• Ei tuloksia

5. Discussion

5.5. Conclusions and suggestions for future work on the model

The model did not succeed in predicting the absolute amounts trout parrs and smolts. This was probably caused by some of the model assumptions and the relatively small dataset available. The effect of small the dataset is very evident when comparing the posterior distributions of model parameters used for River Ingarskila, with those of River Pirita.

A more realistic way to include electrofishing data might have increased the model’s fit to data. An alternative way for this could have been to model the data gathered from different sampling stations separately in a hierarchical model similar to the model proposed by Mäntyniemi et al. (2005b), with unequal catchability estimates.

Based on the good prediction of the age-distribution the River Pirita data were large enough for the model to learn the parameters controlling the smoltification model. This combined with the results of previously published observations’ analysis gives encouraging evidence that the novel idea presented here for modeling partial anadromy in Salmo trutta has potential for further uses. The model’s application to other species with partial anadromy, such as the rainbow trout

(Onchorynchus mykiss) and arctic char (Salvelinus alpinus) should also be studied in the future.

The observed 2014 River Pirita smolt catch was surprisingly low, given the high densities 0+ parrs in the two years before it. The phenomenon behind this could be a density-dependent mechanism that prevents migration especially in the youngest age groups, during high population densities.

High population densities limit trout growth and their ability to tolerate seawater (Jonsson &

Jonsson 2011). It is possible that this phenomenon could be modeled, for example using a variation of the Ricker function (Ricker 1954). It is possible that autumn migrations of 0+ smolts might have caused the small amount of smolts (Limburg et al. 2001; Jonsson et al. 2001; Taal et al. 2014).

Other ways of improving the model could include assigning the range of smolt ages (σ) to be a more specific interval, since the range of possible ages used in this study was unnecessarily wide (1+ - ≥ 9+), which was only needed to include the highest reported smolt age 9+ in literature (L’Abée-Lund 1989).

The τ parameter that can be interpreted as the stocks tendency to exhibit anadromy (HIndar et al.

1990; Charles et al. 2005) could be further studied in field experiments. These experiments could include tagging large numbers fish with fluorescent marker tags in autumn electrofishing surveys, and then calculating the proportion marked fish in the smolt catch the following spring. Other way

79

could be to capture pre-smolt trouts in the spring and measure their hormonal activity, which could indicate physiological preparation for migration (Jonsson & Jonsson 2011).

Possibly the best way of improving this model would be to include the sexually mature adult proportion of trout population into the model. This would “close the loop” between older fish and the newborn parrs, making the artificial modeling of 0+ parrs based on reproduction areas and expert elicitation unnecessary. This would increase the biological realism of the model significantly.

This way the sea phase could also be included, which would enable recommendations for catch quotas and possibly aid the protection of the extremely endangered species. The model presented in this thesis serves as a starting point for that work.

80 6. Acknowledgments

The making of this thesis was supported and funded by the Rapala charity foundation and I would like thank the foundation for their donation and their decision to support this type of work. Prof.

Samu Mäntyniemi has given technical, formal and methodological guidance. Thanks to long helpful discussions with him my personal learning curve has remained steep throughout the making of this thesis. I give special thanks to MSc Martin Kesler from the Estonian Marine Institute, University of Tartu, MSc Ari Saura from the National Resource Institute of Finland and BSc Aki Janatuinen for lending me their expert knowledge about the study rivers, and providing me with the River Pirita and River Ingarskila field survey data, without of which this thesis would have been impossible to make.

7. Literature

Alabaster J.S. & Hartley W.G. 1962. The efficiency of a direct current electric fishing method in trout streams. Journal of Animal Ecology. 31: 385-388.

Antosze, O. 1999. Age structure of smolts of the migratory morphotype of the brown trout (Salmo trutta m. trutta L., 1758) from the Gowienica river. Acta Ichthyologica et Piscatoria. 29(1): 63-82.

Armstrong J. D. 1997. Self-thinning in juvenile sea trout and other salmonid fishes revisited.

Journal of Animal Ecology. 66: 519–526.

Bohlin T. 1982. The validity of the removal method for small populations – consequences for electrofishing practice. Reports from the Institute of Freshwater Research Drottningholm vol. 60:

15–18.

Borgstrom R. & Skaala O. 1993. Size-Dependent Catchability of Brown Trout and Atlantic Salmon Parr by Electrofishing in a low Conductivity Stream. Nordic Journal of Freshwater Research. 68:

14-21.

Borsuk M.E., Reichert P., Peter A., Schager, E.C. & Burkhardt-Holm P. 2006 Assessing the decline of brown trout (Salmo trutta) in Swiss rivers using a Bayesian probability network. Ecological Modelling 192: 224–244.

81

Browne, J. 1988. The use of Leslie matrices to assess the salmon population in the River Corrib. In Atlantic salmon: planning for the future (eds. Mills, D. & Piggins, D.), pp: 275-300, Timber press, Portland, Oregon.

Carlin. B.R. & Chib, S. 1995. Bayesian model choice via Markov chain Monte Carlo methods.

Journal of the Royal Statistical Society, Series B. 57(3): 473-484.

Carpa H., Sabaton C., Gouraud V., Souchon Y. & Lim P. 2003 Population Dynamics Model And Habitat Simulation As A Tool To Predict Brown Trout Demography In Natural And Bypassed Stream Reaches. River research and Applications 19: 551–568.

CEC. 2009. Commission of the European Communities. Green Paper. Reform of the Common Fisheries Policy. COM (2009) 163 final. Brussels, 22.4.2009.

Chaput G., Allard J.,Caron F., Dempson J.B., Mullins C.C. & O’Connell M.F. 1998 River-specific target spawning requirements for Atlantic salmon (Salmo salar) based on a generalized smolt production model Canadian Journal Fisheries and Aquatic Sciences 55: 246–261.

Charles K., Guyomard R., Björn Hoyheim B., Ombredane D. & Baglinière J.-L. 2005 Lack of genetic differentiation between anadromous and resident sympatric brown trout (Salmo trutta) in Normandy population. Aquatic Living Resources 18: 65–69.

Charles S., Bravo de la Parra R., Mallet J.P. Persat, H. & Auger P. 1998. Population dynamics modeling in an hierarchical arborescent river network: An attempt with Salmo trutta. Acta Biotheoretica 46: 223-234.

Chelkowski Z. 1992 Biological charecteristics of sea trout (Samo trutta L.) smolts of known age from Osowka stream. Acta Ichthyologica et Piscatoria. 22(2): 107-122.

Chelkowski, Z. 1995 Biological charecteristics of sea trout smolts (Samo trutta L.) grown fry released in the stream Osowka Acta Ichthyologica et Piscatoria. 25(1): 19-33.

Chelkowski Z. & Chelkowska B. 1982. Biological charecteristics of trout (Salmo trutta L.) smolts in grown in river Molstowa cathment area Acta Ichthyologica et Piscatoria. 12(1): 57-67.

Chelkowski Z. & Chelkowska B. 1995. Biological charecteristics of trout smolts (Salmo trutta L.) in grown in river Gowienca cathment area. Acta Ichthyologica et Piscatoria. 25(1): 35-47

82

Clark M. & Rose K. 1997. Individual-based model of stream-resident rainbow trout and brook char:

model description, corroboration, and effects of sympatry and spawning season duration Ecological Modelling. 94: 157-175.

Davidsen J.G, Svenning M.A. & Orell P. et al. 2005. Spatial and temporal migration of wild Atlantic salmon smolts determined from a video camera array in the sub-Arctic River Tana.

Fisheries Research. 74:210–222.

Elliott J. M. 1989 The critical-period concept for juvenile survival and its relevance for population regulation in young sea trout, Salmo trutta. Journal of Fish Biology 35: 91-98.

Gelman A., Carlin J.B, Stern Hal. S, Dunson D.B, Vehtari A. & Rubin D.B. 2014. Bayesian data analysis - Third edition. Chapman & Hall / CRC texts in statistical science.

Gouraud V., Bagliniere J.,L., Baran P., Sabaton C., Lim P. & Ombredane D. 2001. Factors

Regulating Brown Trout Populations In Two French Rivers: Application Of A Dynamic Population Model. Regulated Rivers: Research and Management. 17: 557–569.

Haikonen A. 2012. (In Finnish) Taimenen vaelluspoikaspyynti Ingarskilajoessa vuonna 2012. Kala- ja vesimonisteita nro 76.

Haikonen A. & Tolvanen O. 2013. (In Finnish) Taimenen vaelluspoikaspyynti Ingarskilajoessa vuonna 2013. Kala- ja vesimonisteita nro 112.

Halsband E. 1967. Basic principles of electric fishing. In Fishing With Electricity - Its Applications To Biology and Management .pp: 57-64.

Harris C. & Millner N. (eds.) (2006) Sea Trout: Biology, Conservation, and Management :

Proceedings of First International Sea Trout Symposium. Cardiff, July 2004. Blackwell Publishing Ltd.

Hastings W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications.

Biometrika. 57: 97-109.

HELCOM. 2011. Salmon and Sea Trout Populations and Rivers in Estonia – HELCOM assessment of salmon (Salmo salar) and sea trout (Salmo trutta) populations and habitats in rivers flowing to the Baltic Sea. Baltic Sea Environmental Proceedings No. 126B

83

Hilborn R. & Walters C. 1992. Quantative fisheries stock assessment. Choice, dynamics and uncertainty. Chapman and Hall, New York

Hindrar K., Jonsson B., Ryman N. & Stahl G. 1990. Genetic relationships among landlocked, resident, and anadromous Brown Trout, Salmo trutta L. Heredity. 66: 83-91.

Hoar W.S. 1976. Smolt transformation: evolution, behavior, and physiology. Journal of the Fisheries Research Board of Canada. 3: 1233-1252.

Hoar W.,S. 1988. The physiology of smolting salmonids. In: Fish physiology, vol XIB.Edited by:

Hoar WS, Randall D. Academic, New York.

ICES. 2014. Report of the Baltic Salmon and Trout Assessment Working Group (WGBAST), 26 March–2 April 2014, Aarhus, Denmark. ICES CM 2014/ACOM:08.

ICES. 1999. Report of the Baltic Salmon and Trout Assessment Working Group (WGBAST),15-23 April 1999, ICES Headquarters, Copenhagen. 149 pp.

ICES. 1987. Report of the Baltic Salmon and Trout Assessment Working Group, Copenhagen, 9-15 April 1987, C.M. 1987/Assess:21

Jarry M, Davaine P. & Beall E. 1998. A matrix model to study the colonization by brown trout of a virgin ecosystem in the Kerguelen Islands. Acta Biotheoretica. 46: 253-272.

Jobling M. & Reinsnes T.-G. 1986. Physiological and social constraints on growth of Arctic charr, Salvelinus alpinus L.: an investigation of factors leading to stunting. Journal of Fish Biology.

28(3):1095-8649.

Jonsson, N. 1991. Influence of water flow, water temperature and light on fish migration in rivers.

Nordic Journal of Freshwater Research. 66: 20-35.

Jonsson B. & L'Abée-Lund J. H. 1993 Latitudinal clines in life-history variables of anadromous brown trout in Europe. Journal of Fish Biology. 43: 1-16

Jonsson B, Jonsson N, Brodtkorb E et al. 2001. Life history traits of brown trout vary with the size of small streams. Functional Ecology. 15:310–317

84

Jonsson, B. & Jonsson, N. 2011. Ecology of Atlantic Salmon and Brown Trout: Habitat as a Template for Life Histories. Fish and Fisheries series vol. 33. Springer Dordrecht Heidelberg London New York.

Jutila E., Saura, A., Kallio-Nyberg I., Huhmarniem, A., Romakkaniemi A., Harris C. & Millner N.

(eds.) (2006) The Status and Exploitation of Sea Trout on the Finnish Coast of the Gulf of Bothnia in the Baltic Sea. In Sea Trout: Biology, Conservation, and Management : Proceedings of First International Sea Trout Symposium. Cardiff, July 2004. Blackwell Publishing Ltd.

Klemetsen A., Amundsen,P.-A., Dempson J. B., Jonsson B., Jonsson N., O’Connell M., F. &

Mortensens M. 2003. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecology of Freshwater fish. 12: 1-59.

Kuikka S., Hilden M., Gislason H., Hansson S., Sparholt H., & Varis, O.1999. Modelling

environmentally driven uncertainties in Baltic Cod management by Bayesian influence diagrams.

Canadian Journal of Fisheries and Aquatic Sciences. 56:629–641.

Kuikka S., Vanhatalo J., Pulkkinen H., Mäntyniemi S. & Corander, J. 2014. Experiences in Bayesian Inference in Baltic Salmon Management. Statistical Science. 29(1): 42–49.

L’Abée-Lund JH, Jonsson B., Jensen A.J. et al. 1989. Latitudinal variation in life history

characteristics of sea-run migrant brown trout Salmo trutta. Journal of Animal Ecology. 58: 525–

542.

Lamond, H. 1916. The Sea-Trout: A Study in Natural History. Sherratt & Hughes, Manchester, 219 pp.

Landergren P. 2004. Factors affecting early migration of sea trout (Salmo trutta) parr to brackish water. Fisheries Restoration. 67: 283–294.

Lecomte J.-B. & Laplanche C. 2012. A length-based hierarchical model of brown trout (Salmo trutta fario) growth and production. Biometrical Journal. 54 (1): 108–126.

Lee D.C.& Hyman J.B. 1992. The Stochastic Life-Cycle Model (SLCM): Simulating the Population Dynamics of Anadromous Salmonids. United States - Department of Agriculture Forest Service Intermountain Research Station Research Paper INT-459 October 1992

85

Leslie P.,H. 1945. On the Use of Matrices in Certain Population Mathematics. Biometrika 33(3): 183-212.

Limburg K. E., Landergren P., Westin L., Elfman M. & Kristiansson, P. 2001. Flexible modes of anadromy in Baltic sea trout: making the most of marginal spawning streams. Journal of Fish Biology. 59(3): 682–695

Lincoln F. C. 1930. Calculating Waterfowl Abundance on the Basis of Banding Returns. United States Department of Agriculture Circular. 118: 1–4.

Metropolis N., Rosenbluth A. W., Rosenbluth M. N. & Teller Ah. H. 1954. Equations of state calculations by fast computing machine. Journal of Chemical Physics. 21: 1087-1091.

Michielsens, C. G. J., McAllister M. K., Kuikka S., Mäntyniemi M., Romakkaniemi A., Pakarinen T., Karlsson L., Uusitalo L. 2008. Combining multiple Bayesian data analyses in a sequential framework for quantitative fisheries stock assessment. Canadian Journal of Fisheries and Aquatic Sciences. 65: 962–974.

Moore A, Ives S, Mead TA et al. 1998. The migratory behaviour of wild Atlantic salmon (Salmo salar L.) smolts in the River Test and Southampton Water, southern England. Hydrobiologia.

371/372: 295–304.

Mäntyniemi S. 2005a. Bayesian fisheries stock assessment: integrating and updating knowledge.

PhD thesis, Rolf Nevanlinna Institure, Department of Mathematics and Statistics, Faculty of Science, University of Helsinki.

Mäntyniemi S., Romakkaniemi A. & Arjas E. 2005b. Bayesian removal estimation of a population size under unequal catchability. Canadian Journal of Fisheris and Aquatic Sciences. 62: 291–300.

Narum S. R., Contour C., Talbot A., Powell M.S. 2004. Genetic divergence of sympatric resident and anadromous forms of Oncorhynchus mykiss in the Walla Walla River, U.S.A. Journal of Fish Biology. 65:471–488.

86

Natural resource Institute of Finland’s website (2015) (In Finnish) Available from:

http://www.rktl.fi/kala/kalavarat/itameren_lohi_taimen/meritaimen/meritaimenkantojen_tila.html [accessed 20 March 2015].

Nicola G. G., Almodovar A., Jonsson B. et al. 2008. Recruitment variability of resident brown trout in peripheral populations from southern Europe. Freshwater Biology. 53: 2364-2374.

Nicola G.,G., Almodovar A., Elvira, B. 2009. Influence on hydrologic attributes on brown trout recruitment in low-latitude range margins. Oecologia. 160 (5): 15–524.

Petersen C. G. J. 1896. The Yearly Immigration of Young Plaice Into the Limfjord From the German Sea. Report of the Danish Biological Station (1895) vol. 6. pp: 5–84

Rassi P. Hyvärinen E., Juslén A. & Mannerkoski, I. (eds.) 2010: The 2010 Red List of Finnish Species. Ympäristöministeriö & Suomen ympäristökeskus, Helsinki..

Reynolds J. B. 1996. Electrofishing. In Fisheries techniques. Edited by: Murphy, B. R. and Willis, D. W. 221–253. Bethesda, Maryland. American Fisheries Society.

Reynolds J. B. & Simpson D. E. 1978. Evaluation of fish sampling methods and rotenone census. In New approaches to the management of small impoundments, North Central Division, Special Publication 5. Edited by: Novinger, G. D. and Dillard, J. G., p: 11–24. Bethesda, Maryland.

American Fisheries Society.

Ricker W., E. (1954) Stock and recruitment. Journal of the Fisheries Research Board of Canada.

11: 559–623.

Rivot E., Prévost E., Parent E. & Baglinière J.L. 2004. A Bayesian state-space modeling framework for fitting a salmon stage-structured population dynamic model to multiple time series of field data.

Ecologiacal modeling. 179: 463-485.

Ruiz P. & Laplanche C. 2010. A hierarchical model to estimate the abundance and biomass of salmonids by using removal sampling and biometric data from multiple locations. Canadian Journal of Fisheries and Aquatic Sciences. 67: 2032–2044.

Saura A. 2001. (In Finnish) Taimenkantojen tila Suomenlahden pohjoisrannikon joissa Kalatutkimuksia. 175. Riista- ja kalatalouden tutkimuslaitos, Helsinki 2001

87

Sabaton C., Siegler L., Gouraud V., Bagliniere J.L.& Manné, S. 1997. Presentation and first applications of a dynamic population model for brown trout, Salmo trutta L.: aid to river management. Fisheries Management and Ecology. 4: 425-438.

Sinclair A. E. G. 1989. The regulation of animal populations. In: Cherrett M (ed.) Ecological concepts. British ecological society symposium. Blackwell Science, Oxford.

Skrupskelis K., Stakenas S., Virbickas T., Nika N. 2012. Age and size of migrating Atlantic salmon, Salmo salar L., and sea trout, Salmo trutta L., smolts in Lithuanian rivers. Archives of Polish Fisheries. 20: 255-266.

Svendsen J.C., Eskesen A.O., Aarestrup K. et al. 2007. Evidence for non-random spatial positioning of migrating smolts (Salmonidae) in a small lowland stream. Freshwater Biology. 52:1147–1158.

Taal I., Kesler M., Saks L., Rohtla M., Verliin A., Svirgsden R., Jürgens K., Vetemaa M. & Saat T.

2014. Evidence for an autumn downstream migration of Atlantic salmon Salmo salar (Linnaeus) and brown trout Salmo trutta (Linnaeus) parr to the Baltic Sea. Helgoland Marine Research. 68(2):

373-377.

Taylor A.L.L., Lee M.J. & Welton J.S. 2002. Guidelines for Electric Fishing Best Practice R&D Technical Report W2-054/TR, W R C Beaumont.

Van Winkle W., Jager H.,I., Railsback S.,F., Holcomb B.,D., Studley T.,K., Baldrige J.,E. 1998.

Individual-based model of sympatric populations of brown and rainbow trout for instream flow assessment: model description and calibration. Ecological Modeling. 110: 175–207.

Vetter E. F. 1988. Estimation of natural mortality in fish stock: A review. Fishery Bulletin. 86(1):

25-43.

Vibert R. 1967. General report of the working party on the applications of electricity to inland fishery biology and management. In Fishing with electricity: its application to biology and management Edited by: Vibert R. Oxford, UK. Fishing News Books.

88 Appendix A.

Graphical representation of the model.

89 Appendix B.

Table of brown trout smolt mean ages in different rivers on Europe, derived from litetature. * Combined average of two or more datasets.

Country River

90

91

Yearly_run[y,river]<-sum(Smolt_y[y,,river])+1 mean_age_y[y,river]<-inprod(weight[y,,river],age[]) for(a in 1:A){

Smolt_y[y,a,river]<-sum(Smolt[y,,a,river])

weight[y,a,river]<-Smolt_y[y,a,river]/Yearly_run[y,river]

} } }

##### LINK BETWEEN LOCAL PEAK AGE AND LATITUDE ######

for( river in 1:RIVERS){

obs_mean_age[river]~dnorm(mean_age[river],tau_obs_age[river])T(0,) # havaittu keski-ikä

tau_obs_age[river]<-1/pow(sd_obs_age[river],2) # havainnon mittausepävarmuus????

mean_age[river]<-mean(mean_age_y[,river]) #painotetun vuotuisen keski-iän keskiarvo }

for( river in 1:9){

sd_obs_age[river]~dunif(0,1) }

for( river in 10:RIVERS){

sd_obs_age[river]<-(age95[river]/1.96) }

for(river in 1:NA_RIVERS){

for(y in 1:years){

Parr_density[y,river]<-(TN[y,river]/sample_area[y,river])*100

92

Monitor_Parr[y,a,river]<-Parr[y,1,a,river]

for(t in 1:time){

parr[y,t,a,river]<-((x[y,t,a,river]/100)*tot_area[river]) # NEWBORN 0+ PARRS }

93

parr[y,1,a,river]~dpois(mu_parr[y,1,a,river])#~dbin(psurv[y,1,a,river],Parr[y-1,4,a-1,river]) # AGEING OF PARRS

mu_parr[y,1,a,river]<-psurv[y,1,a,river]*Parr[y-1,4,a-1,river]+0.01

Smolt[y,1,a,river]~dbin(psmolt[y,1,a,river],Parr[y,1,a,river]) #SMOLT PRODUCTION

x[y,1,a,river]<-parr[y-1,4,a-1,river]/tot_area[river]*100 for(t in 2:time){

94

Smolt[y,t,a,river]~dbin(psmolt[y,t,a,river],Parr[y,t,a,river]) }

95

Smolt[y,t,a,river]<-0#psmolt[y,t,a,river]*Parr[y,t,a,river]

}

x[y,t,a,river]<-parr[y,t,a,river]/tot_area[river]*100 # All parrs per 100 sqrmeters in other timesteps

apu_parr[y,t,a,river]<-round((parr[y,t,a,river]-Smolt[y,t,a,river])) Parr[y,t,a,river]<-round(parr[y,t,a,river])

96

x[y,1,1,river]<-prior_x[river]/psurv[y,1,1,river]/psurv[y,2,1,river] # 0+ parr per 100 sqrmeters in the begining of year

for(t in 2:time){

x[y,t,1,river]<-parr[y,t,1,river]/tot_area[river]*100 # 0+ parrs per 100 sqrmeters in other timesteps

} } }

for(river in 1:RIVERS){

prior_x[river]<-exp(ln_prior_x[river])

ln_prior_x[river]~dnorm(lmu_prior_x[river],ltau_prior_x[river]) lmu_prior_x[river]<-log(mu_prior_x[river])-0.5*lsd_prior_x[river]

ltau_prior_x[river]<-1/lsd_prior_x[river]

lsd_prior_x[river]<-log(pow(sd_prior_x[river],2)/pow(mu_prior_x[river],2)+1)

}

##### ARTIFICIAL EXPERT PRIORS FOR OTHER RIVERS #####

for(river in 3:RIVERS){

97 x[y,1,a,river]~dunif(1,100)

for(t in 2:time){

x[y,t,a,river]<-parr[y,t,a,river]/tot_area[river]*100 # Older parrs per 100 sqrmeters in other timesteps of year 1

} } } }

##### OWN PRIOR FOR OLDER AGE GROUPS IN PIRITA & INGARSKILA #####

for(river in 1:NA_RIVERS){

for(y in 1:1){

for(a in 2:A){

x[y,1,a,river]<-exp(ln_x[a])/psurv[y,1,1,river]/psurv[y,2,1,river]

for(t in 2:time){

x[y,t,a,river]<-parr[y,t,a,river]/tot_area[river]*100 # Older parrs per 100 sqrmeters in other timesteps of year 1

M_x[2]<-7.476602 # Ingarkilan datan >0+ kalojen keskimäär. tiheys samoilla koe-aloilla, joista datassa olevat kalat on peräisin

SD_x[2]<-25

98

M_x[3]<-0.399273 # Ingarkilan datan >1+ kalojen keskimäär. tiheys samoilla koe-aloilla, joista datassa olevat kalat on peräisin

M_x[4]<-4.385051 # > "ei määritetty" Saura arveli kalojen olevan pääasiassa 3+ ikäisiä M_x[5]<-0.5

alpha_pii[river]~dnorm(mu_alpha.pii,tau_alpha.pii) beta_pii[river]~dnorm(mu_beta.pii,tau_beta.pii) for(a in 1:A){

logit(pii[a,river])<-Pii[a,river]

Pii[a,river]~dnorm(mu_mu_pii[a,river],100)

mu_mu_pii[a,river]<-(alpha_pii[river]+(beta_pii[river]*age[a])) inst_pii[a,river]<-pow(pii[a,river],(1/4))

}

}##### INDIVIDUAL FISHES CHANCE OF SMOLTIFICATION #####

### P(smolt I age, river) ####

for( river in 1:RIVERS){

mu_p[river]<-ten_mu_p[river]*10 logit(ten_mu_p[river])<-MU_p[river]

MU_p[river]~dnorm(mu_mu_p[river],100)#tau_mu_p) peak_p[river]~dbeta(alpha_peak_p,beta_peak_p) mu_mu_p[river]<-alpha_p*latitude[river]+const_p s[river]~dunif(0.01,10)

99 p[1,river]<-0

for(a in 2:A){

p[a,river]<-peak_p[river]*exp((-pow(((age[a]-mu_p[river])/s[river]),2))) }

alpha_p~dnorm(mu_alpha_p,tau_alpha_p) const_p~dnorm(mu_const_p,tau_const_p) mu_peak_p<-0.5

#### STUDY RIVER VARIABLES FOR PLOTTING ####

mu_p_Pirita<-mu_p[1]

mu_p_Ingars<-mu_p[2]

100

tot_area[river]<-exp(ltot_area[river])

ltot_area[river]~dnorm(lmu_tot_area[river],ltau_tot_area[river]) lmu_tot_area[river]<-log(mu_tot_area[river])-0.5*lsd_tot_area[river]

lsd_tot_area[river]<-log(pow(sd_tot_area[river],2)/pow(mu_tot_area[river],2)+1) ltau_tot_area[river]<-1/lsd_tot_area[river]

for(y in 1:years){

#####COMBINED EXPERT PRIOR FOR RIVER INGARSKILANJOKI #####

mu_tot_area[2]<-mu_mu_prior_area[expert]

sd_tot_area[2]<-mu_sd_prior_area[expert]

mu_mu_prior_area[1]<-1220 # Ari Sauna (2015)

mu_mu_prior_area[2]<-1355.994 # Aki Janatuinen (2015)

101

catch[y,a,river]~dpois(mu_catch[y,a,river])

mu_catch[y,a,river]<-w[a,river]*n[y,3,a,river]+0.01

N[y,t,a,river]<-((parr[y,t,a,river]/tot_area[river])*sample_area[y,river]) }

} } }

for(a in 1:A){

mu_w[a,1]<-alpha_w1+beta_w1*age[a] #model1: catchability increases with age (length)

102

mu_w[a,2]<-alpha_w2+beta_w2*age[a] #model2: catchability decreases with age (length) for(river in 1:NA_RIVERS){

logit(w[a,river])<-W[a,river] # logistic regression for catchability at age (age assumed to correlate positively with lenght)

W[a,river]~dnorm(mu_w[a,w.model],100) # Bayesian model avereging for two types of catchability mechanisms

C[y,a,river]~dpois(mu_C[y,a,river]) # Amount of observed smolts in the trap mu_C[y,a,river]<-catchability[y,river]*Smolt[y,1,a,river]+0.01

for(t in 1:time){

smolt[y,t,a,river]<-round(Smolt[y,t,a,river]) }

103 alpha1[river]<-(mu_M[river]*eta.surv)

beta1[river]<-(1-mu_M[river])*eta.surv

alpha[river]<-(mu_catchability[river]*eta.trap.catch) beta[river]<-((1-mu_catchability[river])*eta.trap.catch)

mu_catchability[river]<-trapw[river]/riverw[river] # prior mean catchability is assumed to be the ratio between the river's width and the trap's width

for(y in 1:years){

catchability[y,river]~dbeta(alpha[river],beta[river]) # beta distribution for catchability Re_capture[y,river]~dbin(catchability[y,river],Tsurv[y,river] )

#(catchability[y,river],Tsurv[y,river]) # Higher mortality in tagging experiment with anesthesia and bulky tags, lower mortality in tagging experiment with tattoos and no anesthesia

Tsurv[y,river]<-round(tagged[y,river])

tagged[y,river]<-(Tagged[y,river]*p_tag_surv[river]) # Some proportion of tagged fish is assumed to die as a result of the tagging experiment

} }

##### MODEL TESTING VARIABLES #####

#####ADD NEW VARIABLES WHEN ADDING NEW RIVERS INTO THE DATASET#####

mm.p.value.C_PIRITA<-mean(mean.p.value.C[8:15,1])

mm.p.value.C_INGARSKILA<-mean(mean.p.value.C[12:14,2]) mm.p.value.catch_PIRITA<-mean(mean.p.value.catch[7:15,1])

mm.p.value.catch_INGARSKILA<-mean(mean.p.value.catch[11:15,2])

#### BAYESIAN P-VALUES FOR MODEL FIT #####

for(river in 1:NA_RIVERS){

for(y in 1:years){

mean.p.value.C[y,river]<-mean(p.value.C[y,,river])

mean.p.value.catch[y,river]<-mean(p.value.catch[y,,river]) for(a in 1:A){

p.value.C[y,a,river]<-step(C[y,a,river]-rep.C[y,a,river])

p.value.catch[y,a,river]<-step(catch[y,a,river]-rep.catch[y,a,river]) rep.C[y,a,river]~dpois(mu_rep.C[y,a,river])

104

mu_rep.C[y,a,river]<-(catchability[y,river]*smolt[y,1,a,river]) rep.catch[y,a,river]~dpois(mu_rep.catch[y,a,river])

mu_rep.catch[y,a,river]<-(w[a,river]*n[y,3,a,river]) }

} }

alpha_w1~dnorm(mu_alpha.w1,tau_alpha.w1) beta_w1~dnorm(mu_beta.w1,tau_beta.w1)

alpha_w2~dnorm(mu_alpha.w2,tau_alpha.w2) beta_w2~dnorm(mu_beta.w2,tau_beta.w2) }