• Ei tuloksia

The model constructed in this thesis has potential for further analyses in any desired point of operation. As if the electricity prices and fuel costs were known, the model could be used to preliminary electricity production optimizations and investment analyses. The use of hot wind box mentioned during the presentation of the repowering options could be also constructed to the model. As a result, utilization of relatively oxygen rich GT exhaust to the CFB combustion and fluidization purposes could be evaluated. As stated, the use of hot wind box enables complete utilization of the gas turbine exhaust which could lead to maximum plant efficiency.

The validation errors could be minimized with furnace block behaviour improvements gained with computational fluid dynamics integration, for instance. Consequently, all-inclusive analyses including emission control could be performed.

REFERENCES

Apros. 2016. User manual: Apros Overview. VTT & Fortum.

Bartnik, Ryszard. 2013. The Modernization Potential of Gas Turbines in the Coal-Fired Power Industry – Thermal and Economic Effectiveness. Springer Publishing. ISBN 978-1-4471-4860-9.

Basu, P., Debnath A. 2014. Power Plant Instrumentation and Control Handbook: A Guide to Thermal Power Plants. Elsevier Ltd. ISBN 978-0-12-800940-6.

Basu, Prabir. 2015. Circulating Fluidized Bed Boilers – Design, Operation and Maintenance. Springer International Publishing Switzerland. ISBN 978-3-319-06173-3.

Fox B., Bryans L., Flynn D., Jenkins N., Milborrow D., O’Malley M., Watson R., Anaya-Lara O. 2014. Wind Power Integration – Connection and System Operational Aspects, 2nd Edition. The Institution of Engineering and Technology, London, United Kingdom. ISBN 978-1-84919-494-5.

Fraunhofer. 2015. Electricity Production in Germany: week 32/2015. The Fraunhofer Institute for Solar Energy Systems ISE. https://www.energy-charts.de/power.htm

Ganapathy V. 2003. Industrial Boilers and Heat Recovery Steam Generators: Design, Applications and Calculations. ABCO Industries Abilene, Texas, USA. ISBN 0-8247-0814-8.

Habib M., Nemitallah M., Ahmed P., Sharqawy M., Badr H., Muhammad I., Yaqub M.

2015. Experimental Analysis of Oxygen-Methane Combustion Inside a Gas Turbine Reactor Under Various Operating Conditions. Energy Volume 86, pp.105-114

Hellberg, A., Häggmark A., Junsten A., Andersson T., Troger C. 2011. SGT-750 – 37 Mw Gas Turbine. 19th Symposium of the Industrial Application of Gas Turbines Committee, Banff, Alberta. Canada, 2011.

Henderson, Colin. 2014. Increasing the Flexibility of Coal-Fired Power Plant. IEA Clean Coal Centre. ISBN 978-92-9029.

Hotta, Arto. 2010. Foster Wheeler’s Solutions for Large Scale CFB Boiler Technology:

Features and Operational Performance of Lagisza 460 MWe CFB Boiler. Proceedings of the 20th International Conference on Fluidized Bed Combustion, pp. 60-70.

Huhtinen M., Kettunen A., Nurminen P., Pakkanen H. 1994. Höyrykattilatekniikka.

Painatuskeskus Oy. ISBN 951-37-1327-X.

IEA – International Energy Agency. 2012. Oil & Gas Security: Emergency Response of

IEA Countries – Germany. OECD/IEA 2012.

http://www.iea.org/publications/freepublications/publication/GermanyOSS.pdf

Joronen, T., Kovacs, J., Majanne, Y. 2007. Voimalaitosautomaatio. Suomen Automaatioseura ry. ISBN 978-952-5183-32-0.

Karppanen, Erkki. 2000. Advanced control of an industrial circulating fluidized bed boiler using fuzzy logic. University of Oulu. ISBN 951-42-5519-4.

Kettunen A., Kovacs J., Nuortimo K., Parkkonen R., Jäntti T. 2014. The Latest Scale CFB Technology Developments for Flexible Large Scale Utility Power Production. Foster Wheeler Energia Oy, Finland

Khoshkhoo R., Tanassan M. 2010. Feed-Water Repowering in Besat Power Plant:

Technical and Costing Aspects. New Aspects of Fluid Mechanics, Heat transfer and Environment, Taipei, Taiwan. pp. 187-192. ISSN 1792-4596

Koike, T., Noguchi, Y. 1999. Repowering of Thermal Power Plants as Fully-fired Combined Cycle Generating Plants. Chubu Electric Power Co & Hitachi Ltd.

Kovacs, Jeno. 2010. Advances in Coordinated Control. In P. Szentannai (Ed.), Power Plant Applications of Advanced Control Techniques, pp 69-88.

Kurz, Rainer. 2005. Gas Turbine Performance. Proceeding of the Thirty-Fourth Turbomachinery Symposium, Houston, TX.

Kwauk, Mooson. 1992. Fludization Idealized and Bubbleless, with Applications. Science Press and Ellis Horwood Limited. ISBN 7-03-002251-3

Kwauk, M., Ningde, W., Youchu, L., Bingyu, C., & Zhiyuan, S. 1986. Fast Fluidization at ICM. In P. Basu (Ed.), Circulating fluidized bed technology, Toronto, pp. 33-62.

Lappalainen, J., Blom, H., Juslin, K. 2012. Dynamix process simulation as an engineering tool – A case of analysing a coal plant evaporator. VGB Powertech Volume 92 – Issue 1-2/2012, pp. 62-68.

Lehner, M., Tichler R., Steinmüller H., Koppe M. 2014. Power-to-Gas: Technology and Business Models. Springer Publishing. ISBN 978-3-319-03995-4

Metso. 2011. NOx emission study – theory and experiences of selected fluidized bed boilers. Metso Corporation 2011. http://energia.fi/sites/default/files/nox_emissions_study_-theory_and_experiences_of_selected_fluidized_bed_boilers.pdf

MHPS. 2014. Modernization of Combustion Systems. Mitsubishi Hitachi Power Systems

Europe GmbH.

http://www.eu.mhps.com/media/files/broschueren/technologie/GB_Prsp_Modernisierung_

Grossdampferzeuger_3-2014_SCREEN.pdf

MHPS. 2015. MHPS Gas Turbine H-25. Mitsubishi Hitachi Power Systems Europe GmbH.

https://www.mhps.com/en/products/thermal_power_plant/gas_turbin/lineup/pdf/mhps_gas_

turbine_h-25.pdf

Myöhänen K., Hyppänen T., Pikkarainen T., Eriksson T., Hotta A. 2009. Near Zero CO2 Emissions in Coal Firing with Oxy-Fuel Circulating Fluidized Bed Boiler. Chemical Engineering Technology, 32, No. 3, pp. 355-363.

Parkkonen R., Nuortimo K., Jäntti T. 2014. Initial Operating Experiences of the 135 MWe Kladno Lignite Fired Power Plant. Foster Wheeler Energia Oy, Finland.

Raiko, R., Saastamoinen J., Hupa M., Kurki-Suonio I. 2002. Poltto ja palaminen.

Gummerus kirjapaino Oy. ISBN 951-666-604-3.

Razak, A. M. Y. 2007. Industrial Gas Turbines: Performance and Operability. Woodhead Publishing. ISBN 978-1-84-569340-4

Sharma A., Kar S. K. 2015. Energy Sustainability Through Green Energy. Springer India 2015. ISBN 978-81-322-2337-5

Siemens. 2015. SGT-750 Industrial Gas turbine. Siemens AG, 2015. Article-No. PGDG-B10001-00-7600. http://www.energy.siemens.com/hq/pool/hq/power-generation/gas-turbines/sgt-750/SGT-750_brochure.pdf

Smith, Robin M. 2005. Chemical Process: Design and Integration. John Wiley & Sons Ltd, Atrium, England. ISBN 0-471-48681-7

Stanger R., Wall T., Spörl R., Paneru M., Grathwohl S., Weidmann M., Scheffknecht G., McDonald D., Myöhänen K., Ritvanen J., Rahiala S., Hyppänen T., Mletzko J., Kather A., Santos S. 2015. Oxyfuel combustion for CO2 capture in power plants. International Journal of Greenhouse Gas Control, Volume 40, September 2015, pp. 55-125. ISSN 1750-5836

Teir, Sebastian. 2003. Steam Boiler Technology, 2nd Edition. Helsinki University of Technology Department of Mechanical Engineering. ISBN 951-22-6759-4

Wolowics, M., Badyda, K. 2015. Gas Turbine Selection for Feedwater Repowering.

Journal of Power Technologies 95 (4), pp. 302-308.

Wu, H. Zhang, M., Lu, Q., Sun, Y. 2012. The Heat Transfer Coefficients of the Heating Surface of 300 MWe CFB Boiler. Journal of Thermal Science Vol.21, No.4 (2012), pp.

368−376.

Appendix I: Repowering alternatives

Appendix II: Circulating fluidized bed model validation results

Condenser outlet pressure [mbar] 36,20 mbar 36,10 mbar 35,99 mbar

Condenser outlet temperature [C] 36,50 C 35,90 C 35,40 C

Feed water pressure at vessel inlet [bar] 6,41 bar 11,28 bar 16,60 bar Feed water temperature at vessel inlet [bar] 137,00 bar 152,20 bar 163,10 bar Feed water vessel outlet temperature [C] 141,10 C 159,20 C 171,70 C

Flue gas temperature at air preheater inlet [C] 248,0 C 284,9 C 312,0 C Primary air mass flow [kg/s] 40,03 kg/s 57,73 kg/s 71,93 kg/s Primary air pressure at furnace inlet [bar] 1,08 bar 1,08 bar 1,083 bar Primary air temperature at furnace inlet [C] 157,40 C 184,20 C 205,5 C Secondary air mass flow [kg/s] 24,40 kg/s 51,61 kg/s 82,59 kg/s Secondary air pressure at furnace inlet [bar] 1,00 bar 1,00 bar 1,011 bar Secondary air temperature at furnace inlet [C] 162,20 C 184,70 C 200,4 C

Note! Pressure presented in absolute pressure.

Appendix III: Gas turbine model validation results

Generation

19 % 60 % 100 %

Generator output [MW] 7,00 MWe 22,00 MWe 37,00 MWe

Fuel input flow [kg/s] 0,89 kg/s 1,54 kg/s 2,18 kg/s

Fuel thermal energy flow [MW] 39,11 MWth 67,70 MWth 95,73 MWth

Net efficiency [%] 17,90 % 32,50 % 38,65 %

Compressor speed [rpm] 2320 rpm 2941 rpm 2966 rpm

Compressor outlet pressure [bar] 8,72 bar 15,48 bar 21,51 bar Compressor outlet temperature [C] 315,60 C 422,00 C 434,60 C Combustion chamber temperature [C] 992,00 C 1076,6 C 1101,7 C Gas generator turbine outlet pressure [bar] 2,31 bar 3,73 bar 5,09 bar Gas generator turbine outlet temperature [C] 749,40 C 747,90 C 764,70 C

Power turbine speed [rpm] 3000 rpm 3000 rpm 3000 rpm

Exhaust gas mass flow [kg/s] 46,33 kg/s 80,16 kg/s 110,42 kg/s Power turbine outlet pressure [bar] 1,01 bar 1,01 bar 1,01 bar Power turbine outlet temperature [C] 622,28 C 514,50 C 479,59 C

Note! Pressure presented in absolute pressure.