• Ei tuloksia

Drug and gene delivery vehicles

2.3 Gold nanoparticles in biological applications

2.3.3 Drug and gene delivery vehicles

Gold nanoparticles can be utilized for the delivery of therapeutic molecules into the cells. As colloidal gold nanoparticles are ingested by cells, the uptake enables the delivery of molecules that would not be internalized by the cells otherwise. The drug can be encapsulated in a gold core-shell particle or loaded into a larger carrier with suitable gold particles.

Therapeutic molecules may be also incorporated to the surface of gold particle. For example, a gold nanoparticle with diameter of 2 nm can incorporate 70 drug molecules (Gibson, Khanal & Zubarev 2007). This approach may be suitable for very potent drugs, but not necessarily for the less potent ones. On the other hand, gold nanoparticles do not favour drug distribution across tight tissue barriers. Suitability of gold nanoparticles in drug delivery should be investigated case by case.

Gold nanoparticles can be modified to render them more suitable for drug delivery.

They can be conjugated with ligands for over-expressed cell surface receptors to guide them into the target cells. For example, transferrin and folate receptors have been used for targeting gold nanoparticles to the cancer cells (Yang et al. 2005, Dixit et al. 2006). Glutathione-mediated release provides a strategy for intracellular release of the disulfide bridge-bound drug. This is based on the high intracellular glutathione concentration compared to its low extracellular concentration (Hong et al. 2006). However, because the number of drug molecules on the gold nanoparticle surface is limited, the approach incorporating drug directly to the nanoparticle surface is suitable mainly for applications where a low drug concentration is adequate.

Gold nanoparticles are capable of delivering large biomolecules such as peptides, proteins, and nucleic acids. Small gold nanoparticles have a high surface to volume ratio that maximizes the payload/carrier ratio, and different monolayer coatings allow the control of particle charge and hydrophobicity to maximize the delivery efficiency. Delivery can be forced, as in the case of gene guns, or achieved via cellular uptake of the particles. The gene gun method uses gold nanoparticles as bullets for the ballistic delivery of DNA (Yang et al.

1990), but it is not practical in the human gene therapy. Covalent linking of gold particles

27

with thiolated nucleic acids and non-covalent complexes with DNA provide means for cellular delivery (Oishi et al. 2006, Thomas, Klibanov 2003). Applications based on cellular delivery of proteins and peptides with gold nanoparticles have also been demonstrated (Kogan et al. 2007, Bhumkar et al. 2007). Gold nanoparticles are taken up by endocytosis, and like other nanoparticles, they face intracellular distribution problems.

28 References:

Abraham, S.A., Waterhouse, D.N., Mayer, L.D., Cullis, P.R., Madden, T.D. & Bally, M.B.

2005, "The liposomal formulation of doxorubicin", Liposomes, Pt E, vol. 391, pp. 71-97.

Agarwal, A., Huang, S.W., O'Donnell, M., Day, K.C., Day, M., Kotov, N. & Ashkenazi, S.

2007, "Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging", Journal of Applied Physics, vol. 102, no. 6, pp. 064701.

Alexiou, C., Jurgons, R., Schmid, R.J., Bergemann, C., Henke, J., Erhardt, W., Huenges, E.

& Parak, F. 2003, "Magnetic drug targeting - Biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment", Journal of drug targeting, vol. 11, no. 3, pp. 139-149.

Allen, T.M. 1994, "The use of Glycolipids and Hydrophilic Polymers in Avoiding Rapid Uptake of Liposomes by the Mononuclear Phagocyte System", Advanced Drug Delivery Reviews, vol. 13, no. 3, pp. 285-309.

Angelos, S., Choi, E., Vogtle, F., De Cola, L. & Zink, J.I. 2007, "Photo-driven expulsion of molecules from mesostructured silica nanoparticles", Journal of Physical Chemistry C, vol. 111, no. 18, pp. 6589-6592.

Audouy, S.A.L., de Leij, L.F.M.H., Hoekstra, D. & Molema, G. 2002, "In vivo characteristics of cationic liposomes as delivery vectors for gene therapy", Pharmaceutical research, vol. 19, no. 11, pp. 1599-1605.

Babiuk, S., Baca-Estrada, M.E., Foldvari, M., Baizer, L., Stout, R., Storms, M., Rabussay, D., Widera, G. & Babiuk, L. 2003, "Needle-free topical electroporation improves gene expression from plasmids administered in porcine skin", Molecular Therapy, vol. 8, no.

6, pp. 992-998.

Bangham, A.D., Standish, M.M. & Watkins, J.C. 1965, "Diffusion of Univalent Ions Across Lamellae of Swollen Phospholipids", Journal of Molecular Biology, vol. 13, no. 1, pp.

238-&.

Bejjani, R.A., Andrieu, C., Bloquel, C., Berdugo, M., BenEzra, D. & Behar-Cohen, F. 2007,

"Electrically assisted ocular gene therapy", Survey of ophthalmology, vol. 52, no. 2, pp.

196-208.

Berciaud, S., Cognet, L., Blab, G.A. & Lounis, B. 2004, "Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals", Physical Review Letters, vol. 93, no. 25, pp. 257402.

Bhumkar, D.R., Joshi, H.M., Sastry, M. & Pokharkar, V.B. 2007, "Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin", Pharmaceutical research, vol. 24, no. 8, pp. 1415-1426.

29

Bisby, R.H., Mead, C. & Morgan, C.G. 2000, "Active uptake of drugs into photosensitive liposomes and rapid release on UV photolysis", Photochemistry and photobiology, vol.

72, no. 1, pp. 57-61.

Bondurant, B., Mueller, A. & O'Brien, D.F. 2001, "Photoinitiated destabilization of sterically stabilized liposomes", Biochimica Et Biophysica Acta-Biomembranes, vol. 1511, no. 1, pp. 113-122.

Cang, H., Wong, C.M., Xu, C.S., Rizvi, A.H. & Yang, H. 2006, "Confocal three dimensional tracking of a single nanoparticle with concurrent spectroscopic readouts", Applied Physics Letters, vol. 88, no. 22, pp. 223901.

Censi, R., Vermonden, T., van Steenbergen, M.J., Deschout, H., Braeckmans, K., De Smedt, S.C., van Nostrum, C.F., di Martino, P. & Hennink, W.E. 2009, "Photopolymerized thermosensitive hydrogels for tailorable diffusion-controlled protein delivery", Journal of Controlled Release, vol. 140, no. 3, pp. 230-236.

Chen, C.C., Lin, Y.P., Wang, C.W., Tzeng, H.C., Wu, C.H., Chen, Y.C., Chen, C.P., Chen, L.C. & Wu, Y.C. 2006a, "DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation", Journal of the American Chemical Society, vol. 128, no. 11, pp. 3709-3715.

Chen, S.Y., Ding, J.H., Bekeredjian, R., Yang, B.Z., Shohet, R.V., Johnston, S.A., Hohmeier, H.E., Newgard, C.B. & Grayburn, P.A. 2006b, "Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology", Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 22, pp. 8469-8474.

Chen, Y., Lu, Y., Chen, J., Lai, J., Sun, J., Hu, F. & Wu, W. 2009, "Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt", International journal of pharmaceutics, vol. 376, no. 1-2, pp. 153-160.

Choi, M.J. & Maibach, H.I. 2005, "Liposomes and niosomes as topical drug delivery systems", Skin pharmacology and physiology, vol. 18, no. 5, pp. 209-219.

Choi, M., Stanton-Maxey, K.J., Stanley, J.K., Levin, C.S., Bardhan, R., Akin, D., Badve, S., Sturgis, J., Robinson, J.P., Bashir, R., Halas, N.J. & Clare, S.E. 2007, "A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors", Nano Letters, vol. 7, no. 12, pp. 3759-3765.

Dagar, S., Krishnadas, A., Rubinstein, I., Blend, M.J. & Onyuksel, H. 2003, "VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies", Journal of Controlled Release, vol. 91, no. 1-2, pp. 123-133.

Dass, C.R. & Choong, P.F.M. 2006, "Selective gene delivery for cancer therapy using cationic liposomes: In vivo proof of applicability", Journal of Controlled Release, vol.

113, no. 2, pp. 155-163.

Demey, J., Lambert, A.M., Bajer, A.S., Moeremans, M. & Debrabander, M. 1982,

"Visualization of Microtubules in Interphase and Mitotic Plant-Cells of Haemanthus Endosperm with the Immuno-Gold Staining Method", Proceedings of the National

30

Academy of Sciences of the United States of America-Biological Sciences, vol. 79, no. 6, pp. 1898-1902.

Denet, A.R., Vanbever, R. & Preat, V. 2004, "Skin electroporation for transdermal and topical delivery", Advanced Drug Delivery Reviews, vol. 56, no. 5, pp. 659-674.

Dixit, V., Van den Bossche, J., Sherman, D.M., Thompson, D.H. & Andres, R.P. 2006,

"Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells", Bioconjugate chemistry, vol.

17, no. 3, pp. 603-609.

Dulkeith, E., Ringler, M., Klar, T.A., Feldmann, J., Javier, A.M. & Parak, W.J. 2005, "Gold nanoparticles quench fluorescence by phase induced radiative rate suppression", Nano Letters, vol. 5, no. 4, pp. 585-589.

Ebrahim, S., Peyman, G.A. & Lee, P.J. 2005, "Applications of liposomes in ophthalmology", Survey of ophthalmology, vol. 50, no. 2, pp. 167-182.

Edwards, K., Johnsson, M., Karlsson, G. & Silvander, M. 1997, "Effect of

polyethyleneglycol-phospholipids on aggregate structure in preparations of small unilamellar liposomes", Biophysical journal, vol. 73, no. 1, pp. 258-266.

Eisenmenger, W., Du, X.X., Tang, C., Zhao, S., Wang, Y., Rong, F., Dai, D., Guan, M. & Qi, A. 2002, "The first clinical results of "wide-focus and low-pressure" ESWL",

Ultrasound in Medicine and Biology, vol. 28, no. 6, pp. 769-774.

El Maghraby, G.M., Barry, B.W. & Williams, A.C. 2008, "Liposomes and skin: from drug delivery to model membranes", European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, vol. 34, no. 4-5, pp.

203-222.

El Maghraby, G.M.M., Williams, A.C. & Barry, B.W. 2006, "Can drug-bearing liposomes penetrate intact skin?", Journal of Pharmacy and Pharmacology, vol. 58, no. 4, pp. 415-429.

Eljarrat-Binstock, E. & Domb, A.J. 2006, "Iontophoresis: A non-invasive ocular drug delivery", Journal of Controlled Release, vol. 110, no. 3, pp. 479-489.

Embree, L., Gelmon, K., Tolcher, A., Hudon, N., Heggie, J., Dedhar, C., Logan, P., Bally, M.B. & Mayer, L.D. 1998, "Pharmacokinetic behavior of vincristine sulfate following administration of vincristine sulfate liposome injection", Cancer chemotherapy and pharmacology, vol. 41, no. 5, pp. 347-352.

Forssen, E.A. 1997, "The design and development of DaunoXome(R) for solid tumor targeting in vivo", Advanced Drug Delivery Reviews, vol. 24, no. 2-3, pp. 133-150.

Gabizon, A., Catane, R., Uziely, B., Kaufman, B., Safra, T., Cohen, R., Martin, F., Huang, A.

& Barenholz, Y. 1994, "Prolonged Circulation Time and Enhanced Accumulation in Malignant Exudates of Doxorubicin Encapsulated in Polyethylene-Glycol Coated Liposomes", Cancer research, vol. 54, no. 4, pp. 987-992.

31

Ganta, S., Devalapally, H., Shahiwala, A. & Amiji, M. 2008, "A review of stimuli-responsive nanocarriers for drug and gene delivery", Journal of Controlled Release, vol. 126, no. 3, pp. 187-204.

Ghosh, P., Han, G., De, M., Kim, C.K. & Rotello, V.M. 2008, "Gold nanoparticles in

delivery applications", Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1307-1315.

Gibson, J.D., Khanal, B.P. & Zubarev, E.R. 2007, "Paclitaxel-functionalized gold

nanoparticles", Journal of the American Chemical Society, vol. 129, pp. 11653-11661.

Gothelf, A., Mir, L.M. & Gehl, J. 2003, "Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation", Cancer treatment reviews, vol. 29, no. 5, pp. 371-387.

Gregoriadis, G. 1990, "Immunological Adjuvants - a Role for Liposomes", Immunology today, vol. 11, no. 3, pp. 89-97.

Guy, R.H., Kalia, Y.N., Delgado-Charro, M.B., Merino, V., Lopez, A. & Marro, D. 2000,

"Iontophoresis: electrorepulsion and electroosmosis", Journal of Controlled Release; 5th Symposium on Controlled Drug Delivery, pp. 129.

Han, H.D., Shin, B.C. & Choi, H.S. 2006, "Doxorubicin-encapsulated thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-acrylamide): Drug release behavior and stability in the presence of serum", European Journal of Pharmaceutics and Biopharmaceutics, vol. 62, no. 1, pp. 110-116.

Hatakeyama, H., Akita, H., Maruyama, K., Suhara, T. & Harashima, H. 2004, "Factors governing the in vivo tissue uptake of transferrin-coupled polyethylene glycol liposomes in vivo", International journal of pharmaceutics, vol. 281, no. 1-2, pp. 25-33.

Hatakeyama, H., Ito, E., Akita, H., Oishi, M., Nagasaki, Y., Futaki, S. & Harashima, H. 2009,

"A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo", Journal of Controlled Release, vol. 139, no. 2, pp. 127-132.

Hattori, Y., Kawakami, S., Suzuki, S., Yamashita, F. & Hashida, M. 2004, "Enhancement of immune responses by DNA vaccination through targeted gene delivery using

mannosylated cationic liposome formulations following intravenous administration in mice", Biochemical and biophysical research communications, vol. 317, no. 4, pp. 992-999.

Hirnle, E., Hirnle, P. & Wright, J.K. 1991, "Distribution of Liposome-Incorporated

Carboxyfluorescein in Rabbit Eyes", Journal of microencapsulation, vol. 8, no. 3, pp.

391-399.

Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S.R., Rivera, B., Price, R.E., Hazle, J.D., Halas, N.J. & West, J.L. 2003, "Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance", Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 23, pp. 13549-13554.

32

Hofland, H.E.J., Masson, C., Iginla, S., Osetinsky, I., Reddy, J.A., Leamon, C.P., Scherman, D., Bessodes, M. & Wils, P. 2002, "Folate-targeted gene transfer in vivo", Molecular Therapy, vol. 5, no. 6, pp. 739-744.

Hong, R., Han, G., Fernandez, J.M., Kim, B.J., Forbes, N.S. & Rotello, V.M. 2006,

"Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers", Journal of the American Chemical Society, vol. 128, no. 4, pp. 1078-1079.

Hu, S.H., Liu, T.Y., Huang, H.Y., Liu, D.M. & Chen, S.Y. 2008, "Magnetic-sensitive silica nanospheres for controlled drug release", Langmuir, vol. 24, no. 1, pp. 239-244.

Huang, S.L. 2008, "Liposomes in ultrasonic drug and gene delivery", Advanced Drug Delivery Reviews, vol. 60, no. 10, pp. 1167-1176.

Huang, S.L. & MacDonald, R.C. 2004, "Acoustically active liposomes for drug encapsulation and ultrasound-triggered release", Biochimica Et Biophysica Acta-Biomembranes, vol.

1665, no. 1-2, pp. 134-141.

Huang, X.H., Jain, P.K., El-Sayed, I.H. & El-Sayed, M.A. 2007, "Gold nanoparticles:

interesting optical properties and recent applications in cancer diagnostic and therapy", Nanomedicine, vol. 2, pp. 681-693.

Husseini, G.A. & Pitt, W.G. 2008, "Micelles and nanoparticles for ultrasonic drug and gene delivery", Advanced Drug Delivery Reviews, vol. 60, no. 10, pp. 1137-1152.

Isaka, Y. & Imai, E. 2007, "Electroporation-mediated gene therapy", Expert Opinion on Drug Delivery, vol. 4, no. 5, pp. 561-571.

Itani, T., Ariga, H., Yamaguchi, N., Tadakuma, T. & Yasuda, T. 1987, "A Simple and Efficient Liposome Method for Transfection of Dna into Mammalian-Cells Grown in Suspension", Gene, vol. 56, no. 2-3, pp. 267-276.

Iwanaga, K., Ono, S., Narioka, K., Kakemi, M., Morimoto, K., Yamashita, S., Namba, Y. &

Oku, N. 1999, "Application of surface coated liposomes for oral delivery of peptide:

Effects of coating the liposome's surface on the GI transit of insulin", Journal of pharmaceutical sciences, vol. 88, no. 2, pp. 248-252.

Kalia, Y.N., Naik, A., Garrison, J. & Guy, R.H. 2004, "Iontophoretic drug delivery", Advanced Drug Delivery Reviews, vol. 56, no. 5, pp. 619-658.

Kanaoka, E., Takahashi, K., Yoshikawa, T., Jizomoto, H., Nishihara, Y., Uchida, N., Maekawa, R. & Hirano, K. 2002, "A significant enhancement of therapeutic effect against hepatic metastases of M5076 in mice by a liposomal interleukin-2 (mixture)", Journal of Controlled Release, vol. 82, no. 2-3, pp. 183-187.

Kearns, G.L., Heacook, J., Daly, S.J., Singh, H., Alander, S.W. & Qu, S.K. 2003,

"Percutaneous lidocaine administration via a new iontophoresis system in children:

Tolerability and absence of systemic bioavailability", Pediatrics, vol. 112, no. 3, pp.

578-582.

33

Kim, D., Park, S., Lee, J.H., Jeong, Y.Y. & Jon, S. 2007, "Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging", Journal of the American Chemical Society, vol. 129, no. 24, pp. 7661-7665.

Kim, I.Y., Kang, Y.S., Lee, D.S., Park, H.J., Choi, E.K., Oh, Y.K., Son, H.J. & Kim, J.S.

2009, "Antitumor activity of EGFR targeted pH-sensitive immunoliposomes encapsulating gemcitabine in A549 xenograft nude mice", Journal of Controlled Release, vol. 140, no. 1, pp. 55-60.

Kim, J.H. & Lee, T.R. 2006, "Discrete thermally responsive hydrogel-coated gold

nanoparticles for use as drug-delivery vehicles", Drug Development Research, vol. 67, no. 1, pp. 61-69.

Kirjavainen, M., Monkkonen, J., Saukkosaari, M., Valjakka-Koskela, R., Kiesvaara, J. &

Urtti, A. 1999, "Phospholipids affect stratum corneum lipid bilayer fluidity and drug partitioning into the bilayers", Journal of Controlled Release, vol. 58, no. 2, pp. 207-214.

Kirjavainen, M., Urtti, A., Jaaskelainen, I., Suhonen, T.M., Paronen, P., Valjakka-Koskela, R., Kiesvaara, J. & Monkkonen, J. 1996, "Interaction of liposomes with human skin in vitro--the influence of lipid composition and structure", Biochimica et biophysica acta, vol. 1304, no. 3, pp. 179-189.

Klibanov, A.L., Maruyama, K., Torchilin, V.P. & Huang, L. 1990, "Amphipathic

Polyethyleneglycols Effectively Prolong the Circulation Time of Liposomes", FEBS letters, vol. 268, no. 1, pp. 235-237.

Knight, V., Koshkina, N.V., Waldrep, J.C., Giovanella, B.C. & Gilbert, B.E. 1999,

"Anticancer exffect of 9-nitrocamptothecin liposome aerosol on human cancer

xenografts in nude mice", Cancer chemotherapy and pharmacology, vol. 44, no. 3, pp.

177-186.

Kogan, M.J., Olmedo, I., Hosta, L., Guerrero, A.R., Cruz, L.J. & Albericio, F. 2007,

"Peptides and metallic nanoparticles for biomedical applications", Nanomedicine, vol. 2, no. 3, pp. 287-306.

Konan, Y.N., Gurny, R. & Allemann, E. 2002, "State of the art in the delivery of photosensitizers for photodynamic therapy", Journal of Photochemistry and Photobiology B-Biology, vol. 66, no. 2, pp. 89-106.

Kono, K., Hayashi, H. & Takagishi, T. 1994, "Temperature-Sensitive Liposomes -

Liposomes Bearing Poly(n-Isopropylacrylamide)", Journal of Controlled Release, vol.

30, no. 1, pp. 69-75.

Kono, K., Henmi, A., Yamashita, H., Hayashi, H. & Takagishi, T. 1999, "Improvement of temperature-sensitivity of poly(N-isopropylacrylamide)-modified liposomes", Journal of Controlled Release, vol. 59, no. 1, pp. 63-75.

Koshkina, N.V., Waldrep, J.C., Roberts, L.E., Golunski, E., Melton, S. & Knight, V. 2001,

"Paclitaxel liposome aerosol treatment induces inhibition of pulmonary metastases in

34

murine renal carcinoma model", Clinical Cancer Research, vol. 7, no. 10, pp. 3258-3262.

Kozlowska, D., Foran, P., MacMahon, P., Shelly, M.J., Eustace, S. & O'Kennedy, R. 2009,

"Molecular and magnetic resonance imaging: The value of immunoliposomes", Advanced Drug Delivery Reviews, vol. 61, no. 15, pp. 1402-1411.

Kullberg, M., Mann, K. & Owens, J.L. 2005, "Improved drug delivery to cancer cells: a method using magnetoliposomes that target epidermal growth factor receptors", Medical hypotheses, vol. 64, no. 3, pp. 468-470.

Kullberg, M., Mann, K. & Owens, J.L. 2009, "A two-component drug delivery system using Her-2-targeting thermosensitive liposomes", Journal of drug targeting, vol. 17, no. 2, pp. 98-107.

Lappalainen, K., Urtti, A., Soderling, E., Jaaskelainen, I., Syrjanen, K. & Syrjanen, S. 1994,

"Cationic Liposomes Improve Stability and Intracellular Delivery of Antisense

Oligonucleotides into Caski Cells", Biochimica Et Biophysica Acta-Biomembranes, vol.

1196, no. 2, pp. 201-208.

Law, S.L., Huang, K.J. & Chiang, C.H. 2000, "Acyclovir-containing liposomes for potential ocular delivery. Corneal penetration and absorption", Journal of Controlled Release, vol.

63, no. 1-2, pp. 135-140.

Leamon, C.P., Cooper, S.R. & Hardee, G.E. 2003, "Folate-liposome-mediated antisense oligodeoxynucleotide targeting to cancer cells: Evaluation in vitro and in vivo", Bioconjugate chemistry, vol. 14, no. 4, pp. 738-747.

Leamon, C.P. & Low, P.S. 1991, "Delivery of Macromolecules into Living Cells - a Method that Exploits Folate Receptor Endocytosis", Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 13, pp. 5572-5576.

Lewinski, N., Colvin, V. & Drezek, R. 2008, "Cytotoxicity of nanoparticles", Small, vol. 4, no. 1, pp. 26-49.

Lindner, L.H., Eichhorn, M.E., Eibl, H., Teichert, N., Schmitt-Sody, M., Issels, R.D. &

Dellian, M. 2004, "Novel temperature-sensitive liposomes with prolonged circulation time", Clinical Cancer Research, vol. 10, no. 6, pp. 2168-2178.

Liu, B.R., Yang, M., Li, R.T., Ding, Y.T., Qian, X.P., Yu, L.X. & Jiang, X.Q. 2008, "The antitumor effect of novel docetaxel-loaded thermosensitive micelles", European Journal of Pharmaceutics and Biopharmaceutics, vol. 69, no. 2, pp. 527-534.

Liu, P., Wang, B.C., Oiao, W.L. & Li, J. 2009, "Novel Thermosensitive Nano-Micelles from Triblock Copolymer for Drug Delivery", Journal of Biomedical Nanotechnology, vol. 5, no. 3, pp. 310-313.

Liu, Y.B., Kon, T., Li, C.Y. & Zhong, P. 2005, "High intensity focused ultrasound-induced gene activation in sublethally injured tumor cells in vitro", Journal of the Acoustical Society of America, vol. 118, no. 5, pp. 3328-3336.

35

Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. 2000, "Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review", Journal of Controlled Release, vol. 65, no. 1-2, pp. 271-284.

Maruyama, K., Ishida, O., Kasaoka, S., Takizawa, T., Utoguchi, N., Shinohara, A., Chiba, M., Kobayashi, H., Eriguchi, M. & Yanagie, H. 2004, "Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG

liposomes, for boron neutron-capture therapy (BNCT)", Journal of Controlled Release, vol. 98, no. 2, pp. 195-207.

Maruyama, K., Unezaki, S., Takahashi, N. & Iwatsuru, M. 1993, "Enhanced Delivery of Doxorubicin to Tumor by Long-Circulating Thermosensitive Liposomes and Local Hyperthermia", Biochimica et biophysica acta, vol. 1149, no. 2, pp. 209-216.

Maurer, N., Fenske, D.B. & Cullis, P.R. 2001, "Developments in liposomal drug delivery systems", Expert Opinion on Biological Therapy, vol. 1, no. 6, pp. 923-947.

Mehier-Humbert, S., Bettinger, T., Yan, F. & Guy, R.H. 2005, "Plasma membrane poration induced by ultrasound exposure: Implication for drug delivery", Journal of Controlled Release, vol. 104, no. 1, pp. 213-222.

Moller, R. & Fritzsche, W. 2007, "Metal nanoparticle-based detection for DNA analysis", Current Pharmaceutical Biotechnology, vol. 8, no. 5, pp. 274-285.

Mueller, A., Bondurant, B. & O'Brien, D.F. 2000, "Visible-light-stimulated destabilization of PEG-liposomes", Macromolecules, vol. 33, no. 13, pp. 4799-4804.

Mulder, W.J.M., Strijkers, G.J., Griffioen, A.W., van Bloois, L., Molema, G., Storm, G., Koning, G.A. & Nicolay, K. 2004, "A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets", Bioconjugate chemistry, vol. 15, no. 4, pp.

799-806.

Needham, D. & Dewhirst, M.W. 2001, "The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors", Advanced Drug Delivery Reviews, vol. 53, no. 3, pp. 285-305.

Nelson, J.L., Roeder, B.L., Carmen, J.C., Roloff, F. & Pitt, W.G. 2002, "Ultrasonically activated chemotherapeutic drug delivery in a rat model", Cancer research, vol. 62, no.

24, pp. 7280-7283.

Ni, J., Lipert, R.J., Dawson, G.B. & Porter, M.D. 1999, "Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids", Analytical Chemistry, vol.

71, no. 21, pp. 4903-4908.

Oishi, M., Nakaogami, J., Ishii, T. & Nagasaki, Y. 2006, "Smart PEGylated gold

nanoparticles for the cytoplasmic delivery of siRNA to induce enhanced gene silencing", Chemistry Letters, vol. 35, no. 9, pp. 1046-1047.

36

Pankhurst, Q.A., Connolly, J., Jones, S.K. & Dobson, J. 2003, "Applications of magnetic nanoparticles in biomedicine", Journal of Physics D-Applied Physics, vol. 36, no. 13, pp.

R167-R181.

Papahadjopoulos, D., Poste, G. & Schaeffer, B.E. 1973, "Fusion of Mammalian-Cells by Unilamellar Lipid Vesicles - Influence of Lipid Surface Charge, Fluidity and

Cholesterol", Biochimica et biophysica acta, vol. 323, no. 1, pp. 23-42.

Park, J.W., Kirpotin, D.B., Hong, K., Shalaby, R., Shao, Y., Nielsen, U.B., Marks, J.D., Papahadjopoulos, D. & Benz, C.C. 2001, "Tumor targeting using anti-her2

immunoliposomes", Journal of Controlled Release, vol. 74, no. 1-3, pp. 95-113.

Park, J.H., Lee, S., Kim, J., Park, K., Kim, K. & Kwon, I.C. 2008, "Polymeric nanomedicine for cancer therapy", Progress in Polymer Science, vol. 33, no. 1, pp. 113-137.

Perugini, P., Hassan, K., Genta, I., Modena, T., Pavanetto, F., Cetta, G., Zanone, C., Iadarola, P., Asti, A. & Conti, B. 2005, "Intracellular delivery of liposome-encapsulated prolidase in cultured fibroblasts from prolidase-deficient patients", Journal of Controlled Release, vol. 102, no. 1, pp. 181-190.

Pissuwan, D., Valenzuela, S.M. & Cortie, M.B. 2006, "Therapeutic possibilities of

plasmonically heated gold nanoparticles", Trends in biotechnology, vol. 24, no. 2, pp.

62-67.

Pitsillides, C.M., Joe, E.K., Wei, X.B., Anderson, R.R. & Lin, C.P. 2003, "Selective cell targeting with light-absorbing microparticles and nanoparticles", Biophysical journal, vol. 84, no. 6, pp. 4023-4032.

Pleyer, U., Lutz, S., Jusko, W.J., Nguyen, K., Narawane, M., Ruckert, D., Mondino, B.J. &

Lee, V.H.L. 1993, "Ocular Absorption of Topically Applied Fk506 from Liposomal and Oil Formulations in the Rabbit Eye", Investigative ophthalmology & visual science, vol.

34, no. 9, pp. 2737-2742.

Power, I. 2007, "Fentanyl HCl iontophoretic transdermal system (ITS): clinical application of iontophoretic technology in the management of acute postoperative pain", British

journal of anaesthesia, vol. 98, no. 1, pp. 4-11.

Qiu, Y. & Park, K. 2001, "Environment-sensitive hydrogels for drug delivery", Advanced Drug Delivery Reviews, vol. 53, no. 3, pp. 321-339.

Rapoport, N.Y., Kennedy, A.M., Shea, J.E., Scaife, C.L. & Nam, K.H. 2009, "Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles", Journal of Controlled Release, vol. 138, no. 3, pp. 268-276.

Richter, A.M., Waterfield, E., Jain, A.K., Canaan, A.J., Allison, B.A. & Levy, J.G. 1993,

"Liposomal Delivery of a Photosensitizer, Benzoporphyrin Derivative Monoacid Ring-a (Bpd), to Tumor-Tissue in a Mouse-Tumor Model", Photochemistry and photobiology, vol. 57, no. 6, pp. 1000-1006.

37

Ruijgrok, E.J., Vulto, A.G. & Van Etten, E.W.M. 2001, "Efficacy of aerosolized

Ruijgrok, E.J., Vulto, A.G. & Van Etten, E.W.M. 2001, "Efficacy of aerosolized