• Ei tuloksia

The implementation of all the components of MGSN can be the rst priority for future work. A scenario of saving energy of sensors using annotated energy usage data could be very interesting to implement. Moreover, MGSN enables data stream to be processed at the rst stage after generation and thus, reduce the amount of load in network trac and storage. It could be an interesting point to simulate and check how much trac MGSN can reduce through classication, clustering and ltering of sensor data.

Also, policy could be enabled to ensure which data to process locally, which data to send on the MGSN cloud or which data to send to the OpenIoT in the internet.

At the same time, making MGSN available in mobile devices through ecient but specic apps, OpenIoT will be more distributed and thus will be more compatible for large scale data collection. Research on the direction of Big Stream and the compatibility of MGSN in that domain can be an interesting area.

Another very exciting scope of research could be recommending sustainable practices or behavior for the end-users. Both external and on-board sensor data will be necessary for such requirement. In such case, it may also be analyzed if future behabior of end-users could be predicted.

REFERENCES

[1] M. Collina, M. Bartolucci, A. Vanelli-Coralli, and G. E. Corazza, Internet of things application layer protocol analysis over error and delay prone links, in Advanced Satellite Multimedia Systems Conference and the 13th Signal Pro-cessing for Space Communications Workshop (ASMS/SPSC), 2014 7th. IEEE, 2014, pp. 398404.

[2] L. Skorin-Kapov, K. Pripuzic, M. Marjanovic, A. Antonic, and I. P. Zarko, En-ergy ecient and quality-driven continuous sensor management for mobile iot applications, in Collaborative Computing: Networking, Applications and Work-sharing (CollaborateCom), 2014 International Conference on. IEEE, 2014, pp.

397406.

[3] M. Marjanovi¢, L. Skorin-Kapov, K. Pripuºi¢, A. Antoni¢, and I. Podnar šarko, Energy-aware and quality-driven sensor management for green mobile crowd sensing, J. Netw. Comput. Appl., vol. 59, no. C, pp. 95108, Jan. 2016.

[Online]. Available: http://dx.doi.org/10.1016/j.jnca.2015.06.023

[4] A. Z. K. Mitra and C. Ahlund, Context-aware qoe modelling, measurement, and prediction in mobile computing systems, IEEE Transactions on Mobile Computing, vol. 14, no. 5, pp. 920936, May 2015.

[5] C. Perera, A. Zaslavsky, P. Christen, A. Salehi, and D. Georgakopoulos, Cap-turing sensor data from mobile phones using global sensor network middleware, in Personal Indoor and Mobile Radio Communications (PIMRC), 2012 IEEE 23rd International Symposium on, Sept 2012, pp. 2429.

[6] P. P. Jayaraman, A. Sinha, W. Sherchan, S. Krishnaswamy, A. Zaslavsky, P. D.

Haghighi, S. Loke, and M. T. Do, Here-n-now: A framework for context-aware mobile crowdsensing. Citeseer.

[7] Unlocking the promise of a connected world: Using the cloud to enable the internet of things, http://www.oracle.com/us/solutions/internetofthings/iot-and-cloud-wp-2686546.pdf, 2015.

[8] P. P. Jayaraman, D. Palmer, A. Zaslavsky, and D. Georgakopoulos, Do-it-yourself digital agriculture applications with semantically enhanced iot plat-form, in Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2015 IEEE Tenth International Conference on, April 2015, pp. 16.

[9] P. P. Jayaraman, D. Palmer, A. Zaslavsky, A. Salehi, and D. Georgakopoulos, Addressing Information Processing Needs of Digital Agriculture with OpenIoT Platform. Cham: Springer International Publishing, 2015, pp. 137152.

[Online]. Available: http://dx.doi.org/10.1007/978-3-319-16546-2_11

[10] Sustainable and ethical enterprise group, http://www.business.mmu.ac.uk/

seeg/whatis.php, accessed: 2016.07.05.

[11] P. C. S. Pongnumkul and N. Surasvadi, Applications of smartphone-based sensors in agriculture: A systematic review of research, vol. 2015, 2015, pp.

195 308:1195 308:18.

[12] M. S. Hossen, A. F. M. S. Kabir, R. H. Khan, and A. Azfar, Interconnection between 802.15.4 devices and ipv6: Implications and existing approaches, CoRR, vol. abs/1002.1146, 2010. [Online]. Available:

http://arxiv.org/abs/1002.1146

[13] S. Yin, Q. Li, and O. Gnawali, Interconnecting wi devices with ieee 802.15.4 devices without using a gateway, in Distributed Computing in Sensor Systems (DCOSS), 2015 International Conference on, June 2015, pp. 127136.

[14] P. Sthapit, Y.-S. Choi, and G.-R. Kwon, A fast association scheme over ieee 802.15. 4 based mobile sensor network.

[15] A. Salehi and K. Aberer, Demo abstract: Gsn, quick and simple sensor network deployment.

[16] K. Aberer, M. Hauswirth, and A. Salehi, The global sensor networks middle-ware for ecient and exible deployment and interconnection of sensor net-works, Tech. Rep., 2006.

[17] J.-P. Calbimonte, S. Sarni, J. Eberle, and K. Aberer, Xgsn: An open-source semantic sensing middleware for the web of things, in 7th International Work-shop on Semantic Sensor Networks, no. EPFL-CONF-200926, 2014.

[18] I. Podnar šarko, K. Pripuºi¢, and M. Serrano, Interoperability and open-source solutions for the internet of things: International workshop, fp7 openiot project, held in conjunction with softcom 2014, split, croatia, september 18, 2014, in-vited papers, Lecture Notes in Computer Science, 2015.

[19] K. Aberer, M. Hauswirth, and A. Salehi, Infrastructure for data processing in large-scale interconnected sensor networks, in Proceedings of the 2007 International Conference on Mobile Data Management, ser. MDM '07.

Washington, DC, USA: IEEE Computer Society, 2007, pp. 198205. [Online].

Available: http://dx.doi.org/10.1109/MDM.2007.36

[20] John Soldatos, Eu openiot project fp7 ict-2011 1.3: Internet-connected ob-jects, http://www.connectedworld.gr/ppts-2014/soldatos.pdf, 2014.

[21] P. P. Jayaraman, C. Perera, D. Georgakopoulos, and A. Zaslavsky, Ecient op-portunistic sensing using mobile collaborative platform mosden, in Collabora-tive Computing: Networking, Applications and Worksharing (Collaboratecom), 2013 9th International Conference Conference on, Oct 2013, pp. 7786.

[22] F. Ciancetta, B. D'Apice, D. Gallo, and C. Landi, Plug-n-play smart sensor based on web service, IEEE Sensors Journal, vol. 7, no. 5, pp. 882889, May 2007.

[23] M. Ruta, F. Scioscia, and E. D. Sciascio, Enabling the semantic web of things:

Framework and architecture, in Semantic Computing (ICSC), 2012 IEEE Sixth International Conference on, Sept 2012, pp. 345347.

[24] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, S. Rajagopalan, A. Tomkins, J. A. Tomlin et al., Semtag and seeker: Boot-strapping the semantic web via automated semantic annotation, in Proceedings of the 12th international conference on World Wide Web. ACM, 2003, pp. 178 186.

[25] V. Uren, P. Cimiano, J. Iria, S. Handschuh, M. Vargas-Vera, E. Motta, and F. Ciravegna, Semantic annotation for knowledge management: Requirements and a survey of the state of the art, Web Semantics: science, services and agents on the World Wide Web, vol. 4, no. 1, pp. 1428, 2006.

[26] L. Reeve and H. Han, Survey of semantic annotation platforms, in Proceedings of the 2005 ACM symposium on Applied computing. ACM, 2005, pp. 1634 1638.

[27] M. Klusch, P. Kapahnke, S. Schulte, F. Lecue, and A. Bernstein, Semantic web service search: a brief survey, KI-Künstliche Intelligenz, pp. 19, 2015.

[28] S. Handschuh and S. Staab, Annotation for the semantic web. IOS Press, 2003, vol. 96.

[29] A. Zaslavsky, C. Perera, and D. Georgakopoulos, Sensing as a service and big data, arXiv preprint arXiv:1301.0159, 2013.

[30] W. S. S. N. I. Group, Semantic sensor network ontology, https://www.w3.

org/2005/Incubator/ssn/ssnx/ssn, accessed: 2016.02.05.

[31] A. Bazzi and A. Zanella, Position based routing in crowd sensing vehicular networks, Ad Hoc Netw., vol. 36, no. P2, pp. 409424, Jan. 2016. [Online].

Available: http://dx.doi.org/10.1016/j.adhoc.2015.06.005

[32] W. Sherchan, P. P. Jayaraman, S. Krishnaswamy, A. Zaslavsky, S. Loke, and A. Sinha, Using on-the-move mining for mobile crowdsensing, in Mobile Data Management (MDM), 2012 IEEE 13th International Conference on. IEEE, 2012, pp. 115124.

[33] T. KINDBERG, People, places, things: Web presence for the real world, Mobile Networks and Applications, vol. 7, no. 5, pp. 365376, 2002.

[34] P. P. Jayaraman, J. B. Gomes, H. L. Nguyen, Z. S. Abdallah, S. Krish-naswamy, and A. Zaslavsky, Cardap: A scalable energy-ecient context aware distributed mobile data analytics platform for the fog, in Advances in Databases and Information Systems: 18th East European Conference, AD-BIS 2014, Ohrid, Macedonia, September 7-10, 2014. Proceedings, vol. 8716.

Springer, 2014, p. 192.

[35] C. Perera, P. P. Jayaraman, A. Zaslavsky, D. Georgakopoulos, and P. Christen, Mosden: An internet of things middleware for resource constrained mobile devices, in 47th Hawaii International Conference on System Sciences (HICSS).

IEEE, 2014, pp. 10531062.

[36] V. Dyo and C. Mascolo, Ecient node discovery in mobile wireless sensor networks, in Distributed Computing in Sensor Systems. Springer, 2008, pp.

478485.

[37] A. Antonic, K. Roankovic, M. Marjanovic, K. Pripuic, and I. P. arko, A mobile crowdsensing ecosystem enabled by a cloud-based publish/subscribe middle-ware, in Future Internet of Things and Cloud (FiCloud), 2014 International Conference on, Aug 2014, pp. 107114.

[38] Ug103.11: Application development fundamentals: Thread, https://www.

silabs.com/Support%20Documents/TechnicalDocs/UG103.11.pdf.

[39] Thread technical overview - berlin, https://threadgroup.org/technology/

downloads, 2015.

[40] J. Eberle, Sustainable and ethical enterprise group, https://github.com/

LSIR/gsn/tree/master/gsn-tiny, accessed: 2016.01.25.

[41] B. Herudek, What is ware? a european internet of things smart city platform, https://www.linkedin.com/pulse/what-ware-european-internet-things-smart-city-platform-herudek, accessed: 2016.09.05.

[42] P. Fernýndez, J. M. Santana, S. Ortega, A. Trujillo, J. P. Suýrez, C. DomÃnguez, J. Santana, and A. Sýnchez, Smartport: A platform for sensor data monitoring in a seaport based on ware, Sensors, vol. 16, no. 3, p. 417, 2016. [Online]. Available: http://www.mdpi.com/1424-8220/16/3/417 [43] S. Di Cola, C. Tran, K.-K. Lau, A. Celesti, and M. Fazio, A

Heterogeneous Approach for Developing Applications with FIWARE GEs.

Cham: Springer International Publishing, 2015, pp. 6579. [Online]. Available:

http://dx.doi.org/10.1007/978-3-319-24072-5_5

[44] F. Ramparany, F. G. Marquez, J. Soriano, and T. Elsaleh, Handling smart environment devices, data and services at the semantic level with the -ware core platform, in Big Data (Big Data), 2014 IEEE International Conference on, Oct 2014, pp. 1420.

[45] Overall ware vision, http://forge.ware.org/plugins/mediawiki/wiki/ware/

index.php/Overall_FIWARE_Vision, accessed: 2016.09.05.

[46] Fiware architecture, http://forge.ware.org/plugins/mediawiki/wiki/ware/

index.php/FI-WARE_Architecture, accessed: 2016.09.05.

[47] T. Zahariadis, A. Papadakis, F. Alvarez, J. Gonzalez, F. Lopez, F. Facca, and Y. Al-Hazmi, Fiware lab: Managing resources and services in a cloud federa-tion supporting future internet applicafedera-tions, in Utility and Cloud Computing (UCC), 2014 IEEE/ACM 7th International Conference on, Dec 2014, pp. 792 799.

[48] M. Fazio, A. Celesti, F. G. Mýrquez, A. Glikson, and M. Villari, Exploiting the ware cloud platform to develop a remote patient monitoring system, in 2015 IEEE Symposium on Computers and Communication (ISCC), July 2015, pp. 264270.

[49] Context management architecture, http://forge.ware.org/plugins/

mediawiki/wiki/ware/index.php/Data/Context_Management_Architecture, accessed: 2016.09.05.

[50] Fiware.openspecication.data.semanticsupport, http://forge.ware.org/

plugins/mediawiki/wiki/ware/index.php/FI-WARE_Architecture, accessed:

2016.09.05.

[51] N. Kefalakis, Openiot - the open source internet of things, https://github.

com/OpenIotOrg/openiot, accessed: 2016.03.18.

[52] R. Hasan, M. M. Hossain, and R. Khan, Aura: An iot based cloud infras-tructure for localized mobile computation outsourcing, in Mobile Cloud Com-puting, Services, and Engineering (MobileCloud), 2015 3rd IEEE International Conference on, March 2015, pp. 183188.

[53] Eugene E. Marinelli, Hyrax: Cloud computing on mobile devices using mapre-duce, Master's thesis, School of Computer Science Carnegie Mellon University, Pittsburgh, PA 15213, September 2009.

[54] Chye Liang Vincent Teo, Hyrax: Crowdsourcing mobile devices to develop proximity-based mobile clouds, Master's thesis, School of Computer Science Carnegie Mellon University, Pittsburgh, PA 15213, August 2012.

[55] K. Mitra, S. Saguna, C. Ahlund, and D. G. Lulea, M2c2: A mobility manage-ment system for mobile cloud computing, in Wireless Communications and Networking Conference (WCNC), 2015 IEEE, March 2015, pp. 16081613.

[56] Additional project information, http://sensesmartcity.org/info2.htm, ac-cessed: 2016.09.12.

MGSN has been developed on Android Studio (1.5.1), Windows 64 Bit. The entire

source code is available on GitHub at https://github.com/m6461/XGSN_MobileAnalytics.

Figure A1.1. OpenIoT Installation

Figure A1.2. OpenIoT Wrapper File Conguration of X-GSN

(continues)

Figure A1.3. OpenIoT Execution Command

Figure A1.4. OpenIoT Query to Show Linked Data from Sensors

(continues)

Figure A1.5. Wrapper Code to Push Sensor Data in OpenIoT from JSON API - 1

(continues)

Figure A1.6. Wrapper Code to Push Sensor Data in OpenIoT from JSON API - 2

(continues)

Figure A1.7. Wrapper Code to Push Sensor Data in OpenIoT from JSON API - 3

(continues)

Figure A1.8. Wrapper Code to Push Sensor Data in OpenIoT from JSON API - 4

(continues)

Figure A1.9. Metadata Information for the JSON API

Figure A2.1. MGSN Code to Mitigate the Internal Resource Problem