• Ei tuloksia

The bioenergy crop production in Sweden in arable lands is increasing gradually. At now, about 13 kinds of energy crops are producing but previously it was only a few. In 1985, the total cultivated land for energy crops was less than 1000 ha for willow cultivation. But later in 2007 to 2012, only hybrid aspen was cultivated in 500 ha to 980 ha respectively. In the same way, 14000 ha arable land was cultivated in 2004. For reed canary grass, at 2000 it was 100 ha but in 2015 the amount has risen about 800 ha. So we can say that Sweden is increasing more arable land for bioenergy crop cultivation. Not only for economic purposes bioenergy crop cultivation also has some environmental benefits.

The study also has shown how bioenergy crops are contributing to develop the environment. It has all kinds of benefits on the environment for example on air, water, soil, and biodiversity.

During the last 25 years due to bioenergy crop cultivation in arable land, the humus level has increased more than 1 percent. And because of this, total crop production has risen 5%. Now 47% of Swedish arable land has developed the humus level. The carbon accumulation for energy crop cultivation was 0.1-1 tons per hectare per year. And nitrogen emission reduces 0.3 kg per hectare per year, so it has a good impact on air also. By absorbing different heavy metals and a high amount of Nitrogen and Phosphorus from wastewater, bioenergy crops also increasing the quality of water.

References

Ahlgren, S., Aronsson, P., Hansson, P. A., Kimming, M., & Lundkvist, H. (2010). Greenhouse gas emissions from cultivation of agricultural crops for biofuels and production of biogas from manure (No. Dnr SLU).

Alstrom K, Bergman Akerman A. Vattenerosion i Sydsvensk a kermark (Water erosion of arable land in southern Sweden). Department of Physical Geography, Lund University, Lund, 1991.

Andersson R. BiobraÈ nslen fraÊ n jordbruketÐen analys av miljoÈ konsekvenserna (Biofuels from agricultureÐan analysis of the environmental impact). National Swedish Environmental Protection Board, Stockholm, 1990.

Anastas, P., & Eghbali, N. (2010). Green chemistry: principles and practice. Chemical Society Reviews, 39(1), 301-312.

Bennetzen, E. H., Smith, P., & Porter, J. R. (2016). Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Global change biology, 22(2), 763-781.

Berglund, K. (1989). Ytsänkning av mosstorvjord. Sammanställning av material från Lidhult, Jönköpings län. Report 89: 3, Swedish university of Agricultural Sciences. Department of Soil Sciences.

Berg, B., & Ekbohm, G. (1991). Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest. VII. Canadian Journal of Botany, 69(7), 1449-1456.

Berndes, G., Ahlgren, S., Börjesson, P., & Cowie, A. L. (2013). Bioenergy and land use change—state of the art. Wiley Interdisciplinary Reviews: Energy and Environment, 2(3), 282-303.

Berndes, G., & Magnusson, L. (2006). The future of bioenergy in Sweden. Background and summary of outstanding issues (No. STEM-ER--30-2006). Swedish Energy Agency.

Björheden, R. (2006). Drivers behind the development of forest energy in Sweden. Biomass and Bioenergy, 30(4), 289-295.

Björklund, J., Limburg, K. E., & Rydberg, T. (1999). Impact of production intensity on the ability of the agricultural landscape to generate ecosystem services: an example from Sweden.

Ecological economics, 29(2), 269-291.

Boden, T. A., Andres, R. J., & Marland, G. (2017). Global, regional, and national fossil-fuel CO2 emissions (1751-2014) (v. 2017). Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States).

Bouwman, A.F. (1990) Exchange of Greenhouse Gases between Terrestrial Ecosystems and the Atmosphere. In: Bouwman, A.F., Ed., Soils and the Greenhouse Effect, John Wiley and Sons, New York, 61-127.

Börjesson, P. (2007). Bioenergi från jordbruket–en växande resurs. Statens Offentliga Utredningar.

Börjesson, P. I. I. (1996). Energy analysis of biomass production and transportation. Biomass and Bioenergy, 11(4), 305-318.

Börjesson, P., Gustavsson, L., Christersson, L., & Linder, S. (1997). Future production and utilisation of biomass in Sweden: potentials and CO2 mitigation. Biomass and Bioenergy, 13(6), 399-412.

Börjesson, P., & Tufvesson, L. M. (2011). Agricultural crop-based biofuels–resource efficiency and environmental performance including direct land use changes. Journal of Cleaner Production, 19(2-3), 108-120.

Börjesson, P. (2009). Good or bad bioethanol from a greenhouse gas perspective–what determines this? Applied Energy, 86(5), 589-594.

Börjesson, P. (1999). Environmental effects of energy crop cultivation in Sweden—I:

identification and quantification. Biomass and Bioenergy, 16(2), 137-154.

Christersson, L., & Verma, K. (2006). Short-rotation forestry-a complement to" conventional"

forestry. Unasylva (English ed.), 57(223), 34-39.

Christersson, L., Ramstedt, M., & Forsberg, J. (1992). Pests, diseases and injuries in intensive short-rotation forestry. Ecophysiology of short rotation-forest crops. Elsevier Science Publisher, London, 185-216.

Correa, D. F., Beyer, H. L., Possingham, H. P., Thomas-Hall, S. R., & Schenk, P. M. (2017).

Biodiversity impacts of bioenergy production: Microalgae vs. first generation biofuels.

Renewable and Sustainable Energy Reviews, 74, 1131-1146.

Cruciani, M. (2016). The energy transition in Sweden. ISBN: 978-2-36567-623-6.

Dickmann, D. I. (2006). Silviculture and biology of short-rotation woody crops in temperate regions: Then and now. Biomass and Bioenergy, 30(8-9), 696-705.

“Energy Use in Sweden.” Sweden.se, 28 Feb. 2019, sweden.se/society/energy-use-in-sweden/.

Energimyndighet, S. (2012). Hållbara biodrivmedel och flytande biobränslen under 2011. ET, 12, 17.

Faaij, A. P. (2006). Bioenergy in Europe: changing technology choices. Energy policy, 34(3), 322-342.

Från Biobränslekommissionen, S. (1992). Biobränslen för framtiden. SOU 1992, 90.

Gustafsson, L. (1987). Plant conservation aspects of energy forestry—a new type of land use in Sweden. Forest Ecology and Management, 21(1-2), 141-161.

Haughton, A. J., Bond, A. J., Lovett, A. A., Dockerty, T., Sünnenberg, G., Clark, S. J., ... &

Cunningham, M. D. (2009). A novel, integrated approach to assessing social, economic and environmental implications of changing rural land‐use: a case study of perennial biomass crops.

Journal of Applied Ecology, 46(2), 315-322.

Hellebrand, H. J., Strähle, M., Scholz, V., & Kern, J. (2010). Soil carbon, soil nitrate, and soil emissions of nitrous oxide during cultivation of energy crops. Nutrient Cycling in Agroecosystems, 87(2), 175-186.

Herland, E. (2005). LRFs Energiscenario till år 2020, Förnybar Energi från Jord-och Skogsbruket ger Nya Affärer och Bättre Miljö. LRF, Andra remissversionen.

Henrik Scharin & Jenny Wallström (2018), The Swedish CO2tax –an overview, Anthesis Enveco AB under a contract from Borg & Co AB for the Institute of Energy Economics, Japan (IIEJ).

Hillier, J., Whittaker, C., Dailey, G., Aylott, M., Casella, E., Richter, G. M., ... & Smith, P.

(2009). Greenhouse gas emissions from four bioenergy crops in England and Wales: integrating spatial estimates of yield and soil carbon balance in life cycle analyses. Gcb Bioenergy, 1(4), 267-281.

Hoekman, S. K., Broch, A., & Liu, X. V. (2018). Environmental implications of higher ethanol production and use in the US: A literature review. Part I–Impacts on water, soil, and air quality.

Renewable and Sustainable Energy Reviews, 81, 3140-3158.

Höglund, J., Ahlgren, S., Grahn, M., Sundberg, C., Persson, U. M., Börjesson, P., ... & Helldin, J. O. (2013). Biofuels and land use in Sweden: an overview of land-use change effects. f3-The Swedish Knowledge Centre for Renewable Transport Fuels.

Jansson, E. (2016). Crises and their impact on the energy system: Sweden 1900-2013.

Johansson, B. (2004). Biomass in Sweden–historic development and future potential under new policy regimes. Small, 80(90), 100.

Johnson, F. X., Pacini, H., & Smeets, E. (2012). Transformations in EU biofuels markets under the Renewable Energy Directive and the implications for land use, trade and forests. Bogor, Indonesia: CIFOR.

Jonsson, A. C., Ostwald, M., Asplund, T., & Wibeck, V. (2011, November). Barriers to and drivers of the adoption of energy crops by Swedish farmers: An empirical study. In World Renewable Energy Congress-Sweden; 8-13 May; 2011; Linköping; Sweden (No. 057, pp. 2509-2516). Linköping University Electronic Press.

Jonsson P. Influence of shelter on soil sorting by wind erosion. Catena 1994; 22:35 47.

Kasimir Klemedtsson, Å. (2009). Lustgasavgång från jordbruksmark. Institutionen för Geovetenskaper, Göteborgs Universitet.

Kendall, A., & Chang, B. (2009). Estimating life cycle greenhouse gas emissions from corn–

ethanol: a critical review of current US practices. Journal of Cleaner Production, 17(13), 1175-1182.

Kim, S., & Dale, B. E. (2009). Regional variations in greenhouse gas emissions of bio-based products in the United States—corn-based ethanol and soybean oil. The International Journal of Life Cycle Assessment, 14(6), 540-546.

Kjell Andersson, March 2017, The Swedish Bioenergy Association, Svebio.

KSLA, 2009. "The Swedish forestry models." The Royal Swedish Academy of Agriculture and Forestry (KSLA), Stockholm, Sweden.

Kumm, K. I. (2009). Det framtida jordbruket: visioner för 2021 och trender 1995-2008.

Institutionen för husdjurens miljö och hälsa, Sveriges lantbruksuniversitet. (The Agriculture of the Future Visons for 2021 and Trends 1995 – 2008).

Ladanai, S., & Vinterbäck, J. (2010). Biomass for energy versus food and feed, land use analyses and water supply (No. 022).

Landström, S., Lomakka, L., & Andersson, S. (1996). Harvest in spring improves yield and quality of reed canary grass as a bioenergy crop. Biomass and bioenergy, 11(4), 333-341.

Lindvall, E., Gustavsson, A. M., Samuelsson, R., Magnusson, T., & Palmborg, C. (2015). Ash as a phosphorus fertilizer to reed canary grass: effects of nutrient and heavy metal composition on plant and soil. Gcb Bioenergy, 7(3), 553-564.

Lindvall, E., Gustavsson, A. M., & Palmborg, C. (2012). Establishment of reed canary grass with perennial legumes or barley and different fertilization treatments: effects on yield, botanical composition and nitrogen fixation. Gcb Bioenergy, 4(6), 661-670.

Makeschin, F. (1994). Effects of energy forestry on soils. Biomass and Bioenergy, 6(1-2), 63-79.

Manning, P., Taylor, G., & E. Hanley, M. (2015). Bioenergy, food production and biodiversity–

an unlikely alliance? Gcb Bioenergy, 7(4), 570-576.

Mattsson L. MarkboÈ rdighet och jordart i svensk aÊ kermark (Soil fertility and soil type of Swedish arable land). National Swedish Environmental Protecting Board, Stockholm, 1996.

Mattsson J, Nihle n T, Olesen F. Vindens skadegoÈ relse paÊ aÊ kermark i SkaÊ ne och Danmark (Wind erosion on arable land in Scania and Denmark). Yearbook of Geography in Sweden, 1983.

McKay, Helen. "Short rotation forestry: review of growth and environmental impacts." Forest Research Monograph 2 (2011): 1-211.

Mola-Yudego, B. (2010). Regional potential yields of short rotation willow plantations on agricultural land in Northern Europe. Silva Fennica, 44(1), 63-76.

Mola-Yudego, B., & González-Olabarria, J. R. (2010). Mapping the expansion and distribution of willow plantations for bioenergy in Sweden: Lessons to be learned about the spread of energy crops. Biomass and bioenergy, 34(4), 442-448.

National Swedish Environmental Protection Board. Vatten, avlopp och miljö (Water, sewage and the environment). Stockholm, 1993.

National Swedish Environmental Protection Board. Växthusgaserna—utsläpp och åtgärder i ett internationellt perspektiv (Greenhouse gases—emission and mitigation in an international perspective). Stockholm, 1990.

Nielsen, K. H. (1994). Environmental aspects of using waste waters and sludges in energy forest cultivation. Biomass and Bioenergy, 6(1-2), 123-132.

Nilsson, D., Rosenqvist, H., & Bernesson, S. (2015). Profitability of the production of energy grasses on marginal agricultural land in Sweden. Biomass and Bioenergy, 83, 159-168.

Nordin, A., Bergström, A. K., Granberg, G., Grip, H., Gustafsson, D., Gärdenäs, A., ... &

Svensson, M. (2008). Effekter av ett intensivare skogsbruk på skogslandskapets mark, vatten och växthusgaser. Delrapport från regeringsuppdrag Jo, 1885.

OECD (2017), Land-use Planning Systems in the OECD - Country Fact Sheets: Sweden.

Official Report of the Swedish Government. Biobränsle för framtiden: slutbetänkande av biobränslekommissionen (Biomass for the future: final report of the Biomass Commission).

Allmänna Förlaget, Stockholm, 1992.

Official Report of the Swedish Government. Den brukade mångfalden: betänkande av utredningen om jordbrukets tillgångar påväxtgenetiska resurser (Cultivated biodiversity:

genetic resources in agriculture). Fritzes Förlag, Stockholm, 1995.

Ostwald, M., Jonsson, A., Wibeck, V., & Asplund, T. (2013). Mapping energy crop cultivation and identifying motivational factors among Swedish farmers. Biomass and bioenergy, 50, 25-34.

Ozturk, M., Saba, N., Altay, V., Iqbal, R., Hakeem, K. R., Jawaid, M., & Ibrahim, F. H. (2017).

Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia.

Renewable and Sustainable Energy Reviews, 79, 1285-1302.

Paine, L. K., Peterson, T. L., Undersander, D. J., Rineer, K. C., Bartelt, G. A., Temple, S. A., ... & Klemme, R. M. (1996). Some ecological and socio-economic considerations for biomass energy crop production. Biomass and Bioenergy, 10(4), 231-242.

Palut, M.P.J.; Canziani, O.F. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press:

Cambridge, UK, 2007.

Paulrud, S., Miljöinstitutet, I. S., & Laitila, T. (2007). Lantbrukarnas attityder till odling av energigrödor. IVL Svenska Miljöinstitutet, Stockholm.

Perttu, K. L., & Aronsson, P. G. (2013, May). Vegetation Filters of Willow for Purification of Waters and Soils. In Biomass for Energy, Environment, Agriculture and Industry: Proceedings

of the 8th European Biomass Conference, Vienna, Austria, 3-5 October 1994 (p. 260).

Pergamon.

Perttu, K. L., & Features Submission, H. C. (1994). Biomass production and nutrient removal from municipal wastes using willow vegetation filters. Journal of Sustainable Forestry, 1(3), 57-70. Online publication: 25 Oct 2008.

Prade, T., Björnsson, L., Lantz, M., & Ahlgren, S. (2017). Can domestic production of iLUC-free feedstock from arable land supply Sweden’s future demand for biofuels. Journal of land use science, 12(6), 407-441.

Qin, Z., Zhuang, Q., Cai, X., He, Y., Huang, Y., Jiang, D., ... & Wang, M. Q. (2018). Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment. Renewable and Sustainable Energy Reviews, 82, 2387-2400.

Reicosky DC, Kemper WD, Langdale GW, Douglas CL, Jr, Rasmussen PE. Soil organic matter changes resulting from tillage and biomass production. Journal of Soil and Water Conservation 1995; 50:253-61.

Rosenqvist, H., Roos, A., Ling, E., & Hektor, B. (2000). Willow growers in Sweden. Biomass and bioenergy, 18(2), 137-145.

Rosenqvist, H., Aronsson, P., Hasselgren, K., & Perttu, K. (1997). Economics of using municipal wastewater irrigation of willow coppice crops. Biomass and Bioenergy, 12(1), 1-8.

Rowe, R. L., Street, N. R., & Taylor, G. (2009). Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renewable and sustainable energy reviews, 13(1), 271-290.

Rytter, R. M. (2012). The potential of willow and poplar plantations as carbon sinks in Sweden.

Biomass and Bioenergy, 36, 86-95.

Rytter, R. M. (2001). Biomass production and allocation, including fine-root turnover, and annual N uptake in lysimeter-grown basket willows. Forest ecology and management, 140(2-3), 177-192.

Sage, R. B., & Robertson, P. A. (1994). Wildlife and game potential of short rotation coppice in the UK. Biomass and Bioenergy, 6(1-2), 41-48.

Selin Markus, Energy in Sweden 2018 An overview, Swedish Energy Agency, 2018.

SJV, 2012. Jordbruksmarkens användning 2011. Statistiska Meddelande JOSM1201, Jordbruksverket, Jönköping.

SNV (1997). Det framtida jordbruket –slutrapport från systemstudien för ettmiljöanpassat och uthållit jordbruk (Agriculture in the future –final report from the system study of an environmental sound and sustainable productionin agriculture, in Swedish). Swedish Environmental Protection Agency,Stockholm, Sweden.

Sjödahl Svensson, K., Granhall, U., & Andrén, O. (1994). Soil biological aspects of short-rotation forestry. Naerings-och Teknikutvecklingsverket.

Statistics Sweden. Statistisk årsbok 1996 (Statistical Yearbook of Sweden 1996). Stockholm, 1996.

Statistics Sweden. Jordbruksstatistisk årsbok 1995 (Yearbook of agricultural statistics 1995).

Allmänna Förlaget, Stockholm, 1995.

Statistics of Sweden, SCB (2019), Land use in Sweden, Statistics Sweden, Regions and Environment Department, ISBN 978-91-618-1660-6.

Statistics of Sweden, SCB 2015, Arable land and forest land, hectares by land use category and year.

Swedish Energy Agency. Energy in Sweden (2017). ISSN: 1404-3343, Arkitektkopia, Bromma.

Swedish Energy Agency. Energy in Sweden. (2003). Eskilstuna, Sweden.

Swedish Government Official Reports. Bioenergi från jordbruket – en växande resurs. 2007;

SOU 2007:36.

Thyselius, L., Johansson, W., Mattsson, L., & Wallgren, B. (1992). Energigrödor för biogas.

Vattenfall AB, 162 87 Vällingby.

Union, E. (2009). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union, 5, 2009.

Werling, B. P., Dickson, T. L., Isaacs, R., Gaines, H., Gratton, C., Gross, K. L., ... & Robertson, B. A. (2014). Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proceedings of the National Academy of Sciences, 111(4), 1652-1657.

Wu, Y., Zhao, F., Liu, S., Wang, L., Qiu, L., Alexandrov, G., & Jothiprakash, V. (2018).

Bioenergy production and environmental impacts. Geoscience Letters, 5(1), 14.

Xiong, S., & Kätterer, T. (2010). Carbon-allocation dynamics in reed canary grass as affected by soil type and fertilization rates in northern Sweden. Acta Agriculturae Scandinavica Section B–Soil and Plant Science, 60(1), 24-32.

Xu X., Mola-Yudego, B. (2020). Where and when are plantations established? Land-use replacement patterns of fast-growing plantations on agricultural land. Biomass and Bioenergy.

Forthcoming.