• Ei tuloksia

In this thesis, allosteric activation of PPARα-RXRα heterodimer was studied with MD simulation systems consisting of the LBDs of each receptor. The choice of this approach was determined by the availability of the crystal structures at the time when these simulations were started and, in addition, the availability of

computational capacity. With the current knowledge, what can be said about the approach in general?

The crystal structures of full length PPARγ-RXRα heterodimer showed that there is an interaction between the PPARγ LBD and the RXRα DBD (Chandra et al., 2008).

These structures suggested that focusing solely on the interplay between the LBDs in the heterodimer cannot provide a full explanation for the mechanism of NR activation. In addition, DNA binding has been shown to stabilise the PPARγ-RXRα heterodimer interface and to affect coregulator binding (de Vera, Ian Mitchelle S et al., 2017; Bernardes et al., 2012; Zhang et al., 2011; Hall et al., 2002). Furthermore, MD simulations of PPARγ have shown different kinds of correlated movements as a LBD monomer, as compared to the situation with a full length receptor in a heterodimeric complex (Ricci et al., 2016). Unfortunately, a heterodimer of LBDs was not included in that comparison.

As a mediator of allosteric signals, Ricci et al. emphasized the role of PPARγ

-loop, which is a flexible loop area connecting helices helix 2’ and helix 3 (Ricci et al., 2016). They also suggested that this area might be important as an activation mechanism of partial agonists, which do not make any direct contact with helix 12.

The movement of these regions was found to be correlated with the PPARγ-DBD movements, and the authors speculated that the -loop area may function as a molecular switch, modulating PPARγ function in response to the dynamics of PPARγ-DBD. Obviously, the effects of DBD dynamics cannot be seen in simulations with only the LBD-LBD heterodimer, suggesting that these kinds of simulations may give false or at least an incomplete picture of the effects induced by a ligand.

On the other hand, even a complex with full length receptors and DNA is still a simplification, and all the consequences of that specific choice of inclusion and exclusion of elements are not known. For example, it was evident in the

simulations made by Ricci et al. that the DNA is bending; its motions have a major impact on the dynamics of the whole complex, and these motions are correlated with those of the LBDs. However, it is not known how natural the movements and bending of the DNA are in these simulations, because the DNA is modelled as a relatively short piece instead of a huge macromolecule bound to many proteins such as is the case in real life. While it is evident that in a simulation, some simplification is always needed, the simulation system must be constructed to include all parts that may have an impact on the results, within the limitations of available knowledge of structures and computational capacity.

At the time when the work (I) was started, the computational capacity for MD simulations was in general much less impressive than it is today. UNIX based workstations were still in use and only slowly being replaced with PC computers running Linux. The research plan for the work (I) was motivated by a grant

provided by an association of European supercomputing centers, which allowed me to work in Vrije Universiteit Amsterdam for three months and to use the high-performance computing facilities of a local super computing center. I was able to run nanosecond-scale simulations for a protein complex in a water box and to do that in ten parallel runs for four systems. That demanded a lot of computing power at a time when a simulation with only a part of the protein moving was still a valid option to consider.

In addition to the computational capacity, also methods have developed.

Thanks to the development of new algorithms, it is possible to use longer time steps, which also make the simulation clock go faster and allow observation of longer time scale phenomena (Hopkins et al., 2015). Today, conducting MD simulations with a microsecond time scale seem to be quite common and even some millisecond simulations have been reported. It would be interesting to now repeat the simulations conducted in work (I), but this time using the full-length structure with a piece of DNA and a longer time scale to allow the allosteric signalling to take place.

Although the patenting of the novel AR binders was successful, further

commercial development of the compounds failed. Even though the exact reasons for this failure are unknown, it can be speculated that a better bioavailability after oral administration could have increased the commercial interest. These

compounds could be developed further e.g. by substituting the aliphatic ring structure. However, this kind of project would require a clear sign of interest from a pharmaceutical company capable of moving forward the development process.

8 CONCLUSIONS AND FUTURE PROSPECTS

The following conclusions can be drawn from this thesis:

1) The molecular level mechanism of allosteric activation in the PPARα-RXRα heterodimer was examined with molecular dynamics. The study revealed that allosteric activation of permissive heterodimers may result from PPARα co-activator binding site stabilization upon ligand binding to the heterodimeric partner RXRα. However, further research is still needed to understand the role of DBDs, co-activator proteins and DNA binding in the allosteric mechanism. In addition, the impact of different types of ligands on permissivity needs further research.

2) ERα and ERβ binding compounds were evaluated with molecular docking to explain their observed binding affinities and activities. Single amino acid

differences were found to contribute to the binding orientation of the compounds and selectivity between ERα and ERβ. This information can be used to develop further these or similar compounds, to increase their affinity or selectivity at different ER subtypes.

3) A rational design approach was used to design novel structures for AR binders, by combining the existing features of ER binders, AR binders and new compound structures. In experimental testing, these compounds were found to bind to AR with high affinity and to inhibit AR activation comparably or better than the existing AR antagonists used in clinical practice.

REFERENCES

Accelrys Software Inc. Accelrys Discovery Studio. 2006, 1.7.

Aleshin, S.; Strokin, M.; Sergeeva, M.; Reiser, G. Peroxisome proliferator-activated receptor (PPAR)β/δ, a possible nexus of PPARα- and PPARγ-dependent molecular pathways in neurodegenerative diseases: Review and novel hypotheses. Neurochemistry International 2013, 63, 322-330.

Allen, M. P. Introduction to Molecular Dynamics Simulation. Computational soft matter: from synthetic polymers to proteins 2004, 1.

Aranda, A.; Pascual, A. Nuclear Hormone Receptors and Gene Expression.

Physiological Reviews 2001, 81, 1269-1304.

Auwerx, J.; Baulieu, E.; Beato, M.; Becker-Andre, M.; Burbach, P.; Camerino, G.;

Chambon, P.; Cooney, A.; Dejean, A.; Dreyer, C.; Evans, R.; Gannon, F.; Giguere, V.; Gronemeyer, H.; Gustafson, J.; Laudet, V.; Lazar, M.; Mangelsdorf, D.;

Milbrandt, J.; Milgrom, E.; Moore, D.; O'Malley, B.; Parker, M.; Parker, K.;

Perlmann, T.; Pfahl, M.; Rosenfeld, M.; Samuels, H.; Schutz, G.; Sladek, F.;

Stunnenberg, H.; Spedding, M.; Thummel, C.; Tsai, M.; Umesono, K.;

Vennstrom, B.; Wahli, W.; Weinberger, C.; Willson, T.; Yamamoto, K. A Unified Nomenclature System for the Nuclear Receptor Superfamily. Cell 1999, 97, 161-163.

Balbas, M. D.; Evans, M. J.; Hosfield, D. J.; Wongvipat, J.; Arora, V. K.; Watson, P. A.;

Chen, Y.; Greene, G. L.; Shen, Y.; Sawyers, C. L. Overcoming mutation-based resistance to antiandrogens with rational drug design. eLife 2013, 2, e00499.

Bambury, R. M.; Scher, H. I. Enzalutamide: Development from bench to bedside.

Urologic oncology 2015, 33, 280-288.

Bassetto, M.; Ferla, S.; Giancotti, G.; Pertusati, F.; Westwell, A. D.; Brancale, A.;

McGuigan, C. Rational design and synthesis of novel

phenylsulfonyl-benzamides as anti-prostate cancer agents. MedChemComm 2017, 8, 1414-1420.

Beato, M.; Herrlich, P.; Schütz, G. Steroid hormone receptors: Many Actors in search of a plot. Cell 1995, 83, 851-857.

Beauchamp, K. A.; Lin, Y.; Das, R.; Pande, V. S. Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements. Journal of chemical theory and computation 2012, 8, 1409-1414.

Begam, J. A.; Jubie, S.; Nanjan, M. J. Estrogen receptor agonists/antagonists in breast cancer therapy: A critical review. Bioorganic chemistry 2017, 71, 257-274.

Belorusova Anna, Y.; Bourguet, M.; Hessmann, S.; Chalhoub, S.; Kieffer, B.;

Cianférani, S.; Rochel, N. Molecular determinants of MED1 interaction with the DNA bound VDR-RXR heterodimer. Nucleic acids research 2020, 48, 11199-11213.

Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; Di Nola, A.; Haak, J. R.

Molecular dynamics with coupling to an external bath. The Journal of chemical physics 1984, 81, 3684-3690.

Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; Hermans, J. Interaction Models for Water in Relation to Protein Hydration; Springer Netherlands:

1981; .

Berger, J.; Wagner, J. A. Physiological and Therapeutic Roles of Peroxisome

Proliferator-Activated Receptors. Diabetes technology & therapeutics 2002, 4, 163-174.

Bernardes, A.; Batista, F. A. H.; de Oliveira Neto, M.; Figueira, A. C. M.; Webb, P.;

Saidemberg, D.; Palma, M. S.; Polikarpov, I. Low-Resolution Molecular Models Reveal the Oligomeric State of the PPAR and the Conformational Organization of Its Domains in Solution. PloS one 2012, 7, e31852.

Bhattacharya, S.; Hirmand, M.; Phung, D.; Os, S. Development of enzalutamide for metastatic castration‐resistant prostate cancer. Annals of the New York Academy of Sciences 2015, 1358, 13-27.

Bohl, C. E.; Gao, W.; Miller, D. D.; Bell, C. E.; Dalton, J. T. Structural basis for

antagonism and resistance of bicalutamide in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America 2005, 102, 6201-6206.

Bohl, C. E.; Miller, D. D.; Chen, J.; Bell, C. E.; Dalton, J. T. Structural Basis for

Accommodation of Nonsteroidal Ligands in the Androgen Receptor. Journal of Biological Chemistry 2005, 280, 37747-37754.

Bookout, A. L.; Jeong, Y.; Downes, M.; Yu, R. T.; Evans, R. M.; Mangelsdorf, D. J.

Anatomical Profiling of Nuclear Receptor Expression Reveals a Hierarchical Transcriptional Network. Cell 2006, 126, 789-799.

Bougarne, N.; Mylka, V.; Ratman, D.; Beck, I. M.; Thommis, J.; De Cauwer, L.;

Tavernier, J.; Staels, B.; Libert, C.; De Bosscher, K. Mechanisms Underlying the Functional Cooperation Between PPARα and GRα to Attenuate Inflammatory Responses. Frontiers in immunology 2019, 10, 1769.

Bougarne, N.; Weyers, B.; Desmet, S. J.; Deckers, J.; Ray, D. W.; Staels, B.; De Bosscher, K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocrine Reviews 2018, 39, 760-802.

Bourguet, W.; Germain, P.; Gronemeyer, H. Nuclear receptor ligand-binding domains: three-dimensional structures, molecular interactions and

pharmacological implications. Trends in Pharmacological Sciences 2000, 21, 381-388.

Bruning, J. B.; Chalmers, M. J.; Prasad, S.; Busby, S. A.; Kamenecka, T. M.; He, Y.;

Nettles, K. W.; Griffin, P. R. Partial Agonists Activate PPARγ Using a Helix 12 Independent Mechanism. Structure 2007, 15, 1258-1271.

Bryngelson, J. D.; Wolynes, P. G. Spin Glasses and the Statistical Mechanics of Protein Folding. Proceedings of the National Academy of Sciences of the United States of America 1987, 84, 7524-7528.

Brzozowski, A. M.; Pike, A. C. W.; Dauter, Z.; Hubbard, R. E.; Bonn, T.; Engström, O.;

Öhman, L.; Greene, G. L.; Gustafsson, J.; Carlquist, M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 1997, 389, 753-758.

Case, D. A.; Darden, T. A.; Cheatham III, T. E.; Simmerling, C. L.; Wang, J.; Duke, R. E.;

Luo, R.; Merz, K. M.; Pearlman, D. A.; Crowley, M.; Walker, R. C.; Zhang, W.;

Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Wong, K. F.; Paesani, F.; Wu, X.;

Brozell, S.; Tsui, V.; Gohlke, H.; Yang, L.; Tan, C.; Mongan, J.; Hornak, V.; Cui, G.;

Beroza, P.; Mathews, D. H.; Schafmeister, C.; Ross, W. S.; Kollman, P. A. Amber 9. 2006.

Chandra, V.; Huang, P.; Hamuro, Y.; Raghuram, S.; Wang, Y.; Burris, T. P.;

Rastinejad, F. Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature 2008, 456, 350.

Check, J. H. The role of progesterone and the progesterone receptor in cancer.

Expert review of endocrinology & metabolism 2017, 12, 187-197.

Cieplak, P.; Dupradeau, F.; Duan, Y.; Wang, J. Polarization effects in molecular mechanical force fields. Journal of physics. Condensed matter 2009, 21, 333102.

Clark, A. K.; Wilder, J. H.; Grayson, A. W.; Johnson, Q. R.; Lindsay, R. J.; Nellas, R. B.;

Fernandez, E. J.; Shen, T. The Promiscuity of Allosteric Regulation of Nuclear Receptors by Retinoid X Receptor. The Journal of Physical Chemistry B 2016, 120, 8338-8345.

Contreras, A. V.; Torres, N.; Tovar, A. R. PPAR-α as a Key Nutritional and Environmental Sensor for Metabolic Adaptation. Advances in nutrition (Bethesda, Md.) 2013, 4, 439-452.

Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.;

Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic

Molecules. Journal of the American Chemical Society 1995, 117, 5179-5197.

Cotterill, J. V.; Palazzolo, L.; Ridgway, C.; Price, N.; Rorije, E.; Moretto, A.;

Peijnenburg, A.; Eberini, I. Predicting estrogen receptor binding of chemicals using a suite of in silico methods – Complementary approaches of (Q)SAR, molecular docking and molecular dynamics. Toxicology and applied pharmacology 2019, 378, 114630.

Crawford, E. D.; Schellhammer, P. F.; McLeod, D. G.; Moul, J. W.; Higano, C. S.;

Shore, N.; Denis, L.; Iversen, P.; Eisenberger, M. A.; Labrie, F. Androgen Receptor Targeted Treatments of Prostate Cancer: 35 Years of Progress with Antiandrogens. The Journal of urology 2018, 200, 956-966.

Dahlman-Wright, K.; Cavailles, V.; Fuqua, S. A.; Jordan, V. C.; Katzenellenbogen, J. A.;

Korach, K. S.; Maggi, A.; Muramatsu, M.; Parker, M. G.; Gustafsson, J.

International Union of Pharmacology. LXIV. Estrogen Receptors.

Pharmacological reviews 2006, 58, 773-781.

Dasgupta, S.; Lonard, D. M.; O'Malley, B. W. Nuclear Receptor Coactivators: Master Regulators of Human Health and Disease. Annual review of medicine 2014, 65, 279-292.

Daura, X.; van Gunsteren, W. F.; Mark, A. E. Folding–Unfolding Thermodynamics of

From Equilibrium Simulations. PROTEINS: Structure, Function, and Genetics 1999, 34, 269–280.

Davey, R. A.; Grossmann, M. Androgen Receptor Structure, Function and Biology:

From Bench to Bedside. Clinical biochemist reviews 2016, 37, 3-15.

De Bosscher, K.; Desmet, S. J.; Clarisse, D.; Estébanez-Perpiña, E.; Brunsveld, L.

Nuclear receptor crosstalk - defining the mechanisms for therapeutic innovation. Nature reviews. Endocrinology 2020, 16, 363-377.

de Vera, Ian Mitchelle S; Zheng, J.; Novick, S.; Shang, J.; Hughes, T. S.; Brust, R.;

Munoz-Tello, P.; Gardner, W. J.; Marciano, D. P.; Kong, X.; Griffin, P. R.; Kojetin, D. J. Synergistic Regulation of Coregulator/Nuclear Receptor Interaction by Ligand and DNA. Structure 2017, 25, 1506-1518.e4.

D'Orio, B.; Fracassi, A.; Ceru, M. P.; Moreno, S. Targeting PPARalpha in Alzheimer's Disease. Current Alzheimer research 2018, 15, 345.

Dreyer, C.; Krey, G.; Keller, H.; Givel, F.; Helftenbein, G.; Wahli, W. Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors. Cell (Cambridge) 1992, 68, 879-887.

Durrant, J. D.; McCammon, J. A. Molecular dynamics simulations and drug discovery. BMC biology 2011, 9, 71.

Dutertre, M.; Smith, C. L. Molecular Mechanisms of Selective Estrogen Receptor Modulator (SERM) Action. Journal of Pharmacology and Experimental Therapeutics 2000, 295, 431-437.

Ferreiro, D. U.; Hegler, J. A.; Komives, E. A.; Wolynes, P. G. Localizing Frustration in Native Proteins and Protein Assemblies. Proceedings of the National Academy of Sciences of the United States of America 2007, 104, 19819-19824.

Fidaleo, M.; Fanelli, F.; Ceru, M. P.; Moreno, S. Neuroprotective Properties of Peroxisome Proliferator-Activated Receptor Alpha (PPARα) and its Lipid Ligands. Current Medicinal Chemistry 2014, 21, 2803-2821.

Frank, C.; Macias Gonzalez, M.; Oinonen, C.; Dunlop, T. W.; Carlberg, C.

Characterization of DNA Complexes Formed by the Nuclear Receptor

Constitutive Androstane Receptor. Journal of Biological Chemistry 2003, 278, 43299-43310.

Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.;

Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.;

Shenkin, P. S. Glide:  A New Approach for Rapid, Accurate Docking and

Scoring. 1. Method and Assessment of Docking Accuracy. Journal of medicinal chemistry 2004, 47, 1739-1749.

Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. Extra Precision Glide:  Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein−Ligand Complexes. Journal of medicinal chemistry 2006, 49, 6177-6196.

Fujita, K.; Nonomura, N. Role of Androgen Receptor in Prostate Cancer: A Review.

The World Journal of Men's Health 2019, 37, 288-295.

Gampe, J., R T; Montana, V. G.; Lambert, M. H.; Miller, A. B.; Bledsoe, R. K.; Milburn, M. V.; Kliewer, S. A.; Willson, T. M.; Xu, H. E. Asymmetry in the

PPARgamma/RXRalpha crystal structure reveals the molecular basis of

heterodimerization among nuclear receptors. Molecular cell 2000, 5, 545-555.

Genheden, S.; Nilsson, I.; Ryde, U. Binding Affinities of Factor Xa Inhibitors

Estimated by Thermodynamic Integration and MM/GBSA. Journal of chemical information and modeling 2011, 51, 947-958.

Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert opinion on drug discovery 2015, 10, 449-461.

Germain, P.; Staels, B.; Dacquet, C.; Spedding, M.; Laudet, V. Overview of

Nomenclature of Nuclear Receptors. Pharmacological Reviews 2006, 58, 685-704.

Glaría Percaz, E.; Letelier, N. A.; Valledor Fernández, A. Integrating the roles of liver x receptors in inflammation and infection: mechanisms and outcomes. 2020.

Grimm, S. L.; Hartig, S. M.; Edwards, D. P. Progesterone Receptor Signaling Mechanisms. Journal of molecular biology 2016, 428, 3831-3849.

Guedes, I. A.; Pereira, F. S. S.; Dardenne, L. E. Empirical Scoring Functions for Structure-Based Virtual Screening: Applications, Critical Aspects, and Challenges. Frontiers in pharmacology 2018, 9, 1089.

Guvench, O.; MacKerell, A. D. In Comparison of Protein Force Fields for Molecular Dynamics Simulations; Molecular Modeling of Proteins; Humana Press:

Hall, J. M.; McDonnell, D. P.; Korach, K. S. Allosteric Regulation of Estrogen Receptor Structure, Function, and Coactivator Recruitment by Different Estrogen Response Elements. Molecular Endocrinology 2002, 16, 469-486.

Han, C. Update on FXR Biology: Promising Therapeutic Target? International journal of molecular sciences 2018, 19, 2069.

Han, L.; Shen, W.; Bittner, S.; Kraemer, F. B.; Azhar, S. PPARs: regulators of

metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-α. Future Cardiology 2017a, 13, 259-278.

Han, L.; Shen, W.; Bittner, S.; Kraemer, F. B.; Azhar, S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II:

PPAR-β/δ and PPAR-γ. Future Cardiology 2017b, 13, 279-296.

Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J. Y.; Wang, L.; Lupyan, D.; Dahlgren, M. K.; Knight, J. L.; Kaus, J. W.; Cerutti, D. S.; Krilov, G.; Jorgensen, W. L.; Abel, R.; Friesner, R. A. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. Journal of chemical theory and computation 2016, 12, 281-296.

Henriques, J.; Cragnell, C.; Skepö, M. Molecular Dynamics Simulations of Intrinsically Disordered Proteins:

Force Field Evaluation and Comparison with Experiment. Journal of Chemical Theory and Computation 2015, 11, 3420-3431.

Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, Johannes G. E. M LINCS: A linear constraint solver for molecular simulations. Journal of computational chemistry 1997, 18, 1463-1472.

Hockney, R. W. The potential calculation and some applications. Methods in Computational Physics 1970, 9, 136-211.

Hollingsworth, S. A.; Dror, R. O. Molecular Dynamics Simulation for All. Neuron (Cambridge, Mass.) 2018, 99, 1129-1143.

Homeyer, N.; Stoll, F.; Hillisch, A.; Gohlke, H. Binding Free Energy Calculations for Lead Optimization: Assessment of Their Accuracy in an Industrial Drug Design Context. Journal of chemical theory and computation 2014, 10, 3331-3344.

Honig, B.; Nicholls, A. Classical electrostatics in biology and chemistry. Science 1995, 268, 1144-1149.

Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Physical review. A, General physics 1985, 31, 1695-1697.

Hopkins, C. W.; Le Grand, S.; Walker, R. C.; Roitberg, A. E. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. Journal of chemical theory and computation 2015, 11, 1864-1874.

Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C.

Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, structure, function, and

bioinformatics 2006, 65, 712-725.

Hur, E.; Pfaff, S. J.; Payne, E. S.; Grøn, H.; Buehrer, B. M.; Fletterick, R. J. Recognition and Accommodation at the Androgen Receptor Coactivator Binding Interface.

PLoS biology 2004, 2, E274.

Jain, A. N. Scoring Functions for Protein-Ligand Docking. Current protein & peptide science 2006, 7, 407-420.

Janani, C.; Ranjitha Kumari, B. D. PPAR gamma gene – A review. Diabetes &

Metabolic Syndrome: Clinical Research & Reviews 2014, 9, 46-50.

Jo, D. S.; Park, N. Y.; Cho, D. Peroxisome quality control and dysregulated lipid metabolism in neurodegenerative diseases. Experimental & molecular medicine 2020, 52, 1486-1495.

Johnson, Q. R.; Lindsay, R. J.; Nellas, R. B.; Fernandez, E. J.; Shen, T. Mapping

Allostery through Computational Glycine Scanning and Correlation Analysis of Residue–Residue Contacts. Biochemistry 2015, 54, 1534-1541.

Jorgensen, W. L. Special Issue on Polarization. Journal of chemical theory and computation 2007, 3, 1877.

Kang, H. S.; Cho, H.; Lee, J.; Oh, G. T.; Koo, S.; Park, B.; Lee, I.; Choi, H.; Song, D.; Im, S. Metformin stimulates IGFBP-2 gene expression through PPARalpha in diabetic states. Scientific reports 2016, 6, 23665.

Kersten, S.; Wahli, W.; Desvergne, B. Roles of PPARs in health and disease. Nature 2000, 405, 421-424.

Khorasanizadeh, S.; Rastinejad, F. Nuclear-receptor interactions on DNA-response elements. Trends in Biochemical Sciences 2001, 26, 384-390.

Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature reviews. Drug discovery 2004, 3, 935-949.

Kliewer, S. A.; Umesono, K.; Noonan, D. J.; Heyman, R. A. Convergence of 9- cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 1992, 358, 771-774.

Kliewer, S. A.; Goodwin, B.; Willson, T. M. The Nuclear Pregnane X Receptor: A Key Regulator of Xenobiotic Metabolism. Endocrine Reviews 2002, 23, 687-702.

Kmiecik, S.; Kouza, M.; Badaczewska-Dawid, A.; Kloczkowski, A.; Kolinski, A.

Modeling of Protein Structural Flexibility and Large-Scale Dynamics: Coarse-Grained Simulations and Elastic Network Models. International journal of molecular sciences 2018, 19, 3496.

Kojetin, D. J.; Matta-Camacho, E.; Hughes, T. S.; Srinivasan, S.; Nwachukwu, J. C.;

Cavett, V.; Nowak, J.; Chalmers, M. J.; Marciano, D. P.; Kamenecka, T. M.;

Shulman, A. I.; Rance, M.; Griffin, P. R.; Bruning, J. B.; Nettles, K. W. Structural mechanism for signal transduction in RXR nuclear receptor heterodimers.

Nature communications 2015, 6, 8013.

Kollman, P. Free energy calculations: Applications to chemical and biochemical phenomena. Chemical reviews 1993, 93, 2395-2417.

Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.;

Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.;

Cheatham, T. E. Calculating Structures and Free Energies of Complex Molecules:  Combining Molecular Mechanics and Continuum Models.

Accounts of chemical research 2000, 33, 889-897.

Koshland, D. E.; Némethy, G.; Filmer, D. Comparison of Experimental Binding Data and Theoretical Models in Proteins Containing Subunits. Biochemistry 1966, 5, 365-385.

Kuhn, B.; Kollman, P. A. Binding of a Diverse Set of Ligands to Avidin and

Streptavidin:  An Accurate Quantitative Prediction of Their Relative Affinities by a Combination of Molecular Mechanics and Continuum Solvent Models.

Journal of medicinal chemistry 2000, 43, 3786-3791.

Lalwani, N. D.; Alvares, K.; M. Kumudavalli Reddy; Reddy, M. N.; Parikh, I.; Reddy, J.

K. Peroxisome Proliferator-Binding Protein: Identification and Partial Characterization of Nafenopin-, Clofibric Acid-, and Ciprofibrate-Binding

Proteins from Rat Liver. Proceedings of the National Academy of Sciences - PNAS 1987, 84, 5242-5246.

Lalwani, N. D.; Fahl, W. E.; Reddy, J. K. Detection of a nafenopin-binding protein in rat liver cytosol associated with the induction of peroxisome proliferation by hypolipidemic compounds. Biochemical and biophysical research

communications 1983, 116, 388-393.

Laudet, V. Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. Journal of Molecular Endocrinology 1997, 19, 207-226.

le Maire, A.; Grimaldi, M.; Roecklin, D.; Dagnino, S.; Vivat-Hannah, V.; Balaguer, P.;

Bourguet, W. Activation of RXR-PPAR heterodimers by organotin environmental endocrine disruptors. EMBO reports 2009, 10, 367-373.

Leach, A. R. Molecular modelling; Prentice Hall: Harlow ; Munich [u.a.], 2001; . Leo, C.; Chen, J. D. The SRC family of nuclear receptor coactivators. Gene 2000, 245,

1-11.

Li, H.; Xiao, Z.; Quarles, L. D.; Li, W. Osteoporosis: Mechanism, Molecular Target, and Current Status on Drug Development. Current medicinal chemistry 2020, 27.

Li, Y.; Zhang, Y.; Hill, J.; Shen, Q.; Kim, H.; Xu, X.; Hilsenbeck, S. G.; Bissonnette, R. P.;

Lamph, W. W.; Brown, P. H. The Rexinoid LG100268 Prevents the Development of Preinvasive and Invasive Estrogen Receptor–Negative Tumors in MMTV-erbB2 Mice. Clinical cancer research 2007, 13, 6224-6231.

Lindahl, E.; Hess, B.; van der Spoel, D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 2001, 7, 306-317.

Liu, B.; Zhang, T.; Knight, J. K.; Goodwin, J. E. The Glucocorticoid Receptor in Cardiovascular Health and Disease. Cells (Basel, Switzerland) 2019, 8, 1227.

Liu, J. Selective estrogen receptor modulators (SERMS): keys to understanding their function. Menopause (New York, N.Y.) 2020, 27, 1171-1176.

Lu, S.; Li, S.; Zhang, J. Harnessing Allostery: A Novel Approach to Drug Discovery.

Lu, S.; Li, S.; Zhang, J. Harnessing Allostery: A Novel Approach to Drug Discovery.