https://www.docker.

com/products/docker-engine (visited on 15th Nov. 2018).

[62] ——, (2018). Docker security, [Online]. Available:https://docs.docker.com/

engine/security/security/ (visited on 15th Nov. 2018).

[63] D. Bernstein, ‘Containers and cloud: From LXC to Docker to Kubernetes’, IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, Sep. 2014, issn: 2325-6095.

doi:10.1109/MCC.2014.51.

[64] C. Bormann, M. Ersue and A. Keranen, ‘Terminology for constrained-node networks’, RFC Editor, RFC 7228, May 2014. [Online]. Available: http : / / www.rfc-editor.org/rfc/rfc7228.txt.

[65] Low-power long range LoRa® technology transceiver module, DS50002346C, Rev. C, Microchip Technology Inc., 2017.

[66] WiMOD Lite Gateway data sheet, 4000/40140/0120, Ver. 1.5, IMST GmbH, 2017.

[67] Semtech-Cycleo,Lora network packet forwarder project,https://github.com/

Lora-net/packet_forwarder, [Online; Accessed commit 7819c438], 2013.

[68] The Things Network. (2018). Documentation, [Online]. Available: https://

www.thethingsnetwork.org/docs/ (visited on 18th Dec. 2018).

[69] BG96 AT commands manual, Ver. 2.1, Quectel Wireless Solutions Co., Ltd., May 2018.

[70] BG96 TCP/IP AT commands manual, Ver. 1.0, Quectel Wireless Solutions Co., Ltd., Nov. 2017.

[71] BG96 HTTP(S) AT commands manual, Ver. 1.0, Quectel Wireless Solutions Co., Ltd., Nov. 2017.

[72] Thingsboard Authors, Thingsboard, https : / / github . com / thingsboard / thingsboard, [Online; Accessed commit 23020a44], 2018.

[73] A. Mills, Cantcoap, https : / / github . com / staropram / cantcoap, [Online;

Accessed commit 8689f29a], 2016.

[74] C. Amsüss, Aiocoap – the python coap library, https://github.com/chrysn/

aiocoap, [Online; Accessed commit 28d4f244], 2018.

[75] J. Stokking. (2017). Notes on lorawan security, [Online]. Available: https://

medium.com/@brocaar/notes-on-lorawan-security-7e741a8ee4fa (visited on 27th Oct. 2018).

[76] M. Gunnarsson, Contiki-ng: The next generation contiki, https://github.

com / Gunzter / contiki - ng / tree / oscore _ 12 / os / net / app - layer / oscore, [Online; Accessed commit aba72c3c], 2018.

[77] cablelabs, LPWAN server (lpwanserver), https://github.com/cablelabs/

lpwanserver, [Online; Accessed commit 0383c036], 2018.

A Sigfox Callback Response Format

{

"device_id" : {

"downlinkData" : "deadbeefcafebabe"

} }