• Ei tuloksia

4.2 Evaluation of the main findings

4.2.3 Effects of forest conservation scenarios and thinning regimes on forest volume

An increase in forest conservation area by 10 or 20% in Finland increased the volume growth, carbon stock (in trees and soil) and amount of deadwood, regardless of climate applied, unlike timber production. From the climate change point of view, increased volume growth, and subsequent carbon sequestration, would provide useful means for mitigation of climate change. Over many decades, Finnish forests have acted as substantial carbon sinks (in trees and soil) (Liski et al. 2006). This is because the annual increment in volume of growing stock has been substantially higher than removals. On average, the annual net removal of carbon dioxide from the atmosphere by Finnish forests is approximately 30 million tons of CO2, representing 60% of the total emissions for the whole country (Natural Resources Institute 2017). However, it should be considered that higher amount of growing stock, compared to the current, implies more volume stock at risk for different natural disturbances.

On the other hand, a decrease in the amount of harvested timber may also affect the mitigation potential of the forests if less wood-based material would be available for substitution of fossil-based materials and energy. For example, Leppänen et al. (2000) stated that increasing forest conservation areas under the current climate would reduce wood availability for forest industries. On the other hand, based on a studies by Hynynen et al.

(2015) and Heinonen et al. (2018), there is potential to increase simultaneously annual removals by applying more intensive forest management, such as increase in forest fertilization and use of improved seedlings stock. From the forest owner point of view, possible compensation of economic losses for increase in forest conservation areas (Mökkönen et al. 2009; Öhman et al. 2011; Triviño et al. 2015) may help to balance the bioeconomy and biodiversity targets at the national level.

Intensive extraction of forest biomass may also have significant consequences on different environmental functions and services (Eyvindson et al. 2018; Pohjanmies et al.

2017). Several studies have indicated trade-offs between intensifying forest biomass harvesting, and maintaining forest biodiversity (Mönkkönen et al. 2014), and recreational values (Verkerk et al. 2014; Eräjää et al. 2010). In addition, Heinonen et al. (2017) found trade-offs between increase in timber removal and amount of deadwood and carbon balance of Finnish forestry during the coming 90 year.

Regardless of region and climate applied, maintenance of 20% lower growing stock, compared to the baseline thinning regime, resulted in this work the highest total amount of deadwood due to increase in logging residues (i.e. coarse roots, branches and stumps), which were left on site. This is also advantage for some deadwood dependent species (Nordén et al.

2004; Selonen et al. 2005; Küffer et al. 2008). The future changes in forest structure (age and tree species) and severity of climate change affect together habitat availability for deadwood-associated species (see e.g., Mazziotta et al. 2016). Therefore, strategies aiming to both enhance forest resilience and integrate simultaneously different ecosystem services are highly needed for sustainable forest management (Repo et al. 2015; Triviño et al. 2017).

4.3 Conclusions

Based on the findings of this work, the impacts of different climate change projections on volume growth, carbon stock, timber yield, economic profitability and amount of deadwood varied largely depending on geographical region, tree species preferences, and severity of climate change projections. The degree of differences in the responses of tree species and boreal regions increased along with the severity of climate change. In simulations, the use of individual GCMs, such as HadGEM2-ES RCP8.5 and GFDL-CM3 RCP8.5, affected the studied variables more than the use of the multi-model means, RCP4.5 and RCP8.5 projections. The positive impacts of climate change were larger in the north regardless of tree species. In southern Finland, the severe climate change projections, such as those predicted by GDFL-CM3 RCP8.5, most likely would create suboptimal growing conditions for Norway spruce and partially Scots pine, unlike Silver birch. In general, preferring a certain tree species in forest regeneration affected the tree species proportion more than did the climate change projection with the exception of Norway spruce in the south.

The forest productivity and carbon stock are greatly affected by current forest structure (age and species composition), severity of climate change, and forest management. Based on this work, the volume of growing stock will increase in Finland by 2100 even under the current climate (up to 18%), but more under the changing climate (up to 37%), depending on

climate change projection) under the baseline management and conservation scenario. This is because the harvested amount of timber was on average about 60% of the total volume growth of growing stock, regardless of climate applied.

In the future, better understanding on how different ecosystem services are affected by alternative forest management strategies and climate change projections is needed for sustainable management and utilization of forest resources (see e.g., Seidl et al. 2007;

Kellomäki et al. 2008; Seidl and Lexer 2013; Kindermann et al. 2013). In further studies, it also should be considered increasing risks to forests by various abiotic and biotic forest damages under climate change (see e.g., Reyer et al. 2017). Furthermore, impact studies need to consider also several climate change projections, representing different GCMs and RCPs, respectively, to consider the large uncertainties related to climate change and its impacts on forests and forestry. Evaluation of the economic impacts of climate change and management strategies over a longer period also involves considerable uncertainties, for instance, due to possible changes in timber prices and management costs and the interest rate used in calculations. By considering such uncertainties would be needed in decision making.

An increase in forest conservation area in Finland nowadays may increase the volume growth, carbon stock, and amount of deadwood in forests, unlike timber production. This would imply less forest biomass available for the bioeconomy and subsequently substituting fossil-based materials and energy unless the intensity of forest management is not increased simultaneously on forestland assigned for wood production. Currently, there is pressure to increase forest biomass harvests in the future to meet the increasing wood demands by the forest-based bioeconomy. However, this should be done in a sustainable way by maintaining other ecosystem services. Therefore, management strategies aiming to simultaneously enhance forest resilience and to provide in a sustainable way different ecosystem services are highly needed. For example, favoring mixtures of conifers and broadleaves, and modifying site-specific cultivation of different tree species and thinning practices and using shorter rotation if needed, may help to adapt to climate change in boreal forests and forestry.

However, depending on the region, tree species, and severity of climate change, various adaptive measures may be needed to utilize the positive impacts and minimize the harmful impacts of climate change in boreal conditions. By using proper adaptive measures, at least partially it may be counteracted the predicted reduction in forest growth and harmful impacts to different ecosystem services under severe climate change.

REFERENCES

Aalto J., Pirinen P., Heikkinen J., Venäläinen A. (2013). Spatial interpolation of monthly climate data for Finland: Comparing the performance of kriging and generalized additive models. Theory Applied Climatology 112: 99–111.

http://doi:10.1007/s00704-012-0716-9

Ahlström A., Schurgers G., Arneth A., Smith B. (2012). Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections.

Environmental Research Letter 7:044008.

http://doi:10.1088/1748-9326/7/4/044008

Äijälä O., Koistinen A., Sved J., Vanhatalo K., Väisänen P. (edit) (2014). Recommendations for good forest management. (In Finnish: Hyvän metsänhoidon suositukset – metsänhoito.) Publications of the Forestry Development Centre, Tapio, Metsäkustannus Oy, Helsinki, Finland. [In Finnish.]

Allen C.D., Macalady A.K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., Kitzberger T., Rigling A., Breshears D.D., Hogg E.H., Gonzalez P., Fensham R., Zhang Z., Castro J., Demidova N., Lim J.H., Allard G., Running S.W., Semerci A., Cobb N.

(2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259:660-684.

http://doi:10.1016/j.foreco.2009.09.001

Berger A.L., Palik B., D'Amato A.W., Fraver S., Bradford J.B., Nislow K., King D., Brooks R. (2013). Ecological impacts of energy-wood harvests: lessons from whole-tree harvesting and natural disturbance. Journal of Forestry 111(2): 139-153.

https://doi.org/10.5849/jof.12-020

Bergh J., Freeman M., Sigurdsson B., Kellomäki S., Laitinen K., Niinistö S., Peltola H., Linder S. (2003). Modelling the short-term effects of climate change on the productivity of selected tree species in Nordic countries. Forest Ecology and Management 183(1-3):327-340.

https://doi.org/10.1016/S0378-1127(03)00117-8

Biber P., Borges J.G., Moshammer R., Barreiro S., Botequim B., Brodrechtová Y., Brukas V., Chirici G., Cordero-Debets R., Corrigan E., Eriksson, L.O., Favero M., Galev E., Garcia-Gonzola J., Hengeveld G., Kavaliauskas M., Marchetti M., Marques S., Mozgeris G., Navarátil R., Nieuwenhuis M., Orazio C., Paligorov I., Pettenella D., Sedmák R., Smre ček R., Stanislovaitis A., Tomé M., Turbins R., Tuček J., Vizzarri M., Wallin I., Pretzsch H., Sallnäs O. (2015). How sensitive are ecosystem services in European forest landscapes to silvicultural treatment?. Forests 6(5): 1666-1695.

http://doi:10.3390/f6051666

Briceño-Elizondo E., Garcia-Gonzalo J., Peltola H., Matala J., Kellomäki S. (2006 a).

Sensitivity of growth of Scots pine, Norway spruce, and silver birch to climate change

and forest management in boreal conditions. Forest Ecology and Management 232, 152–167.

https://doi.org/10.1016/j.foreco.2006.05.062

Briceño-Elizondo E., Garcia-Gonzalo J., Peltola H., Kellomäki S. (2006 b). Carbon stocks and timber yield in two boreal forest ecosystems under current and changing climatic conditions subjected to varying management regimes. Environmental Science and Policy 9:237-252.

http://doi:10.1016/j.envsci.2005.12.003

Bottalico F., Pesola L., Vizzarri M., Antonello L., Barbati A., Chirici G., Corona P., Cullotta S., Garfì V., Giannico V., Lafortezza R., Lombardi F., Marchetti M., Nocentini S., Riccioli F., Travaglini D., Sallustio L. (2016). Modeling the influence of alternative forest management scenarios on wood production and carbon storage: a case study in the Mediterranean region. Environmental Research 144: 72-87.

https://doi.org/10.1016/j.envres.2015.10.025

COM/2014/0015 (2014). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee of the Regions. A policy framework for climate and energy in the period from 2020 to 2030 /*COM/2014/015 final/.

http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52014DC0015. Accessed 6 May 2018

Ellsworth D.S., Thomas R., Crous K.Y., Palmroth S., Ward E., Maier C., Delucia E., Oren R. (2012). Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: A synthesis from Duke FACE. Global Change Biology 18:223-242.

http://doi:10.1111/j.1365-2486.2011.02505.x

Eräjää S., Halme P., Kotiaho J.S., Markkanen, A., Toivanen T. (2010). The volume and composition of dead wood on traditional and forest fuel harvested clear-cuts. Silva Fennica 44.

https://doi.org/10.14214/sf.150

European Commission (2010). Options for an EU vision and target for biodiversity beyond 2010. Communication from the commission to the European Parliament, the Council, the European Economic and Social Committee and Committee of the Regions COM (2010)4 fin. European Commission. Brussels

European Parliament (2016). European Parliament resolution of 2 February 2016 on the mid-term review of the EU's Biodiversity Strategy (2015/2137(INI)).

Eyvindson K., Repo R., Mönkkönen M. (2018). Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy. Forest Policy and Economics 92: 119-127.

https://doi.org/10.1016/j.forpol.2018.04.009

Felton A., Nilsson U., Sonesson J., Felton A.M., Roberge J.-M., Ranius T., Ahlström M., Bergh J., Björkman C., Boberg J.,Drössler L., Fahlvik N., Gong P., Holmström E. (2016).

Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden. Ambio 2016, 45, 124–139.

https://doi.org/10.1007/s13280-015-0749-2

Finnish Forest Research Institute (2014). Statistical yearbook of forestry. Finnish Forest Research Institute, Helsinki, Finland. Vammalan Kirjapaino Oy, Sastamala, Finland.

Frank S., Böttcher H., Gusti M., Havlík P., Klaassen G., Kindermann G., Obersteiner M., (2016). Dynamics of the land use, land use change, and forestry sink in the European Union: the impacts of energy and climate targets for 2030. Climate Change 138: 253–

266.

https://doi.org/10.1007/s10584-016-1729-7

Garcia-Gonzalo J., Peltola H., Briceño-Elizondo E., Kellomäki S. (2007 a). Changed thinning regimes may increase carbon stock under climate change: A case study from a Finnish boreal forest. Climatic Change 81: 431–454l.

https://doi.org/10.1007/s10584-006-9149-8

Garcia-Gonzalo J., Peltola H., Briceño-Elizondo E., Kellomäki S. (2007 b). Effects of climate change and management on timber yield in boreal forests, with economic implications:

A case study. Ecological Modelling 209: 220–234.

https://doi.org/10.1016/j.ecolmodel.2007.06.021

Ge Z.M., Zhou X., Kellomäki S., Wang K.Y., Peltola H., Väisänen H., Strandman H. (2010).

Effects of changing climate on water and nitrogen availability with implications on the productivity of Norway spruce stands in southern Finland. Ecological and Modelling 221 (13–14): 1731–1743.

http://doi:10.1016/j.ecolmodel. 2010.03.017

Ge Z.M., Kellomäki S., Peltola H., Zhou X., Väisänen H. (2013 a). Adaptive management to climate change for Norway spruce forests along a regional gradient in Finland. Climate Change 118(2): 275–289.

http://doi:10.1007/s10584-012-0656-5.

Ge Z.M., Kellomäki S., Peltola H., Zhou X., Väisänen H., Strandman H. (2013 b). Impacts of climate change on primary production and carbon sequestration of boreal Norway spruce forests: Finland as a model. Climate Change 118(2): 259–273.

http://doi:10.1007/s10584-012-0607-1

González de Andrés E., Seely B., Blanco J.A., Imbert B.I., Lo Y.-H., Castillo, F.J. (2017).

Increased complementarity in water-limited environments in Scots pine and European each mixtures under climate change. Ecohydrology 10: e1810.

https://doi.org/10.1002/eco.1810

Granda E, Camarero J.J, Gimeno T.E, Martínez-Fernández J, Valladares F. (2013). Intensity and timing of warming and drought differentially affect growth patterns of co-occurring Mediterranean tree species. European Journal of Forest Research 132(3):469-480 http://doi:10.1007/s10342-013-0687-0

Hanewinkel M., Cullmann D. A., Schelhaas M.J., Nabuurs G.J., Zimmermann N.E. (2013).

Climate change may cause severe loss in the economic value of European forestland.

Nature Climate Change 3(3): 203.

http://doi.org/10.1038/NCLIMATE1687

Heinonen T., Pukkala T., Mehtätalo L., Asikainen A., Kangas J., Peltola, H. (2017). Scenario analyses for the effects of harvesting intensity on development of forest resources, timber supply, carbon balance and biodiversity of Finnish forestry. Forest Policy and Economics 80: 80-98.

http://dx.doi.org/10.1016/j.forpol.2017.03.011

Heinonen T., Pukkala T., Asikainen A., Peltola H. (2018). Scenario analyses on the effects of fertilization, improved regeneration material, and ditch network maintenance on timber production of Finnish forests. European Journal of Forest Research 137, no. 1: 93-107.

https://doi.org/10.1007/s10342-017-1093-9

Henttonen H.M, Mäkinen H., Heiskanen J., Peltoniemi M., Lauren A., Hordo M. (2015).

Response of radial increment variation of Scots pine to temperature, precipitation and soil water content along a latitudinal gradient across Finland and Estonia. Agricultural and Forest Meteorology 198-199:294-308.

https://doi.org/10.1016/j.agrformet.2014.09.004

Honkaniemi J., Lehtonen M., Väisänen H., Peltola H. (2017). Effects of wood decay by Heterobasidion annosum on the vulnerability of Norway spruce stands to wind damage:

a mechanistic modelling approach. Canadian Journal of Forest Research 47(6): 777-787.

https://doi.org/10.1139/cjfr-2016-0505

Hynynen J, Ojansuu R, Hökka H, Siipilehto J, Salminen H, Haapala P. (2002). Models for predicting stand development in MELA System. Finnish Forest Research Institute Research Paper 835. 116 p. ISBN 951-40-1815-X.ISSN 0358-4283.

Hynynen J., Salminen H., Ahtikoski A., Huuskonen S., Ojansuu R., Siipilehto J., Lehtonen M., Eerikäinen K. (2015). Long-term impacts of forest management on biomass supply and forest resource development: a scenario analysis for Finland. European Journal of Forest Research. 134(3): 415-431.

https://doi.org/10.1007/s10342-014-0860-0

Hyvönen R., Ågren G.I., Linder S., Persson T., Cotrufo M.F., Ekblad A., Freeman M., Grelle A., Janssens I.A., Jarvis P.G., Kellomäki S., Lindroth A., Loustau D., Lundmark T., Norby R.J., Oren R., Pilegaard K., Ryan M.G., Sigurdsson B.D., Strömgren M., van Oijen M., Wallin G. (2007). The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: A literature review. New Phytologist 173:463-480.

http://doi:10.1111/j.1469- 8137.2007.01967.x. PMID:17244042

Ikonen V.-P., Kilpeläinen A., Zubizarreta-Gerendiain A., Strandman H., Asikainen A., Venäläinen A., Kaurola J., Kangas J., Peltola H. (2017). Regional risks of wind damage in boreal forests under changing management and climate projections. Canadian Journal of Forest Research 47:1632–1645.

http://doi.org/10.1139/cjfr-2017-0183

Junninen K., Komonen A. (2011). Conservation biology of boreal polypores: a review.

Biological Conservation 144: 11-20

https://doi.org/10.1016/j.biocon.2010.07.010

Jyske T., Hölttä T., Mäkinen H., Nöjd P., Lumme I., Spiecker H. (2010). The effect of artificially induced drought on radial increment and wood properties of Norway spruce.

Tree Physiology 30:103-115.

http://doi:10.1093/treephys/tpp099. PMID:19955191

Kellomäki S., Rouvinen I., Peltola H., Strandman H., Steinbrecher R. (2001). Impact of global warming on the tree species composition of boreal forests in Finland and effects on emissions of isoprenoids. Global Change Biology 7:531-544.

https://doi.org/10.1046/j.1365-2486.2001.00414.x

Kellomäki S., Strandman H., Nuutinen T., Peltola H., Korhonen K.T., Väisänen H. (2005).

Adaptation of forest ecosystems, forests and forestry to climate change. FINADAPT Working Paper 4. Finnish Environmental Institute Mimeographs 334.

Kellomäki S., Peltola H., Nuutinen T., Korhonen K.T., Strandman H. (2008). Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Philosophical Transactions of the Royal Society B 363:2341-2351.

http://doi:10.1098/rstb.2007.2204. PMID:18024332

Kellomäki S., Strandman H., Heinonen T., Asikainen A., Venäläinen A., Peltola H. (2018).

Temporal and spatial change in diameter growth of boreal Scots pine, Norway spruce and birch under recent-generation (CMIP5) global climate model projections for the 21st century Forests 9:118.

https://doi.org/10.3390/f9030118

Kindermann G.E., Schörghuber S., Linkosalo T., Sanchez A., Rammer W., Seidl R., Lexer M.J.(2013). Potential stocks and increments of woody biomass in the European Union under different management and climate scenarios. Carbon Balance Management 8:2.

http://doi:10.1186/1750-0680-8-2.

Kienast F. (1987) FORECE—A forest succession model for southern central Europe. Oak Ridge National Laboratory. Environmental Science Division. Publication No. 2989:1–73 Kolström M., Lindner M., Vilén T., Maroschek M., Seidl R., Lexer M.J., Netherer S.,

Kremer A., Delzon S., Barbati A., Marchetti M., Corona P. (2011). Reviewing the

science and implementation of climate change adaptation measures in European forestry. Forests 2: 961–982.

http://doi:10.3390/f2040961

Küffer N., Gillet F., Senn-Irlet B., Aragno M., Job D. (2008). Ecological determinants of fungal diversity on dead wood in European forests. Fungal Divers 30: 83–95.

Lehtonen I., Kämäräinen M., Gregow H., Venäläinen A., Peltola, H. (2016 a). Heavy snow loads in Finnish forests respond regionally asymmetrically to projected climate change.

Natural Hazards Earth System Sciences 16: 2259–2271.

http://doi:10.5194/nhess-16-2259-2016

Lehtonen I., Venäläinen A., Kämäräinen M., Peltola H., Gregow H. (2016 b). Risk of large-scale fires in boreal forests of Finland under changing climate. Natural Hazards and Earth System Sciences 16: 239–253.

http://doi:10.5194/nhess-16-239-2016

Leppänen J., Linden M., Uusivuori J., Toropainen M., Pajuoja H. (2000). Metsien suojelun taloudelliset ja sosiaaliset vaikutukset.

http://urn.fi/URN:ISBN:951-40-1735-8

Lexer M.J., Hönninger K., Scheifinger H., Matulla C., Groll N., Kromp-Kolb, H., Englisch, M. (2002). The sensitivity of Austrian forests to scenarios of climatic change: a large-scale risk assessment based on a modified gap model and forest inventory data. Forest Ecology and Management 162(1): 53-72.

https://doi.org/10.1016/S0378-1127(02)00050-6

Lindner M., Maroschek M., Netherer S., Kremer A., Barbati A., Garcia-Gonzalo J., Seidl R., Delzon S., Corona P., Kolström M., Lexer M.J., Marchetti M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259:698-709.

http://doi:10.1016/j.foreco.2009.09.023

Lindner M., Fitzgerald J.B., Zimmermann N.E., Reyer C., Delzon S., van der Maaten E., Schelhaas M.J., Lasch P., Eggers J., van der Maaten-Theunissen M., Suckow F., Psomas A., Poulter B., Hanewinkel M. (2014). Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management?

Journal of Environmental Management 146:69–83.

https://doi.org/10.1016/j.jenvman.2014.07.030

Liski J., Pussinen A., Pingoud K., Mäkipää R., Karjalainen T. (2001). Which rotation length is favorable to carbon sequestration? Canadian Journal of forest Research 31:

2004-2013.

http://doi.org/10.1139/cjfr-31-11-2004

Liski J., Lehtonen A., Palosuo T., Peltoniemi M., Eggers T., Muukkonen P. Mäkipää R.

(2006). Carbon accumulation in Finland's forests 1922-2004 – an estimate obtained by combination of forest inventory data with modelling of biomass, litter and soil. Annals of Forest Science 63(7): 687-697.

http://doi.org/10.1051/forest:2006049

Madsen M.S., Langen P.L., Boberg F., Christense J.H. (2017). Inflated uncertainty in multimodel-based regional climate projections. Geophysical Research Letters 44:11606-11613.

http://doi.org/10.1002/2017GL075627

Mäkinen H, Nöjd P, Mielikäinen K (2000). Climatic signal in annual growth variation of Norway spruce (Picea abies) along a transect from central Finland to the Arctic timberline. Canadian Journal for Research 30(5):769-777.

http://doi.org/10.1139/x00-005

Mäkinen H, Nöjd P., Mielikäinen K. (2001). Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce [Picea abies (L.) Karst.] in southern Finland. Trees 15:177-185.

http://doi:10.1007/s004680100089

Mäkinen H, Nöjd P, Kahle H-P, Neuman U, Tveite B, Mielikäinen K, Röhle H, Spiecker H (2002). Radial growth of Norway spruce (Picea abies L. Karst) across latitudinal and altitudinal gradients in central and northern Europe. For Ecol Manag 17:243-259.

http://doi.org/10.1016/S0378-1127(01)00786-1

Mazziotta A., Mönkkönen M., Strandman H.J., Routa J., Tikkanen O.P., Kellomäki S.

(2014). Modeling the effects of climate change and management on the deadwood dynamics in boreal forest plantations. European Journal of Forest Research 133:405–

421.

http://doi.org/10.1007/s10342-013-0773-3

Mazziotta A., Triviño M., Tikkanen O.P., Kouki J., Strandman H., Mönkkönen M. (2016).

Habitat associations drive species vulnerability to climate change in boreal forests.

Climate Change 135: 585–595.

https://doi.org/10.1007/s10584-015-1591-z

Ministry of Employment and the Economy (2014). Energy and Climate Roadmap 2050-Report of the parliamentary Committee on Energy and Climate Issues on 16 October 2014. Energy and the climate 50/2014, Finland. ISBN 978-952-227-906-4.75 p

http://tem.fi/document/1410877/3437254/Energy+and+Climate+

Roadmap+2050+14112014.pdf [Cited 22 July 2018].

Mönkkönen M., Ylisirniö A.L., Hämäläinen T. (2009). Ecological efficiency of voluntary conservation of boreal-forest biodiversity. Conservation Biology 23:339–347.

http://doi:10.1111/j.1523-1739.2008.01082.x. PMID:18983601

Mönkkönen M., Reunanen P., Kotiaho J.S., Juutinen A., Tikkanen O. P., Kouki J. (2011).

Cost-effective strategies to conserve boreal forest biodiversity and long-term landscape-level maintenance of habitats. European Journal of Forest Research 130(5): 717-727.

https://doi.org/10.1007/s10342-010-0461-5

Mönkkönen M., Juutinen A., Mazziotta A., Miettinen K., Podkopaev D., Reunanen P., Salminen H., Tikkanen O.P. (2014). Spatially dynamic forest management to sustain biodiverstiy and economic returns. Journal of Environmental Management 134: 80–89.

https://doi.org/10.1016/j.jenvman.2013.12.021

Müller J., Bütler R. (2010). A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. European Journal of Forest Research 129: 981–992.

https://doi.org/10.1007/s10342-010-0400-5

Natural Resources Institutes (2017). Total wood consumption in Finland.

http://stat.luke.fi/en/tilato/4608. [Cited 22 July 2018]

http://stat.luke.fi/en/tilato/4608. [Cited 22 July 2018]