• Ei tuloksia

The intracellular delivery of cancer drugs can reduce the side-effects if the target cells can be distinguished from healthy cells. Folic acid targeting increased the uptake of PSi nanoparticles into HeLa human cancer cells through folate receptor mediated endocytosis. The nanoparticles were seen coalescent with lysosomes in the confocal microscopy study (Paper II, Figure 7). The endosomal compartments of target cells, with reduced pH, are the desired accumulation site for nanoparticles which express pH-dependent release of the doxorubicin cargo.

HeLa cell line with stable gene expression of luciferase enzyme with a mutation promoting aberrant splicing of pre-messenger RNA provided a convenient tool for evaluating the intracellular delivery of oligonucleotides. Splice correcting oligonucleotide (SCO) can prevent the normally occurring aberrant splicing resulting with fully functional luciferase enzyme.

However, SCO needs to enter the cytosol and the nucleus before it can exert its effect. PSi nanoparticles functionalised with CPP were used to deliver SCO into the cytosol of cancer cells.

Without the functionalisation with CPP, the SCO loaded nanoparticles were also readily internalised to the cells but no biological response from SCO was observed. (Paper V, Figure 5 and Figure 6). SCO could also be delivered into the cells using only CPP which aids the SCO to penetrate through the cell membranes into the cytosol. However, by protecting the cargo within the pores of PSi nanoparticles it could be rendered more resistant against degradation by proteases and nucleases (Paper V, Figure 7).

The present study describes the development of drug delivery vehicles based on PSi nanoparticles for nanomedical applications. The results lead to following conclusions.

1. The nanoparticle surface could be easily modified to contain targeting molecules, i.e.

antibodies or folic acid, as well as PEG polymer coating, which reduced the opsonisation of the particles. Additionally, a feasible method for conjugation of imaging tracers was developed.

2. PSi nanoparticles were found to be suitable for peptide delivery as they permitted manipulation of the pharmacokinetics of the peptide being administered within the nanoparticles. Furthermore, the peptides maintained their biological effects when delivered within the nanoparticles.

3. The nanoparticles by themselves could exert effects on the cardiovascular function of rats after a bolus injection without an inflammatory reaction. The mechanism of action for reduction of blood pressure by the THCPSi nanoparticles remained to be clarified.

4. Specific uptake into the endosomal compartments of cancer cells and following pH-dependent release of the cargo could be achieved with PSi nanoparticles. Furthermore, PSi nanoparticles were found to be suitable for the intracellular delivery of antisense oligonucleotides preserving their biologically active form.

28

Functionalised mesoporous silicon nanoparticles have shown interesting properties in drug delivery and imaging, and have demonstrated their ability to work as targeted nanomedicals.

The results here provide fundamental knowledge about the development of drug delivery devices and have examined some of the major problems that one may encounter in the nanomedicine development process. Opsonisation and the activation of the immune system are still the greatest challenges preventing efficient nanoparticle-based drug delivery systems.

Opsonisation can hinder the targeting and the efficient removal by immune system may seriously impair the delivery. Thus, gaining a deeper knowledge of the interaction between nanomedicals and the biological environment is essential for future research. The nanocarriers themselves can have unexpected effects on the patient physiology. Therefore, more resources need to be provided into developing in vitro toxicity techniques which would be cheap and have a high throughput but which would correlate with the more costly and time consuming in vivo studies.

Controlled and sustained release of the drug molecules represents the rationale behind drug delivery applications. Therefore, novel and more efficient utilities for triggered release of the cargo need to be developed. One possible direction is to utilize so-called multistage carriers which would be activated, for example, by physiological stimuli and release second stage nanocarriers which could then home onto their target site and treat the disease in question. In conclusion, the field of nanomedicine has advanced significantly and it seems likely that novel drug delivery vehicles will be approved and marketed in the near future.

30

Adams, G.P., Schier, R., McCall, A.M., Simmons, H.H., Horak, E.M., Alpaugh, R.K., Marks, J.D.

& Weiner, L.M. 2001, "High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules",Cancer research,vol. 61, no. 12, pp. 4750-4755.

Aderem, A. & Underhill, D.M. 1999, "Mechanisms of phagocytosis in macrophages",Annual Review of Immunology,vol. 17, no. 1, pp. 593-623.

Aggarwal, P., Hall, J.B., McLeland, C.B., Dobrovolskaia, M.A. & McNeil, S.E. 2009,

"Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy",Advanced Drug Delivery Reviews,vol. 61, no. 6, pp. 428-437.

Alberts, D.S. & Garcia, D.J. 1997, "Safety aspects of pegylated liposomal doxorubicin in patients with cancer",Drugs,vol. 54, no. 4, pp. 30-35.

Alexis, F., Basto, P., Levy-Nissenbaum, E., Radovic-Moreno, A.F., Zhang, L., Pridgen, E., Wang, A.Z., Marein, S.L., Westerhof, K., Molnar, L.K. & Farokhzad, O.C. 2008, "HER-2-targeted nanoparticle–affibody bioconjugates for cancer therapy",ChemMedChem,vol. 3, no. 12, pp.

1839-1843.

Amara, U., Flierl, M.A., Rittirsch, D., Klos, A., Chen, H., Acker, B., Bruckner, U.B., Nilsson, B., Gebhard, F., Lambris, J.D. & Huber-Lang, M. 2010, "Molecular intercommunication between the complement and coagulation systems",Journal of immunology (Baltimore, Md.:

1950),vol. 185, no. 9, pp. 5628-5636.

Arap, W., Pasqualini, R. & Ruoslahti, E. 1998, "Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model",Science (New York, N.Y.),vol. 279, no. 5349, pp. 377-380.

Archer, R.J. 1960, "Stain films on silicon",Journal of Physics and Chemistry of Solids,vol. 14, pp.

104-110.

Ashley, C.E., Carnes, E.C., Epler, K.E., Padilla, D.P., Phillips, G.K., Castillo, R.E., Wilkinson, D.C., Wilkinson, B.S., Burgard, C.A., Kalinich, R.M., Townson, J.L., Chackerian, B., Willman, C.L., Peapody, D.S., Wharton, W. & Brinker, C.J. 2012, "Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers",ACS nano,vol. 6, no. 3, pp. 2174-2188.

Bansal, A., Li, X., Lauermann, I., Lewis, N., Yi, S. & Weinberg, W. 1996, "Alkylation of Si surfaces using a two-step halogenation/Grignard route",Journal of the American Chemical Society,vol. 118, no. 30, pp. 7225-7226.

32

Barbagiovanni, E.G., Lockwood, D.J., Simpson, P.J. & Goncharova, L.V. 2014, "Quantum

confinement in Si and Ge nanostructures: Theory and experiment",Applied Physics Reviews, vol. 1, no. 1, pp. 011302.

Barenholz, Y. 2012, "Doxil®—the first FDA-approved nano-drug: lessons learned",Journal of Controlled Release,vol. 160, no. 2, pp. 117-134.

Bayliss, S.C., Heald, R., Fletcher, D.I. & Buckberry, L.D. 1999, "The culture of mammalian cells on nanostructured silicon",Advanced Materials,vol. 11, no. 4, pp. 318-321.

Bimbo, L.M., Denisova, O.V., Makila, E., Kaasalainen, M., De Brabander, J.K., Hirvonen, J., Salonen, J., Kakkola, L., Kainov, D. & Santos, H.A. 2013, "Inhibition of influenza a virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles",ACS nano, vol. 7, no. 8, pp. 6884-6893.

Bimbo, L.M., Mäkilä, E., Laaksonen, T., Lehto, V., Salonen, J., Hirvonen, J. & Santos, H.A. 2011,

"Drug permeation across intestinal epithelial cells using porous silicon nanoparticles", Biomaterials,vol. 32, no. 10, pp. 2625-2633.

Bimbo, L.M., Sarparanta, M., Santos, H.A., Airaksinen, A.J., Makila, E., Laaksonen, T., Peltonen, L., Lehto, V., Hirvonen, J. & Salonen, J. 2010, "Biocompatibility of thermally

hydrocarbonized porous silicon nanoparticles and their biodistribution in rats",ACS nano, vol. 4, no. 6, pp. 3023-3032.

Boukherroub, R., Morin, S., Wayner, D. & Lockwood, D. 2000, "Thermal route for chemical modification and photoluminescence stabilization of porous silicon",physica status solidi (a), vol. 182, no. 1, pp. 117-121.

Boukherroub, R., Wojtyk, J.T.C., Wayner, D.D.M. & Lockwood, D.J. 2002, "Thermal hydrosilylation of undecylenic acid with porous silicon",Journal of the Electrochemical Society,vol. 149, no. 2, pp. H59-H63.

Britcher, L., Barnes, T.J., Griesser, H.J. & Prestidge, C.A. 2008, "PEGylation of porous silicon using click chemistry",Langmuir,vol. 24, no. 15, pp. 7625-7627.

Buriak, J.M. 2013, "Illuminating silicon surface hydrosilylation: An unexpected plurality of mechanisms",Chemistry of Materials,vol. 26, pp. 763-772.

Buriak, J.M., Stewart, M.P., Geders, T.W., Allen, M.J., Choi, H.C., Smith, J., Raftery, D. &

Canham, L.T. 1999, "Lewis acid mediated hydrosilylation on porous silicon surfaces", Journal of the American Chemical Society,vol. 121, no. 49, pp. 11491-11502.

Cabral, H., Matsumoto, Y., Mizuno, K., Chen, Q., Murakami, M., Kimura, M., Terada, Y., Kano, M., Miyazono, K. & Uesaka, M. 2011, "Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size",Nature nanotechnology,vol. 6, no. 12, pp. 815-823.

Canham, L.T. 1995, "Bioactive silicon structure fabrication through nanoetching techniques", Advanced Materials,vol. 7, no. 12, pp. 1033-1037.

Canham, L.T. 1990, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers",Applied Physics Letters,vol. 57, no. 10, pp. 1046-1048.

Cao, C., Wang, X., Cai, Y., Sun, L., Tian, L., Wu, H., He, X., Lei, H., Liu, W. & Chen, G. 2014,

"Targeted in vivo imaging of microscopic tumors with ferritin-based nanoprobes across biological barriers",Advanced Materials,vol. 26, no. 16, pp. 2566-2571.

Cedervall, T., Lynch, I., Lindman, S., Berggard, T., Thulin, E., Nilsson, H., Dawson, K.A. &

Linse, S. 2007, "Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles",Proceedings of the National Academy of Sciences of the United States of America,vol. 104, no. 7, pp. 2050-2055.

Chou, L.Y.T., Ming, K. & Chan, W.C.W. 2011, "Strategies for the intracellular delivery of nanoparticles",Chemical Society Reviews,vol. 40, no. 1, pp. 233-245.

Conner, S.D. & Schmid, S.L. 2003, "Regulated portals of entry into the cell",Nature,vol. 422, no.

6927, pp. 37-44.

Dancil, K.S., Greiner, D.P. & Sailor, M.J. 1999, "A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface",Journal of the American Chemical Society,vol. 121, no. 34, pp. 7925-7930.

Davis, D.H., Giannoulis, C.S., Johnson, R.W. & Desai, T.A. 2002, "Immobilization of RGD to<

111> silicon surfaces for enhanced cell adhesion and proliferation",Biomaterials, vol. 23, no.

19, pp. 4019-4027.

Deng, Z.J., Liang, M., Monteiro, M., Toth, I. & Minchin, R.F. 2011, "Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation",Nature Nanotechnology,vol. 6, no. 1, pp. 39-44.

Dhanekar, S. & Jain, S. 2013, "Porous silicon biosensor: current status",Biosensors and bioelectronics,vol. 41, pp. 54-64.

Dobrovolskaia, M.A., Aggarwal, P., Hall, J.B. & McNeil, S.E. 2008, "Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution",Molecular pharmaceutics,vol. 5, no. 4, pp. 487-495.

Dobrovolskaia, M.A. & McNeil, S.E. 2013, "Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines",Journal of Controlled Release,vol. 172, no. 2, pp. 456-466.

34

Dobrovolskaia, M.A. & McNeil, S.E. 2007, "Immunological properties of engineered nanomaterials",Nature nanotechnology,vol. 2, no. 8, pp. 469-478.

Duan, H. & Nie, S. 2007, "Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings",Journal of the American Chemical Society,vol. 129, no. 11, pp.

3333-3338.

Elsaesser, A. & Howard, C.V. 2012, "Toxicology of nanoparticles",Advanced Drug Delivery Reviews,vol. 64, no. 2, pp. 129-137.

Fang, J., Nakamura, H. & Maeda, H. 2011, "The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect", Advanced Drug Delivery Reviews,vol. 63, no. 3, pp. 136-151.

Farokhzad, O.C., Jon, S., Khademhosseini, A., Tran, T.N., Lavan, D.A. & Langer, R. 2004,

"Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells", Cancer research,vol. 64, no. 21, pp. 7668-7672.

Fathauer, R.W. 1994, "Properties of light-emitting porous Si1-xGex alloys produced of stain etches" inPorous silicon, eds. Z.F. Feng & R. Tsu, World Scientific publishing group, , pp.

393-415.

Fathauer, R.W., George, T., Ksendzov, A. & Vasquez, R.P. 1992, "Visible luminescence from silicon wafers subjected to stain etces", Applied Physics Letters,vol. 60, no. 8, pp. 995-997.

Ferrari, M. 2013, "Problems in (nano) medical mechanics",International Journal of Non-Linear Mechanics,vol. 56, pp. 3-19.

Frank, M.M. & Fries, L.F. 1991, "The role of complement in inflammation and phagocytosis", Immunology today,vol. 12, no. 9, pp. 322-326.

Fuller, C. & Ditzenberger, J. 1956, "Diffusion of donor and acceptor elements in silicon",Journal of Applied Physics,vol. 27, no. 5, pp. 544-553.

Gao, H. & He, Q. 2014a, "The interaction of nanoparticles with plasma proteins and the

consequent influence on nanoparticles behavior",Expert opinion on drug delivery,, no. 0, pp.

1-12.

Gao, H. & He, Q. 2014b, "The interaction of nanoparticles with plasma proteins and the

consequent influence on nanoparticles behavior",Expert opinion on drug delivery,, no. 0, pp.

1-12.

Gessner, A., Lieske, A., Paulke, B.R. & Müller, R.H. 2002, "Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional

electrophoresis",European journal of pharmaceutics and biopharmaceutics, vol. 54, no. 2, pp.

165-170.

Göppert, T.M. & Müller, R.H. 2005, "Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting",International journal of pharmaceutics,vol. 302, no. 1, pp.

172-186.

Gratton, S.E., Ropp, P.A., Pohlhaus, P.D., Luft, J.C., Madden, V.J., Napier, M.E. & DeSimone, J.M. 2008, "The effect of particle design on cellular internalization pathways",Proceedings of the National Academy of Sciences of the United States of America,vol. 105, no. 33, pp. 11613-11618.

Halimaoui, A., Oules, C. & Bomchil, G. 1991, "Electroluminescence in the visible range during anodic oxidation of porous silicon films",Applied Physics Letters,vol. 59, no. 3, pp. 304-306.

Han, H. & Davis, M.E. 2013, "Single-antibody, targeted nanoparticle delivery of camptothecin", Molecular pharmaceutics,vol. 10, no. 7, pp. 2558-2567.

Heldin, C., Rubin, K., Pietras, K. & Östman, A. 2004, "High interstitial fluid pressure—an obstacle in cancer therapy",Nature Reviews Cancer,vol. 4, no. 10, pp. 806-813.

Huang, R.Q., Qu, Y.H., Ke, W.L., Zhu, J.H., Pei, Y.Y. & Jiang, C. 2007, "Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified

polyamidoamine dendrimer",FASEB journal : official publication of the Federation of American Societies for Experimental Biology,vol. 21, no. 4, pp. 1117-1125.

Huhtala, T., Rytkönen, J., Jalanko, A., Kaasalainen, M., Salonen, J., Riikonen, R. & Närvänen, A.

2012, "Native and complexed IGF-1: biodistribution and pharmacokinetics in infantile neuronal ceroid lipofuscinosis", Journal of drug delivery,vol. 2012.

Hume, D.A. 2006, "The mononuclear phagocyte system",Current opinion in immunology,vol. 18, no. 1, pp. 49-53.

Iyer, A.K., Khaled, G., Fang, J. & Maeda, H. 2006, "Exploiting the enhanced permeability and retention effect for tumor targeting",Drug discovery today, vol. 11, no. 17, pp. 812-818.

Jain, R.K. & Stylianopoulos, T. 2010, "Delivering nanomedicine to solid tumors",Nature reviews clinical oncology,vol. 7, no. 11, pp. 653-664.

Janssen Products, L. 2014, 7th, May-last update, Important Safety Information [Homepage of Janssen Products, LP], [Online]. Available:www.doxil.com [2014, 5/10].

Jin, S., Jin, H. & Hong, S. 2014, "Targeted delivery system of nano-biomaterials in anti-cancer therapy: from cells to clinics",BioMed Research International,, pp. Article ID 814208.

36

Kelkar, S.S. & Reineke, T.M. 2011, "Theranostics: combining imaging and therapy",Bioconjugate chemistry,vol. 22, no. 10, pp. 1879-1903.

Kilpeläinen, M., Mönkäre, J., Vlasova, M.A., Riikonen, J., Lehto, V., Salonen, J., Järvinen, K. &

Herzig, K. 2011, "Nanostructured porous silicon microparticles enable sustained peptide (Melanotan II) delivery",European Journal of Pharmaceutics and Biopharmaceutics, vol. 77, no.

1, pp. 20-25.

Kilpeläinen, M., Riikonen, J., Vlasova, M.A., Huotari, A., Lehto, V., Salonen, J., Herzig, K. &

Järvinen, K. 2009, "In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles",Journal of Controlled Release,vol. 137, no. 2, pp. 166-170.

Kinnari, P.J., Hyvönen, M.L.K., Mäkilä, E.M., Kaasalainen, M.H., Rivinoja, A., Salonen, J.J., Hirvonen, J.T., Laakkonen, P.M. & Santos, H.A. 2013, "Tumour homing

peptide-functionalized porous silicon nanovectors for cancer therapy",Biomaterials,vol. 34, no. 36, pp. 9134-9141.

Ko, J., Park, K., Kim, Y., Kim, M.S., Han, J.K., Kim, K., Park, R., Kim, I., Song, H.K. & Lee, D.S.

2007, "Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly ( -amino ester) block copolymer micelles for cancer therapy",Journal of Controlled Release, vol. 123, no.

2, pp. 109-115.

Kovalainen, M., Monkare, J., Kaasalainen, M., Riikonen, J., Lehto, V., Salonen, J., Herzig, K. &

Jarvinen, K. 2012a, "Development of porous silicon nanocarriers for parenteral peptide delivery",Molecular pharmaceutics, vol. 10, no. 1, pp. 353-359.

Kovalainen, M., Monkare, J., Makila, E., Salonen, J., Lehto, V.P., Herzig, K.H. & Jarvinen, K.

2012b, "Mesoporous silicon (PSi) for sustained peptide delivery: effect of psi microparticle surface chemistry on peptide YY3-36 release",Pharmaceutical research,vol. 29, no. 3, pp. 837-846.

Kreuter, J., Hekmatara, T., Dreis, S., Vogel, T., Gelperina, S. & Langer, K. 2007, "Covalent

attachment of apolipoprotein AI and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain",Journal of Controlled Release, vol. 118, no. 1, pp. 54-58.

Kunjachan, S., Pola, R., Gremse, F., Theek, B., Ehling, J., Moeckel, D., Hermanns, B., Pechar, M., Ulbrich, K., Hennink, W.E., Storm, G., Lederle, W., Kiessling, F. & Lammers, T. 2014,

"Passive vs. active tumor targeting using RGD-and NGR-modified polymeric Nanomedicines",Nano letters,vol. 14, pp. 972-981.

Lakshmikumar, S. & Singh, P. 2002, "Formation of carbonized porous silicon surfaces by thermal and optically induced reaction with acetylene",Journal of Applied Physics,vol. 92, no. 6, pp. 3413-3415.

Lammers, T., Kiessling, F., Hennink, W.E. & Storm, G. 2012a, "Drug targeting to tumors:

principles, pitfalls and (pre-) clinical progress",Journal of Controlled Release,vol. 161, no. 2, pp. 175-187.

Lammers, T., Rizzo, L.Y., Storm, G. & Kiessling, F. 2012b, "Personalized nanomedicine",Clinical cancer research : an official journal of the American Association for Cancer Research,vol. 18, no.

18, pp. 4889-4894.

Lehmann, V. & Föll, H. 1990, "Formation mechanism and properties of electrochemically etched trenches in n-type silicon",Journal of the Electrochemical Society,vol. 137, no. 2, pp. 653-659.

Liu, D., Bimbo, L.M., Mäkilä, E., Villanova, F., Kaasalainen, M., Herranz-Blanco, B., Caramella, C.M., Lehto, V., Salonen, J., Herzig, K., Hirvonen, J. & Santos, H.A. 2013a, "Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles", Journal of Controlled Release,vol. 170, no. 2, pp. 268-278.

Liu, D., Mäkilä, E., Zhang, H., Herranz, B., Kaasalainen, M., Kinnari, P., Salonen, J., Hirvonen, J.

& Santos, H.A. 2013b, "Nanostructured porous silicon-solid lipid nanocomposite: Towards enhanced cytocompatibility and stability, reduced cellular association, and prolonged drug release",Advanced Functional Materials,vol. 23, pp. 1893-1902.

Low, S.P., Williams, K.A., Canham, L.T. & Voelcker, N.H. 2006, "Evaluation of mammalian cell adhesion on surface-modified porous silicon", Biomaterials,vol. 27, no. 26, pp. 4538-4546.

Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T. & Dawson, K.A. 2008, "Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts",Proceedings of the National Academy of Sciences of the United States of America,vol. 105, no. 38, pp. 14265-14270.

Maeda, H. 2012, "Macromolecular therapeutics in cancer treatment: the EPR effect and beyond", Journal of Controlled Release,vol. 164, no. 2, pp. 138-144.

Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. 2000, "Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review",Journal of Controlled Release,vol.

65, no. 1, pp. 271-284.

Mahmoudi, M., Lynch, I., E., M.R., Monopoli, M.P., Bombelli, F.B. & Laurent, S. 2011, "Protein nanoparticle interactions: opportunities and challenges",Chemical reviews,vol. 111, no. 9, pp. 5610-5637.

Mäkilä, E., Bimbo, L.M., Kaasalainen, M., Herranz, B., Airaksinen, A.J., Heinonen, M., Kukk, E., Hirvonen, J., Santos, H.A. & Salonen, J. 2012, "Amine modification of thermally carbonized porous silicon with silane coupling chemistry",Langmuir,vol. 28, no. 39, pp. 14045-14054.

38

Mann, E.E., Thompson, L.C., Shannahan, J.H. & Wingard, C.J. 2012, "Changes in

cardiopulmonary function induced by nanoparticles",Wiley Interdisciplinary Reviews:

Nanomedicine and Nanobiotechnology,vol. 4, no. 6, pp. 691-702.

Martinez, J.O., Boada, C., Yazdi, I.K., Evangelopoulos, M., Brown, B.S., Liu, X., Ferrari, M. &

Tasciotti, E. 2013, "Short and long term, in vitro and in vivo correlations of cellular and tissue responses to mesoporous silicon nanovectors",Small,vol. 9, no. 9-10, pp. 1722-1733.

Merlo, L.M.F., Pepper, J.W., Reid, B.J. & Maley, C.C. 2006, "Cancer as an evolutionary and ecological process",Nature Reviews Cancer,vol. 6, no. 12, pp. 924-935.

Messersmith, W.A. & Ahnen, D.J. 2008, "Targeting EGFR in colorectal cancer",N engl j Med,vol.

359, no. 17, pp. 1834-1836.

Miller, T., Hill, A., Uezguen, S., Weigandt, M. & Goepferich, A. 2012, "Analysis of immediate stress mechanisms upon injection of polymeric micelles and related colloidal drug carriers:

implications on drug targeting",Biomacromolecules,vol. 13, no. 6, pp. 1707-1718.

Moghimi, S.M., Andersen, A.J., Ahmadvand, D., Wibroe, P.P., Andresen, T.L. & Hunter, A.C.

2011, "Material properties in complement activation",Advanced Drug Delivery Reviews,vol.

63, no. 12, pp. 1000-1007.

Moghimi, S.M., Hunter, A.C. & Andresen, T.L. 2012, "Factors controlling nanoparticle

pharmacokinetics: an integrated analysis and perspective",Annual Review of Pharmacology and Toxicology,vol. 52, pp. 481-503.

Na, H., Kim, M., Park, K., Ryoo, S., Lee, K.E., Jeon, H., Ryoo, R., Hyeon, C. & Min, D. 2012,

"Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores",Small,vol. 8, no. 11, pp. 1752-1761.

Nakajima, A., Itakura, T., Watanabe, S. & Nakayama, N. 1992, "Photoluminescence of porous Si, oxidized then deoxidized chemically",Applied Physics Letters,vol. 61, no. 1, pp. 46-48.

Näkki, S., Rytkönen, J., Riikonen, J., Ek, P., Zhang, H., Santos, H., Närvänen, A., Xu, W. & Lehto, V. Submitted, "Improved stability and biocompatibility of nanostructured silicon drug carrier for intravenous administration", .

Nel, A.E., Mädler, L., Velegol, D., Xia, T., Hoek, E.M.V., Somasundaran, P., Klaessig, F.,

Castranova, V. & Thompson, M. 2009, "Understanding biophysicochemical interactions at the nano–bio interface",Nature materials, vol. 8, no. 7, pp. 543-557.

Nissinen, T., Näkki, S., Latikka, M., Heinonen, M., Liimatainen, T., Xu, W., Ras, R.H.A., Gröhn, O., Riikonen, J. & Lehto, V. 2014, "Facile synthesis of biocompatible superparamagnetic mesoporous nanoparticles for imageable drug delivery", Microporous and Mesoporous Materials,.

the United States of America,vol. 107, no. 9, pp. 4311-4316.

Owens, D.E. & Peppas, N.A. 2006, "Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles",International journal of pharmaceutics,vol. 307, no. 1, pp. 93-102.

Pan, L., He, Q., Liu, J., Chen, Y., Ma, M., Zhang, L. & Shi, J. 2012, "Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles", Journal of the American Chemical Society,vol. 134, no. 13, pp. 5722-5725.

Papadopoulos, N., Kinzler, K.W. & Vogelstein, B. 2006, "The role of companion diagnostics in the development and use of mutation-targeted cancer therapies",Nature biotechnology,vol.

24, no. 8, pp. 985-995.

Park, J., Gu, L., Von Maltzahn, G., Ruoslahti, E., Bhatia, S.N. & Sailor, M.J. 2009a,

"Biodegradable luminescent porous silicon nanoparticles for in vivo applications", Nature materials,vol. 8, no. 4, pp. 331-336.

Park, J., von Maltzahn, G., Zhang, L., Derfus, A.M., Simberg, D., Harris, T.J., Ruoslahti, E., Bhatia, S.N. & Sailor, M.J. 2009b, "Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting",Small,vol. 5, no. 6, pp. 694-700.

Rajan, T.V. 2003, "The Gell–Coombs classification of hypersensitivity reactions: a re-interpretation",Trends in immunology,vol. 24, no. 7, pp. 376-379.

Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J.D. 2010, "Complement: a key system for immune surveillance and homeostasis",Nature immunology,vol. 11, no. 9, pp. 785-797.

Ringden, O., Andström, E., Remberger, M., Svahn, B.M. & Tollemar, J. 1994, "Allergic reactions and other rare side-effects of liposomal amphotericin",The Lancet,vol. 344, no. 8930, pp.

1156-1157.

Rosenholm, J.M., Meinander, A., Peuhu, E., Niemi, R., Eriksson, J.E., Sahlgren, C. & Lindén, M.

2008, "Targeting of porous hybrid silica nanoparticles to cancer cells",ACS nano,vol. 3, no.

1, pp. 197-206.

Ruoslahti, E. 2002, "Specialization of tumour vasculature",Nature Reviews Cancer, vol. 2, no. 2, pp. 83-90.

Ruoslahti, E., Bhatia, S.N. & Sailor, M.J. 2010, "Targeting of drugs and nanoparticles to tumors",

Ruoslahti, E., Bhatia, S.N. & Sailor, M.J. 2010, "Targeting of drugs and nanoparticles to tumors",