• Ei tuloksia

Our next goal related to the motor representation areas is to compare the location of the optimal TMS site for the thenar muscle in stroke patients with the normal variation determined in StudyI. There is an ongoing project at the Kuopio University Hospital to assess the possible changes in motor representation areas after a stroke.

In the project, the aim is to measure ten recovered stroke patients with a lesion on the primary motor cortex using motor fMRI and TMS. So far, three patients have been measured.

As a continuation to Study II, the method combining cortical thickness with functional information provided by TMS will be applied to other patient populations as well. Furthermore, combining fMRI results with cortical thickness analysis and/or with TMS parameters is another application worth investigating to gain more information about different diseases.

The largest and inevitable limitation of StudyIIIwas that the laterality provided

Discussion

by the fMRI could not be validated using other techniques, such as the Wada test, because the study used healthy volunteers. Therefore, we wanted to repeat the study with patients selected for an operative treatment and undergoing the Wada testing.

So far, twelve patients with epilepsy have participated in the study. The patient data provide the information required to compare the results of the LI with those of the Wada test. As another continuation to the study, the fMRI results are used to guide rTMS to study speech and language areas. The goal is to specify which brain areas activated in fMRI are essential to language processing and which are contributory.

Our next project in studying the single-trial functional connectivity is to evaluate the aPCA method with more subjects and with more slices to cover the frontal lobes as well. The frontal areas are known to be responsible for the execution of the motor commands, which should produce interesting differences in functional connectivity patterns between the target and standard events. Furthermore, the aPCA method should be tested with other paradigms and with different inter-stimulus intervals.

9 Summary and Conclusions

In the present study, non-invasive and robust methods to map and study the function of the brain areas related to primary motor functions as well as speech and language were developed. In particular, the usefulness of combinations of different modalities or approaches were assessed in developing new methodologies that either are suitable for use in clinics or provide new tools for research.

The main findings of this thesis can be summarized as follows:

• Navigated TMS combined with MR image normalization can be used to define normal variation in the location of brain motor function.

• The methodology for normalizing the optimal TMS sites presented in this thesis could be used to study the location of functional representation areas of muscles or other functionally active cortical areas, as well as any differences in them caused by disease, learning or experience.

• A combination of navigated TMS and the cortical thickness analysis provides detailed information on neurodegenerative diseases and their influence on various cortical areas.

• A suitable fMRI task battery for defining language laterality for Finnish-speaking subjects combines three different language tasks: word generation, responsive naming and sentence comprehension.

• The language laterality index calculated using the fMRI results is highly dependent on the language task used, and on whether the calculation is based on a single task or on a combination of several tasks.

• Using the augmented PCA method it is possible to analyze single-trial con-nectivity between cortical areas. The method produces reasonable task-level connectivity maps and allows the examination of variability in single-trial connectivity due to changes in subjects’ attention and/or alertness.

Bibliography

[1] Aganj I., Sapiro G., Parikshak N., Madsen S. K., and Thompson P. M., “Measurement of cortical thickness from MRI by minimum line intergrals on soft-classified tissue,”Human Brain Mapping30,3188–3199 (2009).

[2] Aguirre G. K., Zarahn E., and D’Esposito M., “The Variability of Human, BOLD Hemodynamic Responses,”NeuroImage8,360–369 (1998).

[3] Alagona G., Bella R., Ferri R., Carnemolla A., Pappalardo A., Costanzo E., and Pennisi G., “Transcranial magnetic stimulation in Alzheimer disease: motor cortex excitability and cognitive severity,”Neuroscience letters314,57–60 (2001).

[4] Alexander E. and Maciunas R. J., eds., Advanced Neurosurgical Navigation (Thieme Publishing Group, 1999).

[5] Alonso P., Pujol J., Cardoner N., Benlloch L., Deus J., Menchón J. M., Capdevila A., and Vallejo J., “Right prefrontal repetitive transcranial magnetic stimulation in obsessive-compulsive disorder: a double-blind, placebo-controlled study,” American Journal of Psychiatry158,1143–1145 (2001).

[6] Altman D. G.,Practical statistics for medical research(Chapman & Hall, 1991).

[7] Amaro E. J. and Barker G. J., “Study design in fMRI: Basic principles,” Brain and Cognition60,220–232 (2006).

[8] Andersen A. H., Gash D. M., and Avison M. J., “Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework,”

Magnetic Resonance Imaging17,795–815 (1999).

[9] Ashburner J. and Friston K. J., “Unified segmentation,”NeuroImage26,839.851 (2005).

[10] Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hos-pital and Harvard Medical School, Boston, MA, USA, “FreeSurfer,” http://www.

freesurfer.net/(2011).

[11] Bailey C. J., Karhu J., and Ilmoniemi R. J., “Transcranial magnetic stimulation as a tool for cognitive studies,”Scandinavian Journal od Psychology42,297–306 (2001).

[12] Barker A., Jalinous R., and Freeston I., “Non-invasive magnetic stimulation of the human motor cortex,”Lancet325,1106–1107 (1985).

[13] Barta P., Miller M. I., and Qiu A., “A stochastic model for studying the laminar structure of cortex from MRI,”IEEE Transactions on Medical Imaging24,728–742 (2005).

[14] Bashir S., Edwards D., and Pascual-Leone A., “Neuronavigation increases the physio-logic and behavioral effects of low-frequency rTMS of primary motor cortex in healthy subjects,”Brain Topography24,54–64 (2011).

[15] Baumgartner R., Ryner L., Richter W., Summers R., Jarmasz M., and Somorjai R.,

“Comparison of two exploratory data analysis method for fMRI: fuzzy clustering vs.

principal component analysis,”Magnetic Resonance Imaging18,89–94 (2000).

[16] Baumgartner R., Windischberger C., and Moser E., “Quantification in functional magnetic resonance imaging: Fuzzy clustering vs. correlation analysis,” Magnetic Resonance Imaging16,115–125 (1998).

[17] Bear M. F., Connors B. W., and Paradiso M. A., Neuroscience, Exploring the Brain, 3rd ed.

(Lippincott Williams & Wilkins, 2007).

[18] Beckmann C. F., DeLuca M., Devlin J. T., and Smith S. M., “Investigations into resting-state connectivity using independent component analysis,” Phil. Trans. R. Soc. B360, 1001–1013 (2005).

[19] Beckmann C. F. and Smith S. M., “Probabilistic Independent Component Analysis for Functional Magnetic Resonance Imaging,”IEEE Transactions on Medical Imaging23,137–

152 (2004).

[20] Begum T., Mima T., Oga T., Hara H., Satow T., Ikeda A., Nagamine T., Fukuyama H., and Shibasaki H., “Cortical mechanisms of unilateral voluntary motor inhibition in humans,”Neuroscience Research53,428–435 (2005).

[21] Bell A. J. and Sejnowski T. J., “An information-maximization approach to blind separation and blind deconvolution,”Neural Comput7,1129–1159 (1995).

[22] Belliveau J. W., Kennedy D. N., McKinstry R. C., Buchbinder B. R., Weisskoff R. M., Cohen M. S., Vevea J. M., Brady T., and Rosen B. R., “Functional mapping of the human visual-cortex by magnetic-resonance-imaging,”Science254,716–719 (1991).

[23] Benrhardt B. C., Worsley K. J., Besson P., Concha L., Lerch J. P., Evans A. C., and Bernasconi N., “Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: Insights on the relation between mesiotemporal connectivity and cortical atrophy,”NeuroImage42,515–524 (2008).

[24] Binder J. R., “Functional MRI is a valid noninvasive alternative to Wada testing,”Epilepsy

& Behavior20,214–222 (2011).

[25] Birn R. M., Saad Z. S., and Bandettini P. A., “Spatial Heterogeneity of the Nonlinear Dynamics in the FMRI BOLD Response,”NeuroImage14,817–826 (2001).

[26] Biswal B., Yetkin F. Z., Haughton V. M., and Hyde J. S., “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,”Magnetic Resonance in Medicine34,537–541 (1995).

[27] Biswal B. B. and Ulmer J. L., “Blind Source Separation of Multiple Signal Sources of fMRI Data Sets Using Independent Component Analysis,”Journal of Computer Assisted Tomography23,265–271 (1999).

[28] Blamire A. M., Ogawa S., Ugurbil K., Rothman D., McCarthy G., Ellerman J. M., Hyder F., Rattner Z., and Shulman R. G., “Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging,”Proc. Natl. Acad Sci. USA89,11069–11073 (1992).

Bibliography

[29] Bloch F., “Nuclear induction,”Phys. Rev.70,460–474 (1946).

[30] Boroojerdi B., Foltys H., Krings T., Spetzger U., Thron A., and Töpper R., “Localization of the motor hand area using transcranialmagnetic stimulation and functional magnetic resonance imaging,”Clinical Neurophysiology110,699–704 (1999).

[31] Boynton G. M., Engel S. A., Glover G. H., and Heeger D. J., “Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1,”The Journal of Neuroscience16, 4207–4221 (1996).

[32] Buckner R. L., Bandettini P. A., O’Craven K. M., Savoy R. L., Petersen S. E., Raichle M. E., and Rosen B. R., “Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging,”Proc. Natl. Acad. Sci.

USA93,14878–14883 (1996).

[33] Bullmore E., Rabe-Hesketh S., Morris R., Williams S., Gregory L., Gray J., and Brammer M., “Functional magnetic resonance image analysis of a large-scale neurocognitive network,”NeuroImage4,16–33 (1996).

[34] Bullmore E. and Sporns O., “Complex brain networks: graph theoretical analysis of structural and functional systems,”Nature Reviews. Neuroscience10,186–198 (2009).

[35] Buxton R. B., Wong E. C., and Frank L. R., “Dynamics of Blood Flow and Oxygenation Changes During Brain Activation: The Balloon Model,”Magnetic Resonance in Medicine 39,855–864 (1998).

[36] Byrnes M. L., Thickbroom G. W., Phillips B. A., Wilson S. A., and Mastaglia F. L.,

“Physiological studies of the corticomotor projection to the hand after subcortical stroke,”Clinical Neurophysiology110,487–498 (1999).

[37] Cacioppo J. T., Tassinary L. G., and Berntson G. G., eds., Handbook of Psychophysiology, 2. ed. (Cambridge University Press, 2000).

[38] Caclin A. and Fonlupt P., “Functional and effective connectivity in an fMRI study of an auditory-related task,”European Journal of Neuroscience23,2531–2537 (2006).

[39] Calhoun V. D., Adali T., McGinty V. B., Pekar J. J., Watson T. D., and Pearlson G. D.,

“fMRI activation in a visual-perception task: network of areas detected using the general linear model and independent components analysis,”NeuroImage14,1080–1088 (2001).

[40] Caparelli E. C., Tomasi D., and Ernst T., “The effect of small rotations onR2measured with echo planar imaging,”NeuroImage24,1164–1169 (2005).

[41] Carpentier A., Pugh K. R., Westerveld M., Studholme C., Skrinjar O., Thompson J. L., Spencer D. D., and Constable R. T., “Functional MRI of language processing:

dependence on input modality and temporal lobe epilepsy,” Epilepsia 42, 1241–1254 (2001).

[42] Chang C. and Glover G. H., “Time-frequency dynamics of resting-state brain connectiv-ity measured with fMRI,”NeuroImage50,81–98 (2010).

[43] Chang C., Thomason M. E., and Glover G. H., “Mapping and correction of vascular hemodynamic latency in the BOLD signal,”NeuroImage43,90–102 (2008).

[44] Chen R., Cros D., Curra A., Di Lazzaro V., Lefaucheur J.-P., Magistris M. R., Mills K., Rösler K. M., Triggs W. J., Ugawa Y., and Ziemann U., “The clinical diagnostic utility of transcranial magnetic stimulation: Report of an IFCN committee,” Clinical Neurophysiology119,504–532 (2008).

[45] Chen R., Tam A., Bütefisch C., Corwell B., Ziemann U., Rothwell J. C., and Cohen L. G.,

“Intracortical inhibition and facilitation in different representations of the human motor cortex,”Journal of Neurophysiology80,2870–2881 (1998).

[46] Chen Z. J., He Y., Rosa-Neto P., Germann J., and Evans A. C., “Revealing modulat architecture of human brain structural networks by using cortical thickness from MRI,”

cerebral Cortex18,2374–2381 (2008).

[47] Chlebus P., Mikl M., Brazdil M., Pazourkova M., Krupa P., and Rektor I., “fMRI evaluation of hemispheric language dominance using various methods of laterality index calculation,”Experimental brain research179,365–374 (2007).

[48] Chung M. K. and Taylor J., “Diffusion Smoothing on Brain Surface via Finite Element Method,” inIEEE International Symposium on Biomedical Imaging: From Nano to Macro, Vol. 1 (2004), pp. 432–435.

[49] Cicinelli P., Traversa R., Scivoletto G., and Rossini P. M., “Interhemispheric differences of hand muscle representation in human motor cortex,”Muscle & Nerve20,535–542 (1997).

[50] Clark V. P., Maisog J. M., and Haxby J. V., “fMRI Study of Face Perception and Memory Using Random Stimulus Sequences,”Journal of Neurophysiology79,3257–3265 (1998).

[51] Classen J., Knorr U., Werhahn K. J., Schlaug G., Kunesch E., Cohen L. G., Seitz R. J., and Benecke R., “Multimodal output mapping of human central motor representation on different spatial scales,”Journal of Physiology512,163–179 (1998).

[52] Classen J., Witte O. W., Schlaug G., Seitz R. J., Holthausen H., and Benecke R.,

“Epileptic seizures triggered directly by focal transcranial magnetic stimulation,”

Electroencephalography and Clinical Neurophysiology94,19–25 (1995).

[53] Cohen D., “Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer,”Science175,664–666 (1972).

[54] Collins D. L., Neelin P., Peters T. M., and Evans A. C., “Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space,” Journal of Computer Assisted Tomography18,192–205 (1994).

[55] Constable R. T., Pugh K. R., Berroya E., Mencl W. E., Westerveld M., Ni W., and Shankweiler D., “Sentence complexity and input modality effects in sentence comprehension: an fMRI study,”NeuroImage22,11–21 (2004).

[56] Constable R. T. and Spencer D. D., “Repetition Time in Echo Planar Functional MRI,”

Megnatic Resonance in Medicine46,748–755 (2001).

[57] Cordes D., Haughton V., Carew J. D., Arfanakis K., and Maravilla K., “Hierarchical clustering to measure connectivity in fMRI resting-state data,” Magnetic Resonance Imaging20,305–317 (2002).

Bibliography

[58] Cordes D., Turski P. A., and Sorenson J. A., “Compensation of susceptibility-induced signal loss in echo-planar imaging for functional applications,” Magnetic Resonance Imaging18,1055–1068 (2000).

[59] Cowan B. P., Nuclear Magnetic Resonance and Relaxation(Cambridge University Press, Cambridge, 1997).

[60] Cuenod C. A., Bookheimer S. Y., Hertz-Pannier L., Zeffiro T. A., Theodore W. H., and Le Bihan D., “Functional MRI during word generation, using conventional equipment:

a potential tool for language localization in the clinical environment,” Neurology 45, 1821–1827 (1995).

[61] Dale A. M. and Buckner R. L., “Selective Averaging of Rapidly Presented Individual Trials Using fMRI,”Human Brain Mapping5,329–340 (1997).

[62] Danner N., Julkunen P., Könönen M., Säisänen L., Nurkkala J., and Karhu J., “Nav-igated transcranial magnetic stimulation and computed electric field strength reduce stimulator-dependent differences in the motor threshold,”Journal of neuroscience methods 174,116–122 (2008).

[63] de Carvalho M., de Mendonca A., Miranda P. C., Garcia C., and Luis M. L., “Magnetic stimulation in Alzheimer’s disease,”Journal of neurology244,304–307 (1997).

[64] Deblaere K., Backes W. H., Hofman P., Vandemaele P., Boon P. A., Vonck K., Boon P., Troost J., Vermeulen J., Wilmink J., Achten E., and Aldenkamp A., “Developing a comprehensive presurgical functional MRI protocol for patients with intractable temporal lobe epilepsy: a pilot study,”Neuroradiology44,667–673 (2002).

[65] Di Lazzaro V., Oliviero A., Mazzone P., Insola A., Pilato F., Saturno E., Accurso A., Tonali P., and Rothwell J. C., “Comparison of descending volleys evoked by monophasic and biphasic magnetic stimulation of the motor cortex in conscious humans,”Experimental Brain Research141,121–127 (2001).

[66] Di Lazzaro V., Oliviero A., Pilato F., Saturno E., Dileone M., Mazzone P., Insola A., Tonali P. A., and Rothwell J. C., “The physiological basis of transcranial motor cortex stimulation in conscious humans,”Clinical Neurophysiology115,255–266 (2004).

[67] Dodel S., Herrmann J. M., and Geisel T., “Localization of brain activity - blind separation for fMRI data,”Neurocomputing32-33,701–708 (2000).

[68] Du A.-T., Schuff N., Kramer J. H., Rosen H. J., Gorno-Tempini M. L., Rankin K., Miller B. L., and Weiner M. W., “Different regional patterns of cortical thinning in Alzheimer’s disease and frontoparietal dementia,”Brain130,1159–1166 (2007).

[69] Ecker C., Reynaud E., Williams S. C., and Brammer M. J., “Detecting functional nodes in large-scale cortical networks with functional magnetic resonance imaging: A princiapl component analysis of the human visual system,” Human Brain Mapping 28, 817–834 (2007).

[70] Egner T. and Hirsch J., “The neural correlates and functional integration of cognitive control in an Stroop task,”NeuroImage24,539–547 (2005).

[71] Engström M., Ragnehed M., Lundberg P., and Söderfeldt B., “Paradigm design of sensory-motor and language tests in clinical fMRI,”Clinical neurophysiology34,267–277 (2004).

[72] Engvig A., Fjell A. M., Westlye L. T., Moberget T., Sundset O., Larsen V. A., and Walhovd K. B., “Effects of memory training on cortical thickness in the elderly,”NeuroImage52, 1667–1676 (2010).

[73] Epstein C. M., “Transcranial magnetic stimulation: Language function,” Journal of Clinical Neurophysiology15,325–332 (1998).

[74] Epstein C. M., Meador K. J., Loring D. W., Wright R. J., Weissman J. D., Sheppard S., Lah J. J., Puhalovich F., Gaitan L., and Davey K. R., “Localization and characterization of speech arrest during transcranial magnetic stimulation,”Clinical Neurophysiology110, 1073–1079 (1999).

[75] Esposito F., Aragri A., Latorre V., Popolizio T., Scarabino T., Cirillo S., Marciano E., Tedeschi G., and Di Salle F., “Does the default-mode functional connectivity of the brain correlate with working-memory performances?,”Arch Ital Biol.147,11–20 (2009).

[76] Ettinger G. J., Leventon M. E., Grimson W. E. L., Kikinis R., Gugino L., Cote W., Sprung L., Aglio L., Shenton M. E., Potts G., Hernandez V. L., and Alexander E.,

“Experimentation with a transcranial magnetic stimulation system for functional brain mapping,”Medical Image Analysis2,133–142 (1998).

[77] Fair D. A., Cohen A. L., Power J. D., Dosenbach N. U. F., Churh J. A., Miezin F. M., Schlaggar B. L., and Petersen S. E., “Functional brain networks develop from “Local to distributed” organization,”PLOS Computational Biology5,e1000381 (2009).

[78] Ferrarini L., Veer I. M., Baerends E., van Tol M.-J., Renken R. J., van der Wee N. J. A., Veltman D. J., Aleman A., Zitman F. G., Penninx B. W. J. H., van Buchem M. A., Reiber J. H. C., Rombouts S. A. R. B., and Milles J., “Hierarchical functional modularity in the resting-state human brain,”Human Brain Mapping30,2220–2231 (2009).

[79] Ferreri F., Pasqualetti P., Määttä S., Ponzo D., Guerra A., Bressi F., Chiovenda P., del Duca M., Giambattistelli F., Ursini F., Tombini M., Vernieri F., and Rossini P. M., “Motor cortex excitability in Alzheimer’s disease: a transcranial magnetic stimulation follow-up study,”Neuroscience Letters492,94–98 (2011).

[80] Ferreri F., Pauri F., Pasqualetti P., Fini R., Dal Forno G., and Rossini P. M., “Motor cortex excitability in Alzheimer’s disease: a transcranial magnetic stimulation study,”Annals of Neurology53,102–108 (2003).

[81] Fischl B. and Dale A. M., “Measuring the thickness of the human cerebral cortex from magnetic resonance images.,”Proc Natl Acad Sci U S A97,11050–11055 (2000).

[82] Fitzgerald P. B., Hoy K., McQueen S., Maller J. J., Herring S., Segrave R., Bailey M., Been G., Kulkarni J., and Daskalakis Z. J., “A randomized trial of rTMS targeted with MRI based neuro-navigation in treatment-resistant depression,”Neuropsychopharmacology34, 1255–1262 (2009).

Bibliography

[83] Flitman S. S., Grafman J., Wassermann E. M., Cooper V., O’Grady J., Pascual-Leone A., and Hallett M., “Linguistic processing during repetitive transcranial magnetic stimulation,”Neurology50,175–181 (1998).

[84] Foland L. C., Altshuler L. L., Bookheimer S. Y., Eisenberger N., Townsend J., and Thompson P. M., “Evidence for deficient modulation of amygdala response by prefrontal cortex in bipolar mania,”Psychiatry Research Neuroimaging162,27–37 (2008).

[85] Forster M. T., Hattingen E., Senft C., Gasser T., Seifert V., and Szelényi A., “Navigated transcranial magnetic stimulation and functional magnetic resonance imaging -advanced adjuncts in preoperative planning for central region tumors.,”Neurosurgery 68,1317–1324 (2011).

[86] Fox M. D. and Greicius M., “Clinical applications of resting state functional connectiv-ity,”Frontiers in System Neuroscience4,19 (2010).

[87] Frank E., Eichhammer P., Burger J., Zowe M., Landgrebe M., Hajak G., and Langguth B., “Transcranial magnetic stimulation for the treatment of depression: feasibility and results under naturalistic conditions: a retrospective analysis,” European Archives of Psychiatry and Clinical Neuroscience261,261–266 (2011).

[88] Fransson P., Kr ¨uger G., Merbolt K.-D., and Frahm J., “Temporal characteristics of oxygenation-sensitive MRI responses to visual activation in humans,”Magn Reson Med 39,912–929 (1998).

[89] Fransson P., Merboldt K.-D., Petersson K. M., Ingvar M., and Frahm J., “On the effects of spatial filtering - A comparative fMRI study of episodic memory encoding at high and low resolution,”NeuroImage16,977–984 (2002).

[90] Freire L. and Mangin J.-F., “Motion correction algorithms may create spurious brain activations in the absence of subject motion,”NeuroImage14,709–722 (2001).

[91] Friedman L., Kenny J. T., Wise A. L., Wu D., Stuve T. A., Miller D. A., Jesberger J. A., and Lewin J. S., “Brain activation during silent word generation evaluated with functional MRI,”Brain and language64,231–256 (1998).

[92] Friston K., “Causal modelling and brain connectivity in functional magnetic resonance imaging,”PLoS Biology7,e1000033 (2009).

[93] Friston K., Holmes A., Poline J.-B., Grasby P., Williams S., Frackowiak R., and Turner R.,

“Analysis of fMRI time-series revisited,”NeuroImage2,45–53 (1995).

[94] Friston K. J., Chap Statistical Parametric Mapping and Other Analysis of Functional Imaging Data inBrain Mapping: The Methods(Academic Press, 1996).

[95] Friston K. J., Ashburner J. T., Kiebel S. J., Nichols T. E., and Penny W. D., eds.,Statistical Parametric Mapping, The analysis of functional brain images(Academic Press, 2007).

[96] Friston K. J., Ashburner J. T., Kiebel S. J., Nichols T. E., and Penny W. D., eds., Chap 4.

Rigid Body Registration inStatistical Parametric Mapping, The Analysis of functional brain images(Academic Press, 2007).

[97] Friston K. J., Ashburner J. T., Kiebel S. J., Nichols T. E., and Penny W. D., eds., Chap 9. Contrasts and classical inference in Statistical Parametric Mapping, The Analysis of functional brain images(Academic Press, 2007).

[98] Friston K. J., Ashburner J. T., Kiebel S. J., Nichols T. E., and Penny W. D., eds., Chap 12.

Random Effect Analysis inStatistical Parametric Mapping, The Analysis of functional brain images(Academic Press, 2007).

[99] Friston K. J., Buechel C., Fink G. R., Morris J., Rolls E., and Dolan R. J., “Psychophysio-logical and Modulatory Interactions in Neuroimaging,”NeuroImage6,218–229 (1997).

[100] Friston K. J., Fletcher P., Josephs O., Holmes A., Rugg M. D., and Turner R., “Event-Related fMRI: Characterizing Differential Responses,”NeuroImage7,30–40 (1998).

[101] Friston K. J., Frith C., and Frackowiak R. S. J., “Time-dependent changes in effective connectivity measured with PET,”Human Brain Mapping1,69–79 (1993).

[102] Friston K. J., Frith C. D., Liddle P. F., and Frackowiak R. S. J., “Functional connectivity:

The principal-component analysis of large (PET) data sets.,”Journal of Cerebral Blood Flow and Metabolism13,5–14 (1993).

[103] Friston K. J., Josephs O., Rees G., and Turner R., “Nonlinear event-related responses in fMRI,”Magn Reson Med39,41–52 (1998).

[104] Friston K. J., Josephs O., Zarahn E., Holmes A. P., Rouquette S., and Poline J.-B.,

“To Smooth or Not to Smooth? Bias and Efficiency in fMRI Time-Series Analysis,”

NeuroImage12,196–208 (2000).

[105] Friston K. J., Mechelli A., Turner R., and Price C. J., “Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics,”NeuroImage12, 466–477 (2000).

[106] Friston K. J., Zarahn E., Josephs O., Henson R. N. A., and Dale A. M., “Stochastic Designs in Event-Related fMRI,”NeuroImage10,607–619 (1999).

[107] Gadian D. G., NMR and its applications to living systems, second ed. (Oxford Science Publications, 1995).

[108] Gaillard W. D., Balsamo L., Xu B., McKinney C., Papero P. H., Weinstein S., Conry J., Pearl P. L., Sachs B., Sato S., Vezina L. G., Frattali C., and Theodore W. H., “fMRI language task panel improves determination of language dominance,” Neurology 63, 1403–1408 (2004).

[109] Gaillard W. D., Hertz-Pannier L., Mott S. H., Barnett A. S., LeBihan D., and Theodore W. H., “Functional anatomy of cognitive development: fMRI of verbal fluency in children and adults,”Neurology54,180–185 (2000).

[110] Gaillard W. D., Pugliese M., Grandin C. B., Braniecki S. H., Kondapaneni P., Hunter K., Xu B., Petrella J. R., Balsamo L., and Basso G., “Cortical localization of reading in normal children: an fMRI language study,”Neurology57,47–54 (2001).

[111] Geissler A., Lanzanberger R., Barth M., Tahamtan A. R., Milakara D., Gartus A., and Beisteiner R., “Influence of fMRI smoothing procedures on replicability of fine scale motor localization,”NeuroImage24,323–331 (2005).

Bibliography

[112] Genovese C. R., Lazar N. A., and Nichols T., “Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate,” NeuroImage 15, 870–878 (2002).

[113] Gevins A., Smith M. E., McEvoy L. K., Leong H., and Le J., “Electroencephalographic imaging of higher brain function,”Phil. Trans. R. Soc. Lond. B354,1125–1134 (1999).

[114] Gholipour A., Kehtarnavaz N., Briggs R., Devous M., and Gopinath K., “Brain functional localization: A survey of image registration techniques,” IEEE Transactions on Medical Imaging26,427–451 (2007).

[115] Glover G. H., “Deconvolution of Impulse Response in Event-Related BOLD fMRI,”

NeuroImage9,416–429 (1999).

[116] Goebel R., Roebroeck A., Kim D.-S., and Formisano E., “Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping,”Magnetic Resonance Imaging21,1251–1261 (2003).

[117] Golay X., Kollias S., Stoll G., Meier D., Valavanis A., and Boesiger P., “A new correlation-based fuzzy logic clustering algorithm for FMRI,” Magnetic Resonance in Medicine40, 249–260 (1998).

[118] Gössl C., Fahrmeir L., and Auer D. P., “Bayesian Modeling of the Hemodynamic Response Function in BOLD fMRI,”NeuroImage14,140–148 (2001).

[119] Granger C. W. J., “Investigating causal relations by econometric models and cross-spectral methods,”Econometrica37,424–438 (1969).

[120] Gretton A., Belitski A., Murayama Y., Schölkopf B., and Logothetis N., “The effect of artifacts on dependence measurement in fMRI,”Magnetic Resonance Imaging24,401–409 (2006).

[121] Guye M., Bartolomei F., and Ranjeva J.-P., “Imaging structural and functional connectivity: towards a unified definition of human brain organization,”Current Opinion in Neurology21,393–403 (2008).

[122] Haacke E. M., Brown R. W., Thompson M. R., and Venkatesan R., Magnetic Resonance Imaging - Physical Principles and Sequence Desing(A John Wiley & sons, Inc., Publication, 1999).

[123] Hallett M., “Transcranial magnetic stimulation: A primer,”Neuron55,187–199 (2007).

[124] Hämäläinen M., Hari R., Ilmoniemi R. J., Knuutila J., and Lounasmaa O. V., “Magne-toencephalography – theory, instrumentation, and applications to noninvasive studies

[124] Hämäläinen M., Hari R., Ilmoniemi R. J., Knuutila J., and Lounasmaa O. V., “Magne-toencephalography – theory, instrumentation, and applications to noninvasive studies