• Ei tuloksia

Implementations and future directions

Our results indicate that DWI and DCE sequences provide additional information and can be useful in EOC. We conducted our measurements in a single plane with the aim being to develop a method that would be easy to apply also in clinical practice, as previously shown for breast cancer (Bickel et al., 2017). It is straightforward to incorporate DWI into conventional imaging and it is already being used in the estimation of recurrence. Michielsen et al. showed that imaging with DWI was superior to CT in OC staging. While including DCE sequences into imaging, it will slightly increase the duration of the imaging session; on the other hand, it will provide additional information that may be clinically important. Semi-quantitative and quantitative perfusion parameters showed promising results in our study. Ktrans significantly detected HGSOC and was predictive for the results of cytoreductive surgery. In addition, Ktrans and Kep were associated with hypoxia specific marker (HIF-1α). WashIn and WashOut parameters were indicative of the patient’s platinum sensitivity. Our results could be helpful in treatment planning in OC; however, they will need to be verified in large cohorts.

New MRI modalities are under continuous development for oncological imaging.

Techniques such as Sodium MR imaging (23Na-MRI), Phosphorus spectroscopic imaging (31P-MRSI), Chemical exchange saturation transfer imaging (CEST), Blood oxygen level-dependent imaging (BOLD MRI) and Hyperpolarized imaging (HP MRI) are under active investigation. In addition, hybrid imaging with positron emission tomography/MRI has been developed to overcome the individual limitations of morphological and functional imaging techniques. It is possible to include different tracers in addition to the traditional 18F (FDG) radiotracer e.g. the hypoxia tracers 18F EF5 or 18F fluoromisonidazole (FMISO) in hybrid imaging.

To conclude, this thesis reveals that both DWI and DCE MRI are useful tools for assessing the prognosis of the patient with EOC. In our results, a large ROI placement proved to be more reliable than a small ROI, when cystic and necrotic areas were meticulously avoided. A multiparametric MRI variable, a combination of lower ADC values and DCE parameters indicative of a disease that is more aggressive, was also

predictive for recurrence-free survival. Because medicine is becoming more individualized, also OC imaging may change in the future. Functional MRI holds the potential to enhance significantly our understanding of tumour biology. In multiparametric imaging of breast and prostate cancers, analyses of the DWI and DCE, time intensity curve shapes are already a part of diagnostic imaging. In addition, in the diagnostic imaging of gliomas, even DCE perfusion parameters are already in widespread clinical use. It is not surprising that perfusion parameters were initially first exploited in neurological imaging because all functional imaging has its origins in the brain. It is relatively straightforward to stabilize the head for imaging and furthermore, breathing and other artefacts are less of a problem in comparison to abdominal imaging. The rapid advances in imaging technologies have meant that functional imaging is becoming more common and its validation is underway in abdominal imaging. We live in an era of artificial intelligence and in the future, genome analysis may be combined with functional imaging. Nonetheless, at present, we have to be satisfied with the encouraging results emerging from this thesis: it is predicted that multiparametric MRI will be an important tool enabling personalized medicine in patients with OC.

8 CONCLUSIONS

I

DWI is a valuable tool in the characterization of ovarian cancer. Reduced ADC values were associated with histopathological prognostic factors and a worse outcome in EOC.

In our cohort, ADC values measured from a large ROI, covering the whole solid lesion in a single plane (cystic and necrotic areas were meticulously avoided), were superior to those assessed from a small ROI, which concentrated on the brightest area in a DW imaging sequence. Our results suggest that a whole lesion covering ROI is sufficient for use as a prognostic biomarker in the DWI-MRI of EOC.

II

DCE-MRI parameters may represent an imaging biomarker for predicting tumor aggressiveness and prognosis in OC. One DCE parameter, Ktrans, was higher in high-grade serous histology than in other types of EOC. Higher Ktrans values predicted also a better outcome in cytoreductive surgery. WashIn and WashOut parameters were predictive of platinum sensitivity. Multiparametric MRI variables were predictive of recurrence-free survival.

III

Our study indicates that the hypoxia specific marker, HIF-1α was associated with DCE pharmacokinetic perfusion parameters Ktrans and Kep, and thus DCE imaging may represent a noninvasive method for clinical use to allow the physician to estimate preoperatively if hypoxia is present.

REFERENCES

Abraha, I., Aristei, C., Palumbo, I., Lupattelli, M., Trastulli, S., Cirocchi, R., De Florio, R., Valentini, V., 2018. Preoperative radiotherapy and curative surgery for the management of localised rectal carcinoma, in: Cochrane Database of Systematic Reviews. 3, 10, CD002102.

Achen, M.G., Jeltsch, M., Kukk, E., Mäkinen, T., Vitali, A., Wilks, A.F., Alitalo, K., Stacker, S.A., 1998. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc.

Natl. Acad. Sci. U. S. A. 95, 548–553.

Aghajanian, C., Blank, S. V., Goff, B.A., Judson, P.L., Teneriello, M.G., Husain, A., Sovak, M.A., Yi, J., Nycum, L.R., 2012. OCEANS: A randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J. Clin. Oncol. 30, 2039–2045.

Andrzejewski, P., Wengert, G., Helbich, T.H., Magometschnigg, H., Georg, D., Hacker, M., Baltzer, P., Clauser, P., Kapetas, P., Georg, P., Wadsak, W., Pinker, K., 2019. Sequential [18F]FDG-[18F]FMISO PET and Multiparametric MRI at 3T for Insights into Breast Cancer Heterogeneity and Correlation with Patient Outcomes: First Clinical Experience. Contrast Media Mol. Imaging 2019, 1307247.

Arponen, O., Sudah, M., Masarwah, A., Taina, M., Rautiainen, S., Könönen, M., Sironen, R., Kosma, V.M., Sutela, A., Hakumäki, J., Vanninen, R., 2015.

Diffusion-weighted imaging in 3.0 Tesla breast MRI: Diagnostic performance and tumor characterization using small subregions vs. whole tumor regions of interest. PLoS One 10, e0138702.

Awasthi, R., Rathore, R.K.S., Soni, P., Sahoo, P., Awasthi, A., Husain, N., Behari, S., Singh, R.K., Pandey, C.M., Gupta, R.K., 2012. Discriminant analysis to classify glioma grading using dynamic contrast-enhanced MRI and immunohistochemical markers. Neuroradiology 54, 205–213.

Bae, H., Yoshida, S., Matsuoka, Y., Nakajima, H., Ito, E., Tanaka, H., Oya, M., Nakayama, T., Takeshita, H., Kijima, T., Ishioka, J., Numao, N., Koga, F., Saito, K., Akashi, T., Fujii, Y., Kihara, K., 2014. Apparent diffusion coefficient value as a biomarker reflecting morphological and biological features of prostate cancer.

Int. Urol. Nephrol. 46, 555–561.

Bazot, M., Bharwani, N., Huchon, C., Kinkel, K., Cunha, T.M., Guerra, A., Manganaro, L., Buñesch, L., Kido, A., Togashi, K., Thomassin-Naggara, I., Rockall, A.G., 2017. European society of urogenital radiology (ESUR) guidelines: MR imaging of pelvic endometriosis. Eur. Radiol. 27, 2765–2775.

Benedet, J.L., Bender, H., Jones, H., Ngan, H.Y., Pecorelli, S., 2000. FIGO staging classifications and clinical practice guidelines in the management of gynecologic cancers. FIGO Committee on Gynecologic Oncology. Int. J.

Gynaecol. Obstet. 70, 209–262. Wongsrichanalai, C., Titus-Ernstoff, L., Mosgaard, B.J., Yeates, D., Chang-Claude, J., Rossing, M.A., Thomas, D., Weiss, N., Franceschi, S., La Vecchia, C., Adami, H.O., Magnusson, C., Riman, T., Weiderpass, E., Wolk, A., Brinton, L.A., Freedman, D.M., Hartge, P., Lacey, J.M., Hoover, R., Schouten, L.J., van den Brandt, P.A., Chantarakul, N., Koetsawang, S., Rachawat, D., Graff-Iversen, S., Selmer, R., Bain, C.J., Purdie, D.M., Siskind, V., Webb, P.M., McCann, S.E., Hannaford, P., Kay, C., Binns, C.W., Lee, A.H., Zhang, M., Nasca, P., Coogan, P.F., Rosenberg, L., Kelsey, J., Paffenbarger, R., Whittemore, A., Katsouyanni, K., Trichopoulou, A., Trichopoulos, D., Tzonou, A., Dabancens, A., Martinez, L., Molina, R., Salas, O., Goodman, M.T., Laurie, G., Carney, M.E., Wilkens, L.R., Bladstrom, A., Olsson, H., Ness, R.B., Grisso, J.A., Morgan, M., Wheeler, J.E., Casagrande, J., Pike, M.C., Ross, R.K., Wu, A.H., Kumle, M., Lund, E., McGowan, L., Shu, X.O., Zheng, W., Farley, T.M.M., Holck, S., Meirik, O., Risch, H.A., 2008. Ovarian cancer and oral contraceptives: collaborative reanalysis of data from 45 epidemiological studies including 23 257 women with ovarian cancer and 87 303 controls. Lancet 371, 303–314.

Berg, A., Fasmer, K.E., Mauland, K.K., Ytre-Hauge, S., Hoivik, E.A., Husby, J.A., Tangen, I.L., Trovik, J., Halle, M.K., Woie, K., Bjørge, L., Bjørnerud, A., Salvesen, H.B., Werner, H.M.J., Krakstad, C., Haldorsen, I.S., 2016. Tissue and imaging biomarkers for hypoxia predict poor outcome in endometrial cancer.

Oncotarget, 7(43), 69844-69856.

Bernardin, L., Dilks, P., Liyanage, S., Miquel, M.E., Sahdev, A., Rockall, A., 2012.

Effectiveness of semi-quantitative multiphase dynamic contrast-enhanced MRI

as a predictor of malignancy in complex adnexal masses: radiological and pathological correlation. Eur. Radiol. 22, 880–890.

Bhattarai, D., Xu, X., Lee, K., 2018. Hypoxia-inducible factor-1 (HIF-1) inhibitors from the last decade (2007 to 2016): A “structure–activity relationship” perspective.

Med. Res. Rev. 38, 1404–1442.

Bickel, H., Pinker, K., Polanec, S., Magometschnigg, H., Wengert, G., Spick, C., Bogner, W., Bago-Horvath, Z., Helbich, T.H., Baltzer, P., 2017. Diffusion-weighted imaging of breast lesions: Region-of-interest placement and different ADC parameters influence apparent diffusion coefficient values. Eur. Radiol.

27, 1883–1892.

Blagosklonny, M. V., 2004. Antiangiogenic therapy and tumor progression. Cancer Cell. 5(1), 13-17.

Bois, A. Du, Reuss, A., Pujade-Lauraine, E., Harter, P., Ray-Coquard, I., Pfisterer, J., 2009. Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: A combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials: by the arbeitsgemeinschaft gynaekologische onkologie studiengruppe ovarialkarzinom (AGO-OVAR) and the groupe d’Investigateurs nationaux pour les etudes des cancers de l’Ovaire (GINECO). Cancer 115, 1234–1244.

Bollineni, V.R., Kramer, G., Liu, Y., Melidis, C., deSouza, N.M., 2015. A literature review of the association between diffusion-weighted MRI derived apparent diffusion coefficient and tumour aggressiveness in pelvic cancer. Cancer Treat.

Rev. 41(6), 496-502.

Borren, A., Groenendaal, G., Van Der Groep, P., Moman, M.R., Boeken Kruger, A.E., Van Der Heide, U.A., Jonges, T.N., Van Diest, P.J., Van Vulpen, M., Philippens, M.E.P., 2013. Expression of hypoxia-inducible factor-1α and -2α in whole-mount prostate histology: Relation with dynamic contrast-enhanced MRI and Gleason score. Oncol. Rep. 29, 2249–2254.

Brix, G., Semmler, W., Port, R., Schad, L.R., Layer, G., Lorenz, W.J., 1991.

Pharmacokinetic parameters in cns gd-dtpa enhanced mr imaging. J. Comput.

Assist. Tomogr. 15, 621–628.

Bryant, H.E., Schultz, N., Thomas, H.D., Parker, K.M., Flower, D., Lopez, E., Kyle, S., Meuth, M., Curtin, N.J., Helleday, T., 2005. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917.

Burger, R.A., Brady, M.F., Bookman, M.A., Fleming, G.F., Monk, B.J., Huang, H., Mannel, R.S., Homesley, H.D., Fowler, J., Greer, B.E., Boente, M., Birrer, M.J., Liang, S.X., 2012. Incorporation of bevacizumab in the primary treatment of ovarian cancer. Obstet. Gynecol. Surv. 67, 289–290.

Carmeliet, P., 2005. VEGF as a key mediator of angiogenesis in cancer. Oncology 69(3), 4-10.

Cebulla, J., Huuse, E.M., Pettersen, K., Van Der Veen, A., Kim, E., Andersen, S., Prestvik, W.S., Bofin, A.M., Pathak, A.P., Bjørkøy, G., Bathen, T.F., Moestue, S.A., 2015. MRI reveals the in vivo cellular and vascular response to BEZ235 in ovarian cancer xenografts with different PI3-kinase pathway activity. Br. J.

Cancer 112, 504–513.

Chang, S.J., Bristow, R.E., Chi, D.S., Cliby, W.A., 2015. Role of aggressive surgical cytoreduction in advanced ovarian cancer. J. Gynecol. Oncol. 26(4), 336-342.

Chen, J., Qian, T., Zhang, H., Wei, C., Meng, F., Yin, H., 2016. Combining dynamic contrast enhanced magnetic resonance imaging and microvessel density to assess the angiogenesis after PEI in a rabbit VX2 liver tumor model. Magn.

Reson. Imaging 34, 177–182.

Chen, J., Zhang, Y., Liang, B., Yang, Z., 2010. The utility of diffusion-weighted MR imaging in cervical cancer. Eur. J. Radiol. 74(3), e101-106.

Chenevert, T.L., Brunberg, J.A., Pipe, J.G., 2014. Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology 177, 401–

405.

Cheng, W., Liu, J., Yoshida, H., Rosen, D., Naora, H., 2005. Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nat. Med. 11, 531–537.

Cho, G.Y., Moy, L., Kim, S.G., Baete, S.H., Moccaldi, M., Babb, J.S., Sodickson, D.K., Sigmund, E.E., 2016. Evaluation of breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: comparison with malignant status, histological subtype, and molecular prognostic factors. Eur. Radiol. 26, 2547–

2558.

Claesson-Welsh, L., Welsh, M., 2013. VEGFA and tumour angiogenesis. J. Intern.

Med. 273, 114–127.

Collaborative Group on Epidemiological Studies of Ovarian cancer, 2015.

Menopausal hormone use and ovarian cancer risk: Individual participant meta-analysis of 52 epidemiological studies. Lancet 385, 1835–1842.

Cuenod, C.A., Balvay, D., 2013. Perfusion and vascular permeability: Basic concepts and measurement in DCE-CT and DCE-MRI. Diagn. Interv. Imaging 94, 1187–

1204.

Danforth, K.N., Tworoger, S.S., Hecht, J.L., Rosner, B.A., Colditz, G.A., Hankinson, S.E., 2007. Breastfeeding and risk of ovarian cancer in two prospective cohorts.

Cancer Causes Control 18, 517–523.

Daponte, A., Ioannou, M., Mylonis, I., Simos, G., Minas, M., Messinis, I.E., Koukoulis, G., 2008. Prognostic significance of hypoxia-inducible factor 1 alpha(HIF-1alpha) expression in serous ovarian cancer: An immunohistochemical study.

BMC Cancer 16, 8, 335

Davidson, B., Tropé, C.G., 2014. Ovarian cancer: Diagnostic, biological and prognostic aspects. Women’s Heal. 10(5), 519-533.

Davnall, F., Yip, C.S.P., Ljungqvist, G., Selmi, M., Ng, F., Sanghera, B., Ganeshan, B., Miles, K.A., Cook, G.J., Goh, V., 2012. Assessment of tumor heterogeneity: An emerging imaging tool for clinical practice? Insights Imaging 3, 573–589.

Desir, S., Dickson, E.L., Vogel, R.I., Thayanithy, V., Wong, P., Teoh, D., Geller, M.A., Steer, C.J., Subramanian, S., Lou, E., 2014. Tunneling nanotube formation is stimulated by hypoxia in ovarian cancer cells. Oncotarget 7, 43150–43161.

Devalapally, H., Duan, Z., Seiden, M. V., Amiji, M.M., 2007. Paclitaxel and ceramide co-administration in biodegradable polymeric nanoparticulate delivery system to overcome drug resistance in ovarian cancer. Int. J. Cancer 121, 1830–1838.

Devalapally, H., Shenoy, D., Little, S., Langer, R., Amiji, M., 2007. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: Part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer Chemother.

Pharmacol. 59, 477–484.

Dickie, B.R., Rose, C.J., Kershaw, L.E., Withey, S.B., Carrington, B.M., Davidson, S.E., Hutchison, G., West, C.M.L., 2017. The prognostic value of dynamic contrast-enhanced MRI contrast agent transfer constant Ktrans in cervical cancer is explained by plasma flow rather than vessel permeability. Br. J. Cancer 116, 1436–1443.

DiSaia, P., Creasman, W., 2012. Epithelial ovarian cancer. Classification. Clinical Gynecologic Oncology: Eighth Edition, Elsevier, 285-286.

Dixon, W.T., 1988. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging: a modest proposal with tremendous potential. Radiology 168, 566–567.

Dodge, J.E., Covens, A.L., Lacchetti, C., Elit, L.M., Le, T., Devries-Aboud, M., Fung-Kee-Fung, M., 2012. Preoperative identification of a suspicious adnexal mass: A systematic review and meta-analysis. Gynecol. Oncol. 126(1), 157-166.

Drapkin, R., Von Horsten, H.H., Lin, Y., Mok, S.C., Crum, C.P., Welch, W.R., Hecht, J.L., 2005. Human epididymis protein 4 (HE4) is a secreted glycoprotein that is overexpressed by serous and endometrioid ovarian carcinomas. Cancer Res. 65, 2162–2169.

Drerup, J.M., Curiel, T.J., Liu, Y., Padron, A.S., Murthy, K., Hurez, V., Zhang, B., 2015.

Immunotherapy for Ovarian Cancer. Curr. Treat. Options Oncol. 16, 1–20.

Du Bois, A., Vergote, I., Ferron, G., Reuss, A., Meier, W., Greggi, S., Jensen, P.T., Selle, F., Guyon, F., Pomel, C., Lecuru, F., Zang, R., Avall-Lundqvist, E., Kim, J.W., Ponce, J., Raspagliesi, F., Ghaem-Maghami, S., Reinthaller, A., Harter, P., Sehouli, J., 2018. Randomized controlled phase III study evaluating the impact of secondary cytoreductive surgery in recurrent ovarian cancer: AGO DESKTOP III/ENGOT ov20. J. Clin. Oncol. 35, 5501–5501.

Dubeau, L., 2008. The cell of origin of ovarian epithelial tumours. Lancet Oncol. 9(12), 1191-1197.

Dzik-Jurasz, A., Domenig, C., George, M., Wolber, J., Padhani, A., Brown, G., Doran, S., 2002. Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet (London, England) 360, 307–308.

Einhorn, N., Sjovall, K., Knapp, R.C., Hall, K.P., Scully, R.E., Bast, R.C., Zurawski, V.R., 2005. 92225921 Prospective evaluation of serum CA 125 levels for early detection of ovarian cancer. Maturitas 16, 88.

Eisenhauer, E.A., Therasse, P., Bogaerts, J., Schwartz, L.H., Sargent, D., Ford, R., Dancey, J., Arbuck, S., Gwyther, S., Mooney, M., Rubinstein, L., Shankar, L., Dodd, L., Kaplan, R., Lacombe, D., Verweij, J., 2009. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247.

Engels, K., Knauer, S.K., Metzler, D., Simf, C., Struschka, O., Bier, C., Mann, W., Kovács, A.F., Stauber, R.H., 2007. Dynamic intracellular survivin in oral squamous cell carcinoma: Underlying molecular mechanism and potential as an early prognostic marker. J. Pathol. 211, 532–540.

Escuin, D., Kline, E.R., Giannakakou, P., 2005. Both microtubule-stabilizing and microtubule-destabilizing drugs inhibit hypoxia-inducible factor-1α accumulation and activity by disrupting microtubule function. Cancer Res. 65, 9021–9028.

Espada, M., Garcia-Flores, J.R., Jimenez, M., Alvarez-Moreno, E., De Haro, M., Gonzalez-Cortijo, L., Hernandez-Cortes, G., Martinez-Vega, V., Sainz De La Cuesta, R., 2013. Diffusion-weighted magnetic resonance imaging evaluation of intra-abdominal sites of implants to predict likelihood of suboptimal cytoreductive surgery in patients with ovarian carcinoma. Eur. Radiol. 23, 2636–2642.

Falchook, G.S., Wheler, J.J., Naing, A., Jackson, E.F., Janku, F., Hong, D., Ng, C.S., Tannir, N.M., Lawhorn, K.N., Huang, M., Angelo, L.S., Vishwamitra, D., Hess, K., Howard, A.N., Parkhurst, K.L., Amin, H.M., Kurzrock, R., 2014. Targeting hypoxia-inducible factor-1α (HIF-1α) in combination with antiangiogenic therapy: A phase I trial of bortezomib plus bevacizumab.

Oncotarget 5(21), 10280-10292.

Fan, X., Zhang, H., Meng, S., Zhang, J., Zhang, C., 2015. Role of diffusion-weighted magnetic resonance imaging in differentiating malignancies from benign ovarian tumors. Int. J. Clin. Exp. Med. 8, 19928–19937.

Folkman, J, 1971. Tumor Angiogenesis: Therapeutic Implications. N Engl J Med. 285, 1182-1186.

Fong, P.C., Boss, D.S., Yap, T.A., Tutt, A., Wu, P., Mergui-Roelvink, M., Mortimer, P., Swaisland, H., Lau, A., O’Connor, M.J., Ashworth, A., Carmichael, J., Kaye, S.B., Schellens, J.H.M., de Bono, J.S., 2009. Inhibition of Poly(ADP-Ribose) Polymerase in Tumors from BRCA Mutation Carriers . N. Engl. J. Med. 361, 123–134.

Forstner, R., Meissnitzer, M., Cunha, T.M., 2016. Update on Imaging of Ovarian Cancer. Curr. Radiol. Rep. 4, 31.

Forstner, R., Thomassin-Naggara, I., Cunha, T.M., Kinkel, K., Masselli, G., Kubik-Huch, R., Spencer, J.A., Rockall, A., 2017. ESUR recommendations for MR imaging of the sonographically indeterminate adnexal mass: an update. Eur.

Radiol. 27, 2248–2257.

Fox, S.B., Leek, R.D., Weekes, M.P., Whitehouse, R.M., Gatter, K.C., Harris, A.L., 1995. Quantitation and prognostic value of breast cancer angiogenesis:

Comparison of microvessel density, Chalkley count, and computer image analysis. J. Pathol. 177, 275–283.

Friedlander, M.L., 1998. Prognostic factors in ovarian cancer. Semin. Oncol. 25, 305–

314.

Fujii, S., Matsusue, E., Kanasaki, Y., Kanamori, Y., Nakanishi, J., Sugihara, S., Kigawa, J., Terakawa, N., Ogawa, T., 2008. Detection of peritoneal dissemination in gynecological malignancy: evaluation by diffusion-weighted MR imaging. Eur.

Radiol. 18, 18–23.

Gadducci, A., Viacava, P., Cosio, S., Cecchetti, D., Fanelli, G., Fanucchi, A., Teti, G., Genazzani, A.R., 2003. Vascular endothelial growth factor (VEGF) expression in primary tumors and peritoneal metastases from patients with advanced ovarian carcinoma. Anticancer Res. 23, 3001–3008.

George, M.L., Dzik-Jurasz, A.S., Padhani, A.R., Brown, G., Tait, D.M., Eccles, S.A., Swift, R.I., 2001. Non-invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br. J. Surg. 88, 1628–1636.

Gilks, C.B., Ionescu, D.N., Kalloger, S.E., Köbel, M., Irving, J., Clarke, B., Santos, J., Le, N., Moravan, V., Swenerton, K., 2008. Tumor cell type can be reproducibly diagnosed and is of independent prognostic significance in patients with maximally debulked ovarian carcinoma. Hum. Pathol. 39, 1239–1251.

Goff, B.A., Mandel, L.S., Melancon, C.H., Muntz, H.G., 2004. Frequency of symptoms of ovarian cancer in women presenting to primary care clinics. J. Am. Med.

Assoc. 291, 2705–2712.

Gong, T.T., Wu, Q.J., Vogtmann, E., Lin, B., Wang, Y.L., 2013. Age at menarche and risk of ovarian cancer: A meta-analysis of epidemiological studies. Int. J. Cancer 132, 2894–2900.

Groher, M.E., 2015. Clinical Evaluation of Adults. Dysphagia Clin. Manag. Adults Child. 6, 131–160.

Gu, K. won, Kim, C.K., Choi, C.H., Yoon, Y.C., Park, W., 2019. Prognostic value of ADC quantification for clinical outcome in uterine cervical cancer treated with

concurrent chemoradiotherapy. Eur. Radiol. Apr 12.

Gu, P., Pan, L.L., Wu, S.Q., Sun, L., Huang, G., 2009. CA 125, PET alone, PET-CT, CT and MRI in diagnosing recurrent ovarian carcinoma. A systematic review and meta-analysis. Eur. J. Radiol. 71, 164–174.

Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V.J., Meuli, R., Thiran, J.P., 2007. Mapping human whole-brain structural networks with diffusion MRI. PLoS One 2(7), e597.

Haldorsen, I.S., Stefansson, I., Grüner, R., Husby, J.A., Magnussen, I.J., Werner, H.M.J., Salvesen, O., Bjørge, L., Trovik, J., Taxt, T., Akslen, L.A., Salvesen, H.B., 2014. Increased microvascular proliferation is negatively correlated to tumour blood flow and is associated with unfavourable outcome in endometrial carcinomas. Br. J. Cancer 110, 107–114.

Halle, C., Andersen, E., Lando, M., Aarnes, E.K., Hasvold, G., Holden, M., Syljuåsen, R.G., Sundfrø, K., Kristensen, G.B., Holm, R., Malinen, E., Lyng, H., 2012.

Hypoxia-induced gene expression in chemoradioresistant cervical cancer revealed by dynamic contrast-enhanced MRI. Cancer Res. 72, 5285–5295.

Hankinson, S.E., Hunter, D.J., Colditz, G.A., Willett, W.C., Stampfer, M.J., Rosner, B., Speizer, F.E., Hennekens, C.H., 1993. Tubal Ligation, Hysterectomy, and Risk of Ovarian Cancer: A Prospective Study. JAMA J. Am. Med. Assoc. 270, 2813–

2818.

Harry, V.N., Semple, S.I., Parkin, D.E., Gilbert, F.J., 2010. Use of new imaging techniques to predict tumour response to therapy. Lancet. Oncol. 11, 92–102.

Hauth, E.A.M., Antoch, G., Stattaus, J., Kuehl, H., Veit, P., Bockisch, A., Kimmig, R., Forsting, M., 2005. Evaluation of integrated whole-body PET/CT in the detection of recurrent ovarian cancer. Eur. J. Radiol. 56, 263–268.

Hicklin, D.J., Ellis, L.M., 2005. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23, 1011-1027.

Hilario, A., Ramos, A., Perez-Nuñez, A., Salvador, E., Millan, J.M., Lagares, A., Sepulveda, J.M., Gonzalez-Leon, P., Hernandez-Lain, A., Ricoy, J.R., 2012. The added value of apparent diffusion coefficient to cerebral blood volume in the preoperative grading of diffuse gliomas. Am. J. Neuroradiol. 33, 701–707.

Ho, V.B., Allen, S.F., Hood, M.N., Choyke, P.L., 2007. Renal Masses: Quantitative Assessment of Enhancement with Dynamic MR Imaging. Radiology 224, 695–

700.

Hollingsworth, H.C., Kohn, E.C., Steinberg, S.M., Rothenberg, M.L., Merino, M.J., 1995. Tumor angiogenesis in advanced stage ovarian carcinoma. Am. J. Pathol.

147, 33–41.

Horowitz, A., Seerapu, H.R., 2012. Regulation of VEGF signaling by membrane traffic. Cell. Signal. 24, 1810–1820.

Institute for Statistical and Epidemiological Cancer Research, 2016. Finnish Cancer Registry. Last update-2016. Cancer Stat.

Iyer, V.R., Lee, S.I., 2010. MRI, CT, and PET/CT for ovarian cancer detection and adnexal lesion characterization. Am. J. Roentgenol. 194, 311-321.

Jensen, R.L., Mumert, M.L., Gillespie, D.L., Kinney, A.Y., Schabel, M.C., Salzman, K.L., 2014. Preoperative dynamic contrast-enhanced MRI correlates with molecular markers of hypoxia and vascularity in specific areas of intratumoral microenvironment and is predictive of patient outcome. Neuro. Oncol. 16, 280–

291.

Jiang, H., Feng, Y., 2006. Hypoxia-inducible factor 1α (HIF-1α) correlated with tumor growth and apoptosis in ovarian cancer. Int. J. Gynecol. Cancer 16, 405–412.

John, E.M., Whittemore, A.S., Harris, R., Itnyre, J., 1993. Characteristics relating to ovarian cancer risk: Collaborative analysis of seven U.S. Case-control studies.

epithelial ovarian cancer in black women. J. Natl. Cancer Inst. 85, 142–147.

Joukov, V., Pajusola, K., Kaipainen, A., Chilov, D., Lahtinen, I., Kukk, E., Saksela, O., Kalkkinen, N., Alitalo, K., 1996. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15, 290-298.

Kaijser, J., Bourne, T., Valentin, L., Sayasneh, A., Van Holsbeke, C., Vergote, I., Testa, A.C., Franchi, D., Van Calster, B., Timmerman, D., 2013. Improving strategies for diagnosing ovarian cancer: A summary of the International Ovarian Tumor Analysis (IOTA) studies. Ultrasound Obstet. Gynecol. 41, 9–20.

Kaijser, J., Sayasneh, A., Van hoorde, K., Ghaem-maghami, S., Bourne, T., Timmerman, D., Van Calster, B., 2014. Presurgical diagnosis of adnexal tumours using mathematical models and scoring systems: A systematic review and meta-analysis. Hum. Reprod. Update 20, 449–462.

Kanda, T., Ishii, K., Kawaguchi, H., Kitajima, K., Takenaka, D., 2014. High Signal Intensity in the Dentate Nucleus and Globus Pallidus on Unenhanced T1-weighted MR Images: Relationship with Increasing Cumulative Dose of a Gadolinium-based Contrast Material. Radiology 270, 834–841.

Katayama, M., Masui, T., Kobayashi, S., Ito, T., Sakahara, H., Nozaki, A., Kabasawa, H., 2002. Diffusion-weighted echo planar imaging of ovarian tumors: is it useful to measure apparent diffusion coefficients? J. Comput. Assist. Tomogr. 26, 250–

256.

Kawashima, H., Miyati, T., Ohno, N., Ohno, M., Inokuchi, M., Ikeda, H., Gabata, T., 2017. Differentiation Between Luminal-A and Luminal-B Breast Cancer Using Intravoxel Incoherent Motion and Dynamic Contrast-Enhanced Magnetic

Kawashima, H., Miyati, T., Ohno, N., Ohno, M., Inokuchi, M., Ikeda, H., Gabata, T., 2017. Differentiation Between Luminal-A and Luminal-B Breast Cancer Using Intravoxel Incoherent Motion and Dynamic Contrast-Enhanced Magnetic