• Ei tuloksia

General observation

High Raman peak intensities have been observed in small periodicities as illustrated in Figure5.9 and Figure5.6 in the essence that the x period 500 nm is well coupled

in an efficient way with the Raman excitation laser. Although there is the red shift of surface lattice resonances as shown in Figure 5.6, array 500x580 has small shift of SLR from the diffractive order (crosscut). Figure5.7 shows that 600 nm y period is coupled well to the Raman shift of the molecules (Rhodamine 6G) at 875 nm.

Chapter VI

Conclusions

In this work, we studied surface enhanced Raman scattering in plasmonic nanopar-ticle lattices. We have shown that, radiative coupling can be used to engineer and enhance plasmonic effects. Tunability of the resonance wavelength via periodicity was demonstrated for both gold and silver nanoparticle arrays. We have also re-ported two dimensional tunability via px and py periodicity, providing a universal method for creating and utilizing double resonances. We observed additional res-onance wavelength from the transmission plots of gold sample which is associated with the diagonal periodicity. Unfortunately, silver sample had poor resolution in the transmission plot we could not observe the second resonance, however, with good sample fabrication in the future we will be able to see it.

The radiative coupling was studied and verified via angle and wavelength resolved transmission measurements, where the periodicity dependent effects were clearly ob-served, following the expected dependency on thepx andpy. This was accomplished for both gold and silver samples.

This work has shown significant merit specifically in Raman spectroscopy. We were able to match periodicitypxto Raman excitation wavelength and periodicitypy

to the Raman shift of the analyte, namely R6G molecules. This was experimentally demonstrated such that x period of 500 nm is coupled in an efficient way with the Raman excitation laser, while 600 nm y period is coupled well to the Raman shift of Rhodamine 6G at 890 nm (1510 cm−1). Generally, Raman peaks were observed at 1310 cm−1, 1365 cm−1 and 1510 cm−1 where the Raman excitation wavelength used was 785 nm.

Further, we were able to show the periodicity (px and py) related effects

signif-icantly improved SERS effect. This was proved from comparing the SERS from an ordered array against the random samples. That being said, we have random sam-ples, “Random-1” and “Random-2”, despite of having equal particle density, their inter-spacing distance between particles were different. Higher enhancements was achieved from “Random-1” where the particle positions were entirely random such that arbitrarily small gaps between particles was inevitable, hence inducing plas-monic hotspots. On the other hand, “Random-2” in which the inter-particle distance was kept above 50 nm to exclude plasmonic hotspots, there was less enhancement compared to both an ordered array and “Random-1”. On top of that, we have shown that the R6G film only did not show any observable Raman signal, confirming earlier findings of plasmonic enhancement of SERS.

Due to the time constraints, we have not been able to accomplish all objectives of the work. However, the future prospects of the work will prioritize on determining the Q-factor from the linewidth of the transmision plots. Further optimization of thepx,py (and possible the diagonal periodicity) will be made for obtaining a better match between the excitation laser as well as Raman fingerprint region of variety of analytes. We also aim to reduce the angular range of excitation laser to more selectively excite the SLR resonance. Further, we proceed to test the samples with perpendicular polarizations between the excitation and detection, as the radiative coupling between x and y directions are expected to have opposite polarizations. We have demonstrated a universal method to engineer and utilize double resonances in 2 dimensional broken symmetry plasmonic in lattices, that can be utilized not only in Raman, but in any other nano-optical platform, for instance fluorescence enhance-ment, second harmonic generation and establishing multimode lasing in plasmonic nanoparticle arrays, to name a few.

References

[1] C. V. Raman, “A change of wavelength in light scattering,”Nature121(3051), 619 (1928).

[2] C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,”Nature 121(3048), 501–502 (1928).

[3] G. Landsberg and L. Mandelstan, “Uber die Lichtzersteuung in Kristallen,”

Naturwiss 16, 557 (1928).

[4] B. Chase, “A new generation of Raman instrumentation,”Applied Spectroscopy 48, 14A–19A (1994).

[5] D. C. Harris and M. D. Bertolucci, Symmetry and spectroscopy: An introduc-tion to vibraintroduc-tional and electronic spectrocopy(Dover, 1989).

[6] K. C. Gordon and C. M. McGoverin, “Raman mapping of pharmaceuticals,”

International journal of pharmaceutics417, 151–162 (2011).

[7] J. J. Bohning, T. N. Misra, and M. Choundhury, “The Raman effect,” Amer-ican Chemical Society (1998).

[8] G. P. Kumar, “Plasmonic nano-architectures for surface enhanced Raman scattering: a review,”Journal of Nanophotonics 6, 064503 (2012).

[9] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering: A new tool for biomedical spectroscopy,”Current Science915–924 (1999).

[10] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,”Chemical Physics Letters26, 163–166 (1974).

[11] A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,”

Chemical society reviews27, 241–250 (1998).

[12] J. Zhou and H. Ma, “Design principles of spectroscopic probes for biological applications,”Chemical science7, 6309–6315 (2016).

[13] W. Shi and H. Ma, “Spectroscopic probes with changeable π-conjugated sys-tems,”Chemical Communications48, 8732–8744 (2012).

[14] D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochem-istry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,”Journal of electroanalytical chemistry and interfa-cial electrochemistry 84, 1–20 (1977).

[15] R. Van Duyne, “RAMANAPPLICATIONS OF RAMAN SPECTROSCOPY IN ELECTROCHEMISTRY,”Le Journal de Physique Colloques 38, C5–239 (1977).

[16] L. Ying-Kai, D. Yi, and W. Guang-Hou, “Low-frequency and abnormal Raman spectrum in SnO2 nanorods,”Chinese Physics Letters 21, 156 (2004).

[17] A. Kudelski and J. Bukowska, “Excitation profiles versus potential profiles in the determination of the charge-transfer contribution to SERS of pyridine on a silver electrode,”Journal of Raman Spectroscopy - J RAMAN SPECTROSC 26, 955–958 (1995).

[18] A. Trozzolo and W. Gibbons, “The Absorption, Emission, and Excitation Spectra of Diarylmethylenes,”Journal of the American Chemical Society 89, 239–243 (1967).

[19] C. B. Moore,Chemical and biochemical applications of lasers, Vol. 1, (Elsevier, 2012).

[20] J. O. Bockris, B. E. Conway, E. Yeager, and R. E. White, “Comprehensive treatise of electrochemistry,” (1980).

[21] R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,”JOSA A 21, 2442–2446 (2004).

[22] R. W. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,”The London, Edinburgh, and Dublin Philosoph-ical Magazine and Journal of Science4, 396–402 (1902).

[23] A. S. Baburin, A. M. Merzlikin, A. V. Baryshev, I. A. Ryzhikov, Y. V. Panfilov, and I. A. Rodionov, “Silver-based plasmonics: golden material platform and application challenges,”Optical Materials Express9, 611–642 (2019).

[24] U. Kreibig and P. Zacharias, “Surface plasma resonances in small spherical silver and gold particles,”Zeitschrift f¨ur Physik A Hadrons and nuclei 231, 128–143 (1970).

[25] J. M. Garnett, “Colours in Metal Glasses and in Metallic Films.,”Proceedings of the Royal Society of London (1904).

[26] G. Mie, “Beitr¨age zur Optik tr¨uber Medien, speziell kolloidaler Metall¨osun-gen,”Annalen der physik 330, 377–445 (1908).

[27] D. Pines, “Collective energy losses in solids,”Reviews of modern physics 28, 184 (1956).

[28] R. H. Ritchie, “Plasma losses by fast electrons in thin films,”Physical review 106, 874 (1957).

[29] J. Hopfield, “Theory of the contribution of excitons to the complex dielectric constant of crystals,”Physical Review 112, 1555 (1958).

[30] R. H. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface-plasmon reso-nance effect in grating diffraction,”Physical review letters 21, 1530 (1968).

[31] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,”Zeitschrift f¨ur Physik A Hadrons and nuclei 216, 398–410 (1968).

[32] E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,”Zeitschrift f¨ur Naturforschung A 23, 2135–2136 (1968).

[33] K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,”Annu. Rev. Phys. Chem.58, 267–297 (2007).

[34] V. Kravets, A. Kabashin, W. Barnes, and A. Grigorenko, “Plasmonic Sur-face Lattice Resonances: A Review of Properties and Applications,”Chemical reviews118, 5912–5951 (2018).

[35] K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,”

Chemical reviews 111, 3828–3857 (2011).

[36] P. Mandal and S. A. Ramakrishna, “Dependence of surface enhanced Raman scattering on the plasmonic template periodicity,”Optics letters36, 3705–3707 (2011).

[37] M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,”Chemical reviews 111, 3669–3712 (2011).

[38] M. Pelton and G. W. Bryant, Introduction to metal-nanoparticle plasmonics, Vol. 5, (John Wiley & Sons, 2013).

[39] M. A. Garc´ıa, “Surface plasmons in metallic nanoparticles: fundamentals and applications,”Journal of Physics D: Applied Physics44, 283001 (2011).

[40] M. Fox, “Optical properties of solids,” (2002).

[41] G. Mie, “Contributions to the optics of turbid media, particularly of colloidal metal solutions,”Contributions to the optics of turbid media, particularly of colloidal metal solutions Transl. into ENGLISH from Ann. Phys.(Leipzig), v.

25, no. 3, 1908 p 377-445 (1976).

[42] G. C. Papavassiliou, “Optical properties of small inorganic and organic metal particles,”Progress in Solid State Chemistry 12, 185–271 (1979).

[43] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles(John Wiley & Sons, 2008).

[44] U. Kreibig and M. Vollmer, Optical properties of metal clusters, Vol. 25, (Springer Science & Business Media, 2013).

[45] X. Huang and M. A. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,”Journal of advanced research1, 13–28 (2010).

[46] M. Faraday, “X. The Bakerian Lecture.ˆa ˘AˇTExperimental relations of gold (and other metals) to light,”Philosophical Transactions of the Royal Society of London145–181 (1857).

[47] J. A. Creighton and D. G. Eadon, “Ultraviolet–visible absorption spectra of the colloidal metallic elements,”Journal of the Chemical Society, Faraday Transactions87, 3881–3891 (1991).

[48] S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,”The Journal of Physical Chemistry B 103, 4212–4217 (1999).

[49] S. A. Maier, Plasmonics: fundamentals and applications (Springer Science &

Business Media, 2007).

[50] P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorp-tion and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,”The journal of physical chemistry B110, 7238–7248 (2006).

[51] K.-S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,”The Journal of Physical Chemistry B109, 20331–20338 (2005).

[52] M. Alsawafta, Optical properties of metallic nanoparticles and metallic nanocomposite materials, PhD thesis (Concordia University, 2012).

[53] T. Zakri, J.-P. Laurent, and M. Vauclin, “Theoretical evidence forLichte-necker’s mixture formulae’based on the effective medium theory,”Journal of Physics D: Applied Physics31, 1589 (1998).

[54] J. M. Garnett, “XII. Colours in metal glasses and in metallic films,” Philo-sophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character203, 385–420 (1904).

[55] J. M. Garnett, “VII. Colours in metal glasses, in metallic films, and in metallic solutions.ˆa ˘AˇTII,”Philosophical Transactions of the Royal Society of London.

Series A, Containing Papers of a Mathematical or Physical Character 205, 237–288 (1906).

[56] A. Liebsch and B. Persson, “Optical properties of small metallic particles in a continuous dielectric medium,”Journal of Physics C: Solid State Physics 16, 5375 (1983).

[57] G. A. Niklasson, C. Granqvist, and O. Hunderi, “Effective medium models for the optical properties of inhomogeneous materials,”Applied Optics 20, 26–30 (1981).

[58] S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation,”Physical Review B 69, 125418 (2004).

[59] L. Novotny and B. Hecht, Principles of nano-optics (Cambridge university press, 2012).

[60] D. J. Bergman, “The dielectric constant of a composite materialˆa ˘AˇTa problem in classical physics,”Physics Reports 43, 377–407 (1978).

[61] M. Garcıa, J. Llopis, and S. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol–gel films,”Chemical Physics Letters 315, 313–320 (1999).

[62] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,”Physics reports 408, 131–314 (2005).

[63] R. Guo et al., “Dispersions and light-matter interactions in plasmonic lattices of different geometries,” (2018).

[64] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,”nature424, 824 (2003).

[65] I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,”Electromagnetics 28, 214–242 (2008).

[66] B. Liedberg, C. Nylander, and I. Lunstr¨om, “Surface plasmon resonance for gas detection and biosensing,”Sensors and actuators 4, 299–304 (1983).

[67] B. Liedberg, C. Nylander, and I. Lundstr¨om, “Biosensing with surface plasmon resonanceˆa ˘AˇThow it all started,”Biosensors and Bioelectronics10, i–ix (1995).

[68] J. Homola and M. Piliarik, “Surface plasmon resonance (SPR) sensors,” in Surface plasmon resonance based sensors(Springer, 2006), pp. 45–67.

[69] A. J. Tudos and R. B. Schasfoort, “Introduction to surface plasmon resonance,”

Handbook of surface Plasmon resonance1–14 (2008).

[70] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical prop-erties of metal nanoparticles: the influence of size, shape, and dielectric envi-ronment,” (2003).

[71] V. G. Veselago, “THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF ǫ AND µ,”Physics-Uspekhi 10, 509–514 (1968).

[72] J. B. Pendry, “Negative refraction makes a perfect lens,”Physical review letters 85, 3966 (2000).

[73] A. Grigorenko, A. Geim, H. Gleeson, Y. Zhang, A. Firsov, I. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,”Nature438, 335 (2005).

[74] V. M. Shalaev, “Optical negative-index metamaterials,”Nature photonics 1, 41 (2007).

[75] J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang,

“Optical negative refraction in bulk metamaterials of nanowires,”Science321, 930–930 (2008).

[76] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,”

Nature382, 607 (1996).

[77] S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,”Nature Photonics 3, 388 (2009).

[78] Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, et al., “Plasmonic nanolaser using epitaxially grown silver film,”science 337, 450–453 (2012).

[79] J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R.

Wasielewski, and T. W. Odom, “Plasmonic bowtie nanolaser arrays,”Nano letters12, 5769–5774 (2012).

[80] A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,”Nature Photonics2, 365 (2008).

[81] H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,”

Nature materials9, 205 (2010).

[82] J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L.

Brongersma, “Plasmonics for extreme light concentration and manipulation,”

Nature materials9, 193 (2010).

[83] M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J.

Halas, “Aluminum for plasmonics,”ACS nano 8, 834–840 (2013).

[84] M. B. Ross and G. C. Schatz, “Aluminum and indium plasmonic nanoantennas in the ultraviolet,” The Journal of Physical Chemistry C 118, 12506–12514 (2014).

[85] A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,”

Proceedings of the National Academy of Sciences113, 14201–14206 (2016).

[86] V. Kravets, F. Schedin, and A. Grigorenko, “Extremely narrow plasmon reso-nances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,”Physical review letters 101, 087403 (2008).

[87] S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,”Chemical Physics Letters 403, 62–67 (2005).

[88] B. Augui´e and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,”Physical review letters101, 143902 (2008).

[89] S. R. K. Rodriguez, A. Abass, B. Maes, O. T. Janssen, G. Vecchi, and J. G. Ri-vas, “Coupling bright and dark plasmonic lattice resonances,”Physical Review X 1, 021019 (2011).

[90] N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,”Nature Photonics 8, 889 (2014).

[91] R. Guo, T. K. Hakala, and P. T¨orm¨a, “Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays,”Physical Review B 95, 155423 (2017).

[92] A. Moilanen et al., “Dispersion relation and density of states for surface lattice resonance excitations,” (2016).

[93] E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,”science 302, 419–422 (2003).

[94] W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Op-tics communications220, 137–141 (2003).

[95] P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,”Nano letters4, 899–903 (2004).

[96] N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,”Chemical reviews 111, 3913–3961 (2011).

[97] L. Panina, A. Grigorenko, and D. Makhnovskiy, “Optomagnetic composite medium with conducting nanoelements,”Physical Review B66, 155411 (2002).

[98] J. Kupec and B. Witzigmann, “Dispersion, wave propagation and efficiency analysis of nanowire solar cells,”Optics express 17, 10399–10410 (2009).

[99] S. I. Bozhevolnyi, L. Martin-Moreno, and F. Garcia-Vidal,Quantum plasmon-ics(Springer, 2017).

[100] M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical absorption spectra of nanocrystal gold molecules,”

The Journal of Physical Chemistry B101, 3706–3712 (1997).

[101] A. Pinchuk, G. Von Plessen, and U. Kreibig, “Influence of interband electronic transitions on the optical absorption in metallic nanoparticles,” Journal of Physics D: Applied Physics37, 3133 (2004).

[102] L. Mulfinger, S. D. Solomon, M. Bahadory, A. V. Jeyarajasingam, S. A.

Rutkowsky, and C. Boritz, “Synthesis and study of silver nanoparticles,” Jour-nal of chemical education84, 322 (2007).

[103] P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,”

Physical review B 6, 4370 (1972).

[104] T. K. Hakala, A. J. Moilanen, A. I. V¨akev¨ainen, R. Guo, J.-P. Martikainen, K. S. Daskalakis, H. T. Rekola, A. Julku, and P. T¨orm¨a, “Bose–Einstein condensation in a plasmonic lattice,”Nature Physics 14, 739 (2018).

[105] T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,”Journal of Cluster Science10, 295–317 (1999).

[106] A. Kudelski, “Raman spectroscopy of surfaces,”Surface Science 603, 1328–

1334 (2009).

[107] A. Matikainen, T. Nuutinen, P. Vahimaa, and S. Honkanen, “A solution to the fabrication and tarnishing problems of surface-enhanced Raman spectroscopy (SERS) fiber probes,”Scientific reports 5, 8320 (2015).

[108] I. Childres, L. A. Jauregui, W. Park, H. Cao, and Y. P. Chen, “Raman spectroscopy of graphene and related materials,”New developments in photon and materials research1 (2013).

[109] R. Krishnan and R. Shankar, “Raman effect: History of the discovery,”Journal of Raman Spectroscopy 10, 1–8 (1981).

[110] D. C. Harris and M. D. Bertolucci, Symmetry and spectroscopy: an introduc-tion to vibraintroduc-tional and electronic spectroscopy(Courier Corporation, 1989).

[111] D. A. Long, The raman effect (Wiley

”2002).

[112] R. L. McCreery, Raman spectroscopy for chemical analysis, Vol. 225, (John Wiley & Sons, 2005).

[113] J. M. Stencel, “Raman spectroscopy for catalysis,” (1989).

[114] H. A. Szymanski, Raman spectroscopy: theory and practice (Springer Science

& Business Media, 2012).

[115] J. G. Grasselli, M. K. Snavely, and B. J. Bulkin, Chemical applications of Raman spectroscopy(John Wiley & Sons Inc, 1981).

[116] E. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spec-troscopy: and related plasmonic effects(Elsevier, 2008).

[117] A. M. Bratkovski, S.-Y. Wang, and Z. Li, “Raman signal-enhancing struc-tures and Raman spectroscopy systems including such strucstruc-tures,” (2008), US Patent 7,391,511.

[118] A. Biswas, I. S. Bayer, A. S. Biris, T. Wang, E. Dervishi, and F. Faupel,

“Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects,” Advances in colloid and interface science 170, 2–27 (2012).

[119] M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,”Journal of the american chemical society 99, 5215–5217 (1977).

[120] H. S. Gill, S. Thota, L. Li, H. Ren, R. Mosurkal, and J. Kumar, “Reusable SERS active substrates for ultrasensitive molecular detection,”Sensors and Actuators B: Chemical220, 794–798 (2015).

[121] A. M. Mohs, M. C. Mancini, S. Singhal, J. M. Provenzale, B. Leyland-Jones, M. D. Wang, and S. Nie, “Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration,”Analytical chemistry 82, 9058–9065 (2010).

[122] M. Y. Sha, H. Xu, M. J. Natan, and R. Cromer, “Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood,” Journal of the American Chemical Society130, 17214–17215 (2008).

[123] R. Stevenson, A. Ingram, H. Leung, D. C. McMillan, and D. Graham, “Quan-titative SERRS immunoassay for the detection of human PSA,”Analyst 134, 842–844 (2009).

[124] J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,”Accounts of chemical research 41, 1710–1720 (2008).

[125] M. K. Hossain, “Surface-enhanced Raman scattering: a technique of choice for molecular detection,” inMaterials Science Forum, Vol. 754 (Trans Tech Publ, 2013), pp. 143–169.

[126] A. Otto, “The ˆa ˘A¨Ychemicalˆa ˘A´Z(electronic) contribution to surface-enhanced Raman scattering,”Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Or-der Processes, and also Brillouin and Rayleigh Scattering36, 497–509 (2005).

[127] N. Valley, N. Greeneltch, R. P. Van Duyne, and G. C. Schatz, “A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of surface-enhanced Raman spectroscopy (SERS): theory and ex-periment,”The Journal of Physical Chemistry Letters 4, 2599–2604 (2013).

[128] J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions,”The Journal of chemical physics 84, 4174–4180 (1986).

[129] M. Moskovits, “Surface-enhanced spectroscopy,” Reviews of modern physics 57, 783 (1985).

[130] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,”Journal of Physics: Condensed Matter14, R597 (2002).

[131] C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,”Applied surface science 164, 111–117 (2000).

[132] G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,”Science 295, 2418–2421 (2002).

[133] D. M. Kim and Y.-H. Jeong, Nanowire Field Effect Transistors: Principles and Applications, Vol. 43, (Springer, 2014).

[134] G. J. Bordonaro, “DUV Photolithography and Materials,” Encyclopedia of Nanotechnology590–604 (2012).

[135] A. Broers, A. Hoole, and J. Ryan, “Electron beam lithographyˆa ˘AˇTresolution limits,”Microelectronic Engineering32, 131–142 (1996).

[136] J. Nabity, L. A. Compbell, M. Zhu, and W. Zhou, “E-beam nanolithography integrated with scanning electron microscope,” in Scanning Microscopy for Nanotechnology(Springer, 2006), pp. 120–151.

[137] G. Rius Su˜n´e, Electron beam lithography for nanofabrication (Universitat Aut`onoma de Barcelona

”2008).

[138] P. Echlin, Handbook of sample preparation for scanning electron microscopy and X-ray microanalysis(Springer Science & Business Media, 2011).

[139] Y. Chen, “Nanofabrication by electron beam lithography and its applications:

A review,”Microelectronic Engineering135, 57–72 (2015).

[140] E. Edelman, J. Kost, H. Bobeck, and R. Langer, “Regulation of drug release from polymer matrices by oscillating magnetic fields,”Journal of biomedical materials research 19, 67–83 (1985).

[141] A. Khursheed, Scanning electron microscope optics and spectrometers (World scientific, 2011).

[142] M. R. Kagan and R. L. McCreery, “Reduction of fluorescence interference in Raman spectroscopy via analyte adsorption on graphitic carbon,”Analytical chemistry66, 4159–4165 (1994).

Appendix A

Radiation effect in x periodicity - silver sample

(a) (b)

500x580

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

Figure A.1: Transmission plots

(e) (f)

500x596

600 700 800 900

[nm]

50 100 150 200

Intensity [a.u.]

20 40 60 80

100 500x600

600 700 800 900

[nm]

50 100 150 200

Intensity [a.u.]

20 40 60 80 100

Figure A.2: Transmission plots

(g) (h)

510x580

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

Figure A.3: Transmission plots

(m) (n)

520x580

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

Figure A.4: Transmission plots

(s) (t)

530x580

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

Figure A.5: Transmission plots

(y) (z)

540x580

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

Figure A.6: Transmission plots

(e) (f)

500x580Random-1

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

Figure A.7: Random arrays

Appendix B

Radiation effect in y periodicity - silver sample

(a) (b)

500x580

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

Figure B.1: Transmission plots

(e) (f)

500x596

600 700 800 900

[nm]

50 100 150 200

Intensity [a.u.]

20 40 60 80

100 500x600

600 700 800 900

[nm]

50 100 150 200

Intensity [a.u.]

20 40 60 80 100

Figure B.2: Transmission plots

(m) (n)

510x580

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

Figure B.3: Transmission plots

(s) (t)

520x580

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

Figure B.4: Transmission plots

(y) (z)

530x580

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

Figure B.5: Transmission plots

(d) (e)

540x580

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

Figure B.6: Transmission plots

(j) (k)

500x580Random-1

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

600 700 800 900

[nm]

Figure B.7: Random arrays

Appendix C

Raman spectra - y polarized laser light

(a) (b)

1200 1400 1600 1800

Raman shift (1/cm)

1200 1400 1600 1800

Raman shift (1/cm)

1200 1400 1600 1800

Raman shift (1/cm)

1200 1400 1600 1800

Raman shift (1/cm)

Figure C.1: Raman spectra for periodic arrays

(e) (f)

1200 1400 1600 1800

Raman shift (1/cm)

1200 1400 1600 1800

Raman shift (1/cm)

1200 1400 1600 1800

Raman shift (1/cm)

1200 1400 1600 1800

Raman shift (1/cm)

Figure C.2: Raman spectra for periodic arrays

(i) (j)

1200 1400 1600 1800

Raman shift (1/cm)

1200 1400 1600 1800

Raman shift (1/cm)

1200 1400 1600 1800

Raman shift (1/cm)

1200 1400 1600 1800

Raman shift (1/cm)

Figure C.3: Raman spectra for periodic arrays

(m) (n)

1200 1400 1600 1800

Raman shift (1/cm)

1200 1400 1600 1800

Raman shift (1/cm)

1200 1400 1600 1800

Raman shift (1/cm)

1200 1400 1600 1800

Raman shift (1/cm)

Figure C.4: Raman spectra for periodic arrays

(q) (r)

1200 1400 1600 1800

Raman shift (1/cm)

1200 1400 1600 1800

Raman shift (1/cm)

1200 1400 1600 1800

Raman shift (1/cm)

1200 1400 1600 1800

Raman shift (1/cm)

Figure C.5: Raman spectra for periodic arrays

(a) (b)

1200 1400 1600 1800

Raman shift (1/cm)

1200 1400 1600 1800

Raman shift (1/cm)

1200 1400 1600 1800

Raman shift (1/cm)

1200 1400 1600 1800

Raman shift (1/cm)

Raman shift (1/cm)