• Ei tuloksia

4 MATERIAL AND METHODS

6.6 Implications for further studies

1. The analysis of IL-1, IL-2, MMP-1, -3, and TIMP-3 mRNA and protein (these were increased in the blood and myocardium of diseased dogs) in blood samples of dogs in different stages of cardiac diseases and its correlation with echocardiographic investigations that assess myocardial morphology and function would detect changes in progression of disease and identify potential biomarkers for cardiac remodelling.

2. Further characterisation of myocardial remodelling by investigating the protein expression of inflammatory and ECM remodelling markers, the presence of fibrosis, myocardial degeneration and apoptosis, activation of endothelial cells, infiltration of inflammatory cells and the presence of cardiac stem cells would reveal further details of the pathogenesis of cardiac diseases.

3. Increasing the sample size of one cardiac disease, i.e. DCM, and the correlation of clinical findings and echocardiographic results with parameters of cardiac

inflammation and remodelling would strengthen the significance of the results and possibly identify clinical parameters of cardiac inflammation and remodelling.

4. The correlation of echocardiographic results with the expression of inflammatory and ECM remodelling markers in the blood and, if available, the myocardium of dogs with systemic diseases and the association of these results with survival of these dogs would allow further assessment of the importance and the time course of cardiac impairment and remodelling in dogs with systemic diseases.

5. Further investigation of the role of leptin in cardiac cachexia and in obese dogs and its association with cardiac function are of interest and would reveal the real significance of leptin in canine cardiac diseases. Furthermore, the investigation of other adipocytokines, such as adiponectin, resistin, visfatin, which were reported to be involved in human cardiac diseases, would give information on their role in canine cardiac diseases.

7 CONCLUSIONS

I Studies investigating the role of inflammation and ECM remodelling in dogs with cardiac and systemic diseases in comparison to healthy controls (Studies I, II and III) led to the following conclusions.

1. The significantly higher expression of all markers of inflammation and ECM remodelling in the myocardium of dogs with cardiac diseases in comparison to hearts of healthy control dogs, whilst only single markers were elevated in the blood of dogs with cardiac diseases, suggest primary myocardial inflammation and ECM remodelling in dogs with cardiac diseases and not a myocardial response to circulating inflammatory mediators.

2. The higher transcription levels of most markers of inflammation and ECM remodelling in atria than ventricles of dogs cardiac and systemic diseases, which matched with the observed extent of pathological changes in dogs with cardiac diseases, suggest different remodelling processes depending on localisation.

These differences in inflammation and ECM remodelling are likely to contribute to progression of disease, cardiac dysfunction and development of arrhythmias.

3. The increased expression of inflammatory and ECM remodelling markers in the myocardium of dogs with systemic diseases not involving the heart, in the absence of histological changes in the heart, might indicate acute functional changes in end-stage diseases. The apparent inflammatory state of the myocardium of dogs with systemic diseases might be acute and reversible or might contribute to morbidity and mortality of these dogs.

4. The constitutive expression of profibrotic markers in the myocardium of healthy control dogs suggests a regenerative and profibrotic potential of the healthy canine myocardium.

II The increased transcription of leptin in the blood and myocardium of dogs with cardiac diseases (Study IV) and the simultaneous elevation of inflammatory and ECM remodelling markers (Studies II and III) suggest an involvement of leptin in cardiac inflammation and remodelling in dogs with cardiac diseases.

8 REFERENCES

Adam, O., Theobald, K., Lavall, D., Grube, M., Kroemer, H.K., Ameling, S., Schafers, H.J., Bohm, M., Laufs, U., 2011. Increased lysyl oxidase expression and collagen cross-linking during atrial fibrillation. J Mol Cell Cardiol 50, 678-685.

Aggarwal, S., Ghilardi, N., Xie, M.H., de Sauvage, F.J., Gurney, A.L., 2003.

Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278, 1910-1914.

Anker, S.D., von Haehling, S., 2004. Inflammatory mediators in chronic heart failure:

an overview. Heart 90, 464-470.

Aresu, L., Arico, A., Comazzi, S., Gelain, M.E., Riondato, F., Mortarino, M., Morello, E., Stefanello, D., Castagnaro, M., 2012. VEGF and MMP-9: biomarkers for canine lymphoma. Vet Comp Oncol doi: 10.1111/j.1476-5829.2012.00328.x.

Atkinson, L.L., Fischer, M.A., Lopaschuk, G.D., 2002. Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis. J Biol Chem 277, 29424-29430.

Aupperle, H., Disatian, S., 2012. Pathology, protein expression and signaling in myxomatous mitral valve degeneration: Comparison of dogs and humans. J Vet Cardiol 14, 59-71.

Aupperle, H., Marz, I., Thielebein, J., Schoon, H.A., 2008. Expression of transforming growth factor-beta1, -beta2 and -beta3 in normal and diseased canine mitral valves. J Comp Pathol 139, 97-107.

Aupperle, H., Thielebein, J., Kiefer, B., Marz, I., Dinges, G., Schoon, H.A., 2009a. An immunohistochemical study of the role of matrix metalloproteinases and their tissue inhibitors in chronic mitral valvular disease (valvular endocardiosis) in dogs. Vet J 180, 88-94.

Aupperle, H., Thielebein, J., Kiefer, B., Marz, I., Dinges, G., Schoon, H.A., Schubert, A., 2009b. Expression of genes encoding matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in normal and diseased canine mitral valves. J Comp Pathol 140, 271-277.

Banerjee, I., Fuseler, J.W., Price, R.L., Borg, T.K., Baudino, T.A., 2007.

Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol 293, H1883-1891.

Basso, C., Fox, P.R., Meurs, K.M., Towbin, J.A., Spier, A.W., Calabrese, F., Maron, B.J., Thiene, G., 2004. Arrhythmogenic right ventricular cardiomyopathy causing sudden cardiac death in boxer dogs: a new animal model of human disease.

Circulation 109, 1180-1185.

Batlle, M., Perez-Villa, F., Garcia-Pras, E., Lazaro, A., Orus, J., Roque, M., Roig, E., 2007. Down-regulation of matrix metalloproteinase-9 (MMP-9) expression in the myocardium of congestive heart failure patients. Transplant Proc 39, 2344-2346.

Bolger, A.P., Sharma, R., von Haehling, S., Doehner, W., Oliver, B., Rauchhaus, M., Coats, A.J., Adcock, I.M., Anker, S.D., 2002. Effect of interleukin-10 on the production of tumor necrosis factor-alpha by peripheral blood mononuclear cells from patients with chronic heart failure. Am J Cardiol 90, 384-389.

Borgarelli, M., Buchanan, J.W., 2012. Historical review, epidemiology and natural history of degenerative mitral valve disease. J Vet Cardiol 14, 93-101.

Bradham, W.S., Bozkurt, B., Gunasinghe, H., Mann, D., Spinale, F.G., 2002a. Tumor necrosis factor-alpha and myocardial remodeling in progression of heart failure:

a current perspective. Cardiovasc Res 53, 822-830.

Bradham, W.S., Moe, G., Wendt, K.A., Scott, A.A., Konig, A., Romanova, M., Naik, G., Spinale, F.G., 2002b. TNF-alpha and myocardial matrix metalloproteinases in heart failure: relationship to LV remodeling. Am J Physiol Heart Circ Physiol 282, H1288-1295.

Braun, M., Pietsch, P., Felix, S.B., Baumann, G., 1995. Modulation of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 on human coronary smooth muscle cells by cytokines. J Mol Cell Cardiol 27, 2571-2579.

Briner, V.A., Williams, B., Tsai, P., Schrier, R.W., 1992. Demonstration of processing and recycling of biologically active V1 vasopressin receptors in vascular smooth muscle. Proc Natl Acad Sci U S A 89, 2854-2858.

Briscoe, J., Guschin, D., 1994. Signal Transduction - Just Another Signaling Pathway. Current Biology 4, 1033-1035.

Brundel, B.J., Melnyk, P., Rivard, L., Nattel, S., 2005. The pathology of atrial fibrillation in dogs. J Vet Cardiol 7, 121-129.

Brunner-La Rocca, H.P., Kaye, D.M., Woods, R.L., Hastings, J., Esler, M.D., 2001.

Effects of intravenous brain natriuretic peptide on regional sympathetic activity in patients with chronic heart failure as compared with healthy control subjects. J Am Coll Cardiol 37, 1221-1227.

Bulmer, B.J., 2011. Cardiovascular dysfunction in sepsis and critical illness. Vet Clin North Am Small Anim Pract 41, 717-726.

Castellano, G., Affuso, F., Di Conza, P., Fazio, S., 2008. Myocarditis and dilated cardiomyopathy: possible connections and treatments. J Cardiovasc Med (Hagerstown) 9, 666-671.

Chatterjee, K., 2005. Neurohormonal activation in congestive heart failure and the role of vasopressin. Am J Cardiol 95, 8B-13B.

Chen, D., Assad-Kottner, C., Orrego, C., Torre-Amione, G., 2008. Cytokines and acute heart failure. Crit Care Med 36, S9-16.

Cheng, K.H., Chu, C.S., Lee, K.T., Lin, T.H., Hsieh, C.C., Chiu, C.C., Voon, W.C., Sheu, S.H., Lai, W.T., 2008. Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease.

Int J Obes (Lond) 32, 268-274.

Cheng, X., Ding, Y., Xia, C., Tang, T., Yu, X., Xie, J., Liao, M., Yao, R., Chen, Y., Wang, M., Liao, Y.H., 2009. Atorvastatin modulates Th1/Th2 response in patients with chronic heart failure. J Card Fail 15, 158-162.

Chow, A.K., Cena, J., Schulz, R., 2007. Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. Br J Pharmacol 152, 189-205.

Clements, D.N., Carter, S.D., Innes, J.F., Ollier, W.E., Day, P.J., 2006. Analysis of normal and osteoarthritic canine cartilage mRNA expression by quantitative polymerase chain reaction. Arthritis Res Ther 8, R158.

Clements, D.N., Fitzpatrick, N., Carter, S.D., Day, P.J., 2009. Cartilage gene expression correlates with radiographic severity of canine elbow osteoarthritis.

Vet J 179, 211-218.

Cohen, R.I., 2010. Sepsis-induced myocardial dysfunction: linking physiology and genomics. Crit Care Med 38, 1001-1002.

Conde, J., Scotece, M., Gomez, R., Gomez-Reino, J.J., Lago, F., Gualillo, O., 2010.

At the crossroad between immunity and metabolism: focus on leptin. Expert Rev Clin Immunol 6, 801-808.

Creemers, E.E., Pinto, Y.M., 2011. Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res 89, 265-272.

Cuenca, J., Martin-Sanz, P., Alvarez-Barrientos, A.M., Bosca, L., Goren, N., 2006.

Infiltration of inflammatory cells plays an important role in matrix metalloproteinase expression and activation in the heart during sepsis. Am J Pathol 169, 1567-1576.

de Bold, A.J., Borenstein, H.B., Veress, A.T., Sonnenberg, H., 1981. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28, 89-94.

de Waal Malefyt, R., Abrams, J., Bennett, B., Figdor, C.G., de Vries, J.E., 1991.

Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174, 1209-1220.

Deswal, A., Misra, A., Bozkurt, B., 2001a. The role of anti-cytokine therapy in the failing heart. Heart Fail Rev 6, 143-151.

Deswal, A., Petersen, N.J., Feldman, A.M., Young, J.B., White, B.G., Mann, D.L., 2001b. Cytokines and cytokine receptors in advanced heart failure - An analysis of the cytokine database from the vesnarinone trial (VEST). Circulation 103, 2055-2059.

Devaux, B., Scholz, D., Hirche, A., Klovekorn, W.P., Schaper, J., 1997. Upregulation of cell adhesion molecules and the presence of low grade inflammation in human chronic heart failure. Eur Heart J 18, 470-479.

Dickinson, A.E., Rozanski, E.A., Rush, J.E., 2007. Reversible myocardial depression associated with sepsis in a dog. J Vet Intern Med 21, 1117-1120.

Disatian, S., Ehrhart, E.J., 3rd, Zimmerman, S., Orton, E.C., 2008. Interstitial cells from dogs with naturally occurring myxomatous mitral valve disease undergo phenotype transformation. J Heart Valve Dis 17, 402-411; discussion 412.

Disatian, S., Orton, E.C., 2009. Autocrine serotonin and transforming growth factor beta 1 signaling mediates spontaneous myxomatous mitral valve disease. J Heart Valve Dis 18, 44-51.

Dobaczewski, M., Chen, W., Frangogiannis, N.G., 2011. Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J Mol Cell Cardiol 51, 600-606.

Dobaczewski, M., Gonzalez-Quesada, C., Frangogiannis, N.G., 2010. The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48, 504-511.

Ducharme, A., Frantz, S., Aikawa, M., Rabkin, E., Lindsey, M., Rohde, L.E., Schoen, F.J., Kelly, R.A., Werb, Z., Libby, P., Lee, R.T., 2000. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 106, 55-62.

Duff, J.L., Marrero, M.B., Paxton, W.G., Schieffer, B., Bernstein, K.E., Berk, B.C., 1995. Angiotensin II signal transduction and the mitogen-activated protein kinase pathway. Cardiovasc Res 30, 511-517.

Edwards, D.R., Murphy, G., Reynolds, J.J., Whitham, S.E., Docherty, A.J., Angel, P., Heath, J.K., 1987. Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J 6, 1899-1904.

Elliott, P., Andersson, B., Arbustini, E., Bilinska, Z., Cecchi, F., Charron, P., Dubourg, O., Kuhl, U., Maisch, B., McKenna, W.J., Monserrat, L., Pankuweit, S., Rapezzi, C., Seferovic, P., Tavazzi, L., Keren, A., 2008. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29, 270-276.

Ettinger, S.J., Farace, G., Forney, S.D., Frye, M., Beardow, A., 2012. Evaluation of plasma N-terminal pro-B-type natriuretic peptide concentrations in dogs with and without cardiac disease. J Am Vet Med Assoc 240, 171-180.

Faggioni, R., Fantuzzi, G., Fuller, J., Dinarello, C.A., Feingold, K.R., Grunfeld, C., 1998. IL-1 beta mediates leptin induction during inflammation. Am J Physiol 274, R204-208.

Feng, W., Li, W., Liu, W., Wang, F., Li, Y., Yan, W., 2009. IL-17 induces myocardial fibrosis and enhances RANKL/OPG and MMP/TIMP signaling in isoproterenol-induced heart failure. Exp Mol Pathol 87, 212-218.

Fernandez-Riejos, P., Najib, S., Santos-Alvarez, J., Martin-Romero, C., Perez-Perez, A., Gonzalez-Yanes, C., Sanchez-Margalet, V., 2010. Role of leptin in the activation of immune cells. Mediators Inflamm 2010, 568343.

Filippatos, G.S., Tsilias, K., Venetsanou, K., Karambinos, E., Manolatos, D., Kranidis, A., Antonellis, J., Kardaras, F., Anthopoulos, L., Baltopoulos, G., 2000.

Leptin serum levels in cachectic heart failure patients. Relationship with tumor necrosis factor-alpha system. Int J Cardiol 76, 117-122.

Finkel, M.S., Oddis, C.V., Jacob, T.D., Watkins, S.C., Hattler, B.G., Simmons, R.L., 1992. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257, 387-389.

Fiorentino, D.F., Zlotnik, A., Mosmann, T.R., Howard, M., O'Garra, A., 1991. IL-10 inhibits cytokine production by activated macrophages. J Immunol 147, 3815-3822.

Flynn, A., Chokkalingam Mani, B., Mather, P.J., 2010. Sepsis-induced cardiomyopathy: a review of pathophysiologic mechanisms. Heart Fail Rev 15, 605-611.

Fonfara, S., Loureiro, J., Swift, S., James, R., Cripps, P., Dukes-McEwan, J., 2010.

Cardiac troponin I as a marker for severity and prognosis of cardiac disease in dogs. Vet J 184, 334-339.

Fox, P.R., 2012. Pathology of myxomatous mitral valve disease in the dog. J Vet Cardiol 14, 103-126.

Frangogiannis, N.G., 2008. The immune system and cardiac repair. Pharmacol Res 58, 88-111.

Frangogiannis, N.G., 2012. Regulation of the inflammatory response in cardiac repair. Circ Res 110, 159-173.

Fox, P.R., 2012. Pathology of myxomatous mitral valve disease in the dog. J Vet Cardiol 14, 103-126.

Fujii, Y., Orito, K., Muto, M., Wakao, Y., 2007. Modulation of the tissue reninangiotensin-aldosterone system in dogs with chronic mild regurgitation through the mitral valve. Am J Vet Res 68, 1045-1050.

Fujisaki, H., Ito, H., Hirata, Y., Tanaka, M., Hata, M., Lin, M., Adachi, S., Akimoto, H., Marumo, F., Hiroe, M., 1995. Natriuretic peptides inhibit angiotensin II-induced

proliferation of rat cardiac fibroblasts by blocking endothelin-1 gene expression.

J Clin Invest 96, 1059-1065.

Gamble, J.R., Vadas, M.A., 1988. Endothelial adhesiveness for blood neutrophils is inhibited by transforming growth factor-beta. Science 242, 97-99.

Gamble, J.R., Vadas, M.A., 1991. Endothelial cell adhesiveness for human T lymphocytes is inhibited by transforming growth factor-beta 1. J Immunol 146, 1149-1154.

Garvican, E.R., Vaughan-Thomas, A., Redmond, C., Clegg, P.D., 2008.

Chondrocytes harvested from osteochondritis dissecans cartilage are able to undergo limited in vitro chondrogenesis despite having perturbations of cell phenotype in vivo. J Orthop Res 26, 1133-1140.

German, A.J., Ryan, V.H., German, A.C., Wood, I.S., Trayhurn, P., 2010. Obesity, its associated disorders and the role of inflammatory adipokines in companion animals. Vet J 185, 4-9.

Giampuzzi, M., Oleggini, R., Albanese, C., Pestell, R., Di Donato, A., 2005. beta-catenin signaling and regulation of cyclin D1 promoter in NRK-49F cells transformed by down-regulation of the tumor suppressor lysyl oxidase. Biochim Biophys Acta 1745, 370-381.

Giancotti, F.G., Ruoslahti, E., 1999. Integrin signaling. Science 285, 1028-1032.

Gilbert, S.J., Wotton, P.R., Tarlton, J.F., Duance, V.C., Bailey, A.J., 1997. Increased expression of promatrix metalloproteinase-9 and neutrophil elastase in canine dilated cardiomyopathy. Cardiovasc Res 34, 377-383.

Gomez, D.E., Alonso, D.F., Yoshiji, H., Thorgeirsson, U.P., 1997. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 74, 111-122.

Gopalakrishnan, V., Xu, Y.J., Sulakhe, P.V., Triggle, C.R., McNeill, J.R., 1991.

Vasopressin (V1) receptor characteristics in rat aortic smooth muscle cells. Am J Physiol 261, H1927-1936.

Graham, H.K., Horn, M., Trafford, A.W., 2008. Extracellular matrix profiles in the progression to heart failure. European Young Physiologists Symposium Keynote Lecture-Bratislava 2007. Acta Physiol (Oxf) 194, 3-21.

Han, R.I., Clark, C.H., Black, A., French, A., Culshaw, G.J., Kempson, S.A., Corcoran, B.M., 2013. Morphological changes to endothelial and interstitial cells and to the extra-cellular matrix in canine myxomatous mitral valve disease (endocardiosis). Vet J doi: 10.1016/j.tvjl.2013.01.027.

Hanna, N., Cardin, S., Leung, T.K., Nattel, S., 2004. Differences in atrial versus ventricular remodeling in dogs with ventricular tachypacing-induced congestive heart failure. Cardiovasc Res 63, 236-244.

Haynes, W.G., Morgan, D.A., Walsh, S.A., Mark, A.L., Sivitz, W.I., 1997a. Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest 100, 270-278.

Haynes, W.G., Sivitz, W.I., Morgan, D.A., Walsh, S.A., Mark, A.L., 1997b.

Sympathetic and cardiorenal actions of leptin. Hypertension 30, 619-623.

Hedayat, M., Mahmoudi, M.J., Rose, N.R., Rezaei, N., 2010. Proinflammatory cytokines in heart failure: double-edged swords. Heart Fail Rev 15, 543-562.

Heineke, J., Molkentin, J.D., 2006. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7, 589-600.

Hofer, J., DeFrancesco, T.C., Williams, L.E., 2011. Detection of tumour necrosis factor-alpha in dogs with lymphoma(*). Vet Comp Oncol 9, 290-295.

Hori, Y., Tsubaki, M., Katou, A., Ono, Y., Yonezawa, T., Li, X., Higuchi, S.I., 2008.

Evaluation of NT-pro BNP and CT-ANP as markers of concentric hypertrophy in dogs with a model of compensated aortic stenosis. J Vet Intern Med 22, 1118-1123.

Huber, S., Schramm, C., 2006. TGF-beta and CD4+CD25+ regulatory T cells. Front Biosci 11, 1014-1023.

Huber, S.A., Feldman, A.M., Sartini, D., 2006. Coxsackievirus B3 induces T regulatory cells, which inhibit cardiomyopathy in tumor necrosis factor-alpha transgenic mice. Circ Res 99, 1109-1116.

Igel, M., Becker, W., Herberg, L., Joost, H.G., 1997. Hyperleptinemia, leptin resistance, and polymorphic leptin receptor in the New Zealand obese mouse.

Endocrinology 138, 4234-4239.

Ishioka, K., Soliman, M.M., Sagawa, M., Nakadomo, F., Shibata, H., Honjoh, T., Hashimoto, A., Kitamura, H., Kimura, K., Saito, M., 2002. Experimental and clinical studies on plasma leptin in obese dogs. J Vet Med Sci 64, 349-353.

Ito, H., Hirata, Y., Adachi, S., Tanaka, M., Tsujino, M., Koike, A., Nogami, A., Murumo, F., Hiroe, M., 1993. Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes.

J Clin Invest 92, 398-403.

Kaczorowski, D.J., Nakao, A., McCurry, K.R., Billiar, T.R., 2009. Toll-like receptors and myocardial ischemia/reperfusion, inflammation, and injury. Curr Cardiol Rev 5, 196-202.

Kapur, N.K., 2011. Transforming growth factor-beta: governing the transition from inflammation to fibrosis in heart failure with preserved left ventricular function.

Circ Heart Fail 4, 5-7.

Karmazyn, M., Purdham, D.M., Rajapurohitam, V., Zeidan, A., 2007. Leptin as a cardiac hypertrophic factor: a potential target for therapeutics. Trends Cardiovasc Med 17, 206-211.

Karmazyn, M., Purdham, D.M., Rajapurohitam, V., Zeidan, A., 2008. Signalling mechanisms underlying the metabolic and other effects of adipokines on the heart. Cardiovasc Res 79, 279-286.

Kasner, M., Westermann, D., Lopez, B., Gaub, R., Escher, F., Kuhl, U., Schultheiss, H.P., Tschope, C., 2011. Diastolic tissue Doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction. J Am Coll Cardiol 57, 977-985.

Kassiri, Z., Oudit, G.Y., Sanchez, O., Dawood, F., Mohammed, F.F., Nuttall, R.K., Edwards, D.R., Liu, P.P., Backx, P.H., Khokha, R., 2005. Combination of tumor necrosis factor-alpha ablation and matrix metalloproteinase inhibition prevents heart failure after pressure overload in tissue inhibitor of metalloproteinase-3 knock-out mice. Circ Res 97, 380-390.

Katz, A.M., 2011. Signal Transduction: Functional Signaling. In: Katz, A.M. (Ed.), Physiology of the Heart. Lippincott Williams and Wilkins, Philadelphia, pp. 177-221.

Kaur, K., Dhingra, S., Slezak, J., Sharma, A.K., Bajaj, A., Singal, P.K., 2009. Biology of TNFalpha and IL-10, and their imbalance in heart failure. Heart Fail Rev 14, 113-123.

Kempf, T., Eden, M., Strelau, J., Naguib, M., Willenbockel, C., Tongers, J., Heineke, J., Kotlarz, D., Xu, J., Molkentin, J.D., Niessen, H.W., Drexler, H., Wollert, K.C., 2006. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res 98, 351-360.

Kempf, T., von Haehling, S., Peter, T., Allhoff, T., Cicoira, M., Doehner, W., Ponikowski, P., Filippatos, G.S., Rozentryt, P., Drexler, H., Anker, S.D., Wollert, K.C., 2007. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol 50, 1054-1060.

Kempf, T., Wollert, K.C., 2009. Growth differentiation factor-15: a new biomarker in cardiovascular disease. Herz 34, 594-599.

Khan, A., Moe, G.W., Nili, N., Rezaei, E., Eskandarian, M., Butany, J., Strauss, B.H., 2004. The cardiac atria are chambers of active remodeling and dynamic collagen turnover during evolving heart failure. J Am Coll Cardiol 43, 68-76.

Khan, R., Sheppard, R., 2006. Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 118, 10-24.

Kim, H.E., Dalal, S.S., Young, E., Legato, M.J., Weisfeldt, M.L., D'Armiento, J., 2000.

Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J Clin Invest 106, 857-866.

Klesius, P.H., 1982. Intercellular communication: role of soluble factors in cellular immune responses. J Am Vet Med Assoc 181, 1015-1021.

Knudson, J.D., Payne, G.A., Borbouse, L., Tune, J.D., 2008. Leptin and mechanisms of endothelial dysfunction and cardiovascular disease. Curr Hypertens Rep 10, 434-439.

Koch, J., Pedersen, H.D., Jensen, A.L., Flagstad, A., Poulsen, K., 1995. Activation of the renin-angiotensin system in dogs with asymptomatic and symptomatic dilated cardiomyopathy. Res Vet Sci 59, 172-175.

Koitabashi, N., Kass, D.A., 2012. Reverse remodeling in heart failure--mechanisms and therapeutic opportunities. Nat Rev Cardiol 9, 147-157.

Koskivirta, I., Kassiri, Z., Rahkonen, O., Kiviranta, R., Oudit, G.Y., McKee, T.D., Kyto, V., Saraste, A., Jokinen, E., Liu, P.P., Vuorio, E., Khokha, R., 2010. Mice with tissue inhibitor of metalloproteinases 4 (Timp4) deletion succumb to induced myocardial infarction but not to cardiac pressure overload. J Biol Chem 285, 24487-24493.

Krishnamurthy, P., Rajasingh, J., Lambers, E., Qin, G., Losordo, D.W., Kishore, R., 2009. IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circ Res 104, e9-18.

Kuhl, U., Noutsias, M., Seeberg, B., Schultheiss, H.P., 1996. Immunohistological evidence for a chronic intramyocardial inflammatory process in dilated cardiomyopathy. Heart 75, 295-300.

Kukielka, G.L., Hawkins, H.K., Michael, L., Manning, A.M., Youker, K., Lane, C., Entman, M.L., Smith, C.W., Anderson, D.C., 1993. Regulation of intercellular

adhesion molecule-1 (ICAM-1) in ischemic and reperfused canine myocardium. J Clin Invest 92, 1504-1516.

Kukielka, G.L., Smith, C.W., LaRosa, G.J., Manning, A.M., Mendoza, L.H., Daly, T.J., Hughes, B.J., Youker, K.A., Hawkins, H.K., Michael, L.H., et al., 1995.

Interleukin-8 gene induction in the myocardium after ischemia and reperfusion in vivo. J Clin Invest 95, 89-103.

Kvakan, H., Kleinewietfeld, M., Qadri, F., Park, J.K., Fischer, R., Schwarz, I., Rahn, H.P., Plehm, R., Wellner, M., Elitok, S., Gratze, P., Dechend, R., Luft, F.C., Muller, D.N., 2009. Regulatory T cells ameliorate angiotensin II-induced cardiac damage. Circulation 119, 2904-2912.

Lacerda, C.M., Maclea, H.B., Kisiday, J.D., Orton, E.C., 2012. Static and cyclic tensile strain induce myxomatous effector proteins and serotonin in canine mitral valves. J Vet Cardiol 14, 223-230.

Langhorn, R., O.M.A., King, L.G., Machen, M.C., Trafny, D.J., Thawley, V., Willesen, J.L., Tarnow, I., Kjelgaard-Hansen, M., 2013. Prognostic importance of myocardial injury in critically ill dogs with systemic inflammation. J Vet Intern Med doi: 10.1111/jvim.12105.

Levin, E.R., Gardner, D.G., Samson, W.K., 1998. Natriuretic peptides. N Engl J Med 339, 321-328.

Levine, B., Kalman, J., Mayer, L., Fillit, H.M., Packer, M., 1990. Elevated Circulating Levels of Tumor-Necrosis-Factor in Severe Chronic Heart-Failure. New England Journal of Medicine 323, 236-241.

Li, N., Bian, H., Zhang, J., Li, X., Ji, X., Zhang, Y., 2010. The Th17/Treg imbalance exists in patients with heart failure with normal ejection fraction and heart failure with reduced ejection fraction. Clin Chim Acta 411, 1963-1968.

Li, Y.Y., McTiernan, C.F., Feldman, A.M., 1999. Proinflammatory cytokines regulate tissue inhibitors of metalloproteinases and disintegrin metalloproteinase in cardiac cells. Cardiovasc Res 42, 162-172.

Lim, H., Zhu, Y.Z., 2006. Role of transforming growth factor-beta in the progression of heart failure. Cell Mol Life Sci 63, 2584-2596.

Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.

Ljungvall, I., Rajamaki, M.M., Crosara, S., Olsen, L.H., Kvart, C., Borgarelli, M., Hoglund, K., Haggstrom, J., 2011. Evaluation of plasma activity of matrix

Ljungvall, I., Rajamaki, M.M., Crosara, S., Olsen, L.H., Kvart, C., Borgarelli, M., Hoglund, K., Haggstrom, J., 2011. Evaluation of plasma activity of matrix