• Ei tuloksia

The WINDROT simulation framework represents a novel approach in disturbance modelling that takes into detailed consideration interactive stand dynamics and various disturbance agents. The simulation framework aims to integrate abiotic and biotic disturbance dynamics and risk assessments as an active part of future forest management simulation scenarios. It is intended as a tool for researchers to analyse the risk posed by various disturbance agents to forest management under different scenarios and todeliver information for forest policy actors and decision makers at the national and EU-levels.

Seidl et al. (2011a) reviewed the development of disturbance modelling since Pickett and White (1985) and found that the disturbance agent interactions were especially modelled with statistical concepts. However, statistical models have limitations when it comes to disturbances, which are in most cases highly stochastic events. In addition, the complex interactions between disturbance agents, forming disturbance regimes, modelled with statistical methods limit the understanding of the underlying mechanisms. Therefore, Seidl et al. (2011a) concluded that there were the following four challenges for disturbance modelling: i) a better understanding of the key mechanisms with novel statistical methods, ii) development of mechanistic models to be applied in the changing world, iii) integration of disturbance models in ecosystem models, and iv) solving scalability issues from even cell-level processes to the landscape level. The development of the WINDROT simulation framework improved mechanistic modelling for Heterobasidion and Ips typoghraphus dynamics as well as introducing novel ways to incorporate interactive dynamics between different disturbance agents. The inclusion of the disturbance models with the MOTTI decision support system integrated the disturbances into a platform used actively to support decision making. The scalability was developed from the cell (e.g., tracheid dimensions in Hmodel) to the stand levels. However, the future challenge for the development of the WINDROT simulation framework is its scalability from the stand to landscape levels, which will require better models for landscape level dispersal. In addition, the inclusion of climate change effects on the disturbance dynamics is an area for future development.

Economic evaluation of the results should also be incorporated in the model in the future to better estimate the economic losses caused by different disturbances as well as to economically justify various control measures.

The main ambition of the model development was to take advantage of the vast amount of existing literature on the disturbance dynamics. The dynamics of each disturbance agent in this study have been extensively studied over the past decades and the biology and epidemiology of Heterobasidion species or Ips typographus are among the most well-known (e.g., Garbelotto and Gonthier, 2013; Wermelinger, 2004).

Modelling disturbance dynamics is a complex task and the mechanisms and processes affecting the model must be simplified. Therefore, it is crucial to understand that models are simplifications of the real world. However, they can help us to understand the underlying mechanisms of different processes. The limitations of model development and performance analyses raised several issues that will need further research in the future. New quantitative results are needed focusing on the key processes of the dynamics of each disturbance agent as well as their interactions with each other. For example the mechanisms related to the underground secondary spread of Heterobasidion and to the root system dynamics should be studied. In addition, the underlying mechanisms regarding the decrease of mechanical strength due to wood decay should be studied in greater detail.

REFERENCES

Äijälä, O., Koistinen, A., Sved, J., Vanhatalo, K., Väisänen, P. (2014). Hyvän metsänhoidon suositukset – Metsänhoito (Recommendations for good forest

management – forest management) [in Finnish]. Forestry Development Centre Tapio.

264 p.

Ancelin, P., Courbaud, B., Fourcaud, T. (2004). Development of an individual tree-based mechanical model to predict wind damage within forest stands. Forest Ecology and Management 203: 101–121. https://doi.org/10.1016/j.foreco.2004.07.067

Anderbrandt, O. (1990). Gallery construction and oviposition of the bark beetle Ips typographus (Coleoptera: Scolytidae) at different breeding densities. Ecological Entomology 15: 1–8. https://doi.org/10.1111/j.1365-2311.1990.tb00777.x

Anderbrant, O. (1986). A model for the temperature and density dependent reemergence of the bark beetle Ips typographus. Entomologia Experimentalis et Applicata 40: 81–88.

https://doi.org/10.1111/j.1570-7458.1986.tb02158.x

Anderbrant, O., Schlyter, F., Birgersson, G. (1985). Intraspecific competition affecting parents and offspring in the bark beetle Ips typographus. Oikos 45: 89–98.

https://doi.org/10.2307/3565226

Annila, E. (1969). Influence of temperature upon the development and voltinism of Ips typographus L. (Coleoptera, Scolytidae). Annales Zoologici Fennici 6: 161–208.

http://www.jstor.org/stable/23731366

Annila, E. (1971). Sex ratio in Ips typographus L. (Col. scolytidae). Ann. Entomol. Fenn.

37: 7–14.

Arvidson, B. (1954). En studie av granröttans (Polyporus annosus Fr.) ekonomiska konsekvenser. Svenska skogsvårdsföreningens Tidskrift 52: 381–412.

Austarå, Ø., Midtgaard, F. (1986). On the longevity of Ips typographus L. adults.

Zeitschrift für Angevandte Entomologie 102: 106–111.

https://doi.org/10.1111/j.1439-0418.1986.tb00898.x

Bakke, A., Froeyen, P., Skatteboel, L. (1977). Field response to a new pheromonal compound isolated from Ips typographus. Naturwissenschaften 64: 98–99.

https://doi.org/10.1007/BF00437364

Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., Butterfield, J., Buse, A., Coulson, J.C., Farrar, J., Good, J.E.G., Harrington, R., Hartley, S., Jones, T.H., Lindroth, R.L., Press, M.C., Symrnioudis, I., Watt, A.D., Whittaker, J.B. (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8: 1–16.

https://doi.org/10.1046/j.1365-2486.2002.00451.x

Bazzigher, G., Schmid, P. (1969). Sturmschaden und Fäule. Schweizerische Zeitschrift für Forstwesen 10: 521–535.

Bendz-Hellgren, M., Brandtberg, P.-O., Johansson, M., Swedjemark, G., Stenlid, J. (1999).

Growth rate of Heterobasidion annosum in Picea abies established on forest land and arable land. Scandinavian Journal of Forest Research 14: 402–407.

https://doi.org/10.1080/02827589950154104

Bendz-Hellgren, M., Stenlid, J. (1995). Long-term reduction in the diameter growth of butt rot affected Norway spruce, Picea abies. Forest Ecology and Management 74: 239–

243. https://doi.org/10.1016/0378-1127(95)03530-N

Bendz-Hellgren, M., Stenlid, J. (1997). Decreased volume growth of Picea abies in

response to Heterobasidion annosum infection. Canadian Journal of Forest Research 27: 1519–1524. https://doi.org/10.1139/x97-104

Bergeron, C., Ruel, J.-C., Èlie, J.-G., Mitchell, S.J. (2009). Root anchorage and stem strength of black spruce (Picea mariana) trees in regular and irregular stands.

Forestry 82: 29–41. https://doi.org/10.1093/forestry/cpn035

Blennow, K., Andersson, M., Sallnäs, O., Olofsson, E. (2010). Climate change and the probability of wind damage in two Swedish forests. Forest Ecology and Management 259: 818–830. https://doi.org/10.1016/j.foreco.2009.07.004

Bouget, C., Duelli, P. (2004). The effects of windthrow on forest insect communities: a literature review. Biological Conservation 118: 281–299.

https://doi.org/10.1016/j.biocon.2003.09.009

Brandtberg, P.O., Johansson, M., Seeger, P. (1996). Effects of season and urea treatment on infection of stumps of Picea abies by Heterobasidion annosum in stands on former arable land. Scandinavian Journal of Forest Research 11: 261–268.

https://doi.org/10.1080/02827589609382935

Byrne, K.E., Mitchell, S.J. (2013). Testing of WindFIRM/ForestGALES_BC: A hybrid-mechanistic model for predicting windthrow in partially harvested stands. Forestry 86: 185–199. https://doi.org/10.1093/forestry/cps077

Caudullo, G., Tinner, W., de Rigo, D. (2016). Picea abies in Europe: distribution, habitat, usage and threats, in: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Durrant, Houston, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publication Office of the European Union, Luxembourg, pp. 114–116.

https://doi.org/10.2788/038466

Dale, V.H., Joyce, L.A., McNulty, S., Neilson, R.P., Ayres, M.P., Flannigan, M.D., Hanson, P.J., Irland, L.C., Lugo, A.E., Peterson, C.J., Simberloff, D., Swanson, F.J., Stocks, B.J., Wotton, M. (2001). Climate change and forest disturbances. BioScience 51: 723–734. https://doi.org/10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2 Dietze, M.C., Matthes, J.H. (2014). A general ecophysiological framework for modelling the impact of pests and pathogens on forest ecosystems. Ecology Letters 17: 1418–

1426. https://doi.org/10.1111/ele.12345

Dupont, S., Ikonen, V.-P., Vaisanen, H., Peltola, H. (2015). Predicting tree damage in fragmented landscapes using a wind risk model coupled with an airflow model.

Canadian Journal of Forest Research 45: 1065–1076. https://doi.org /10.1139/cjfr-2015-0066

Dymond, C.C., Neilson, E.T., Stinson, G., Porter, K., MacLean, D.A., Gray, D.R., Campagna, M., Kurz, W.A. (2010). Future spruce budworm outbreak may create a carbon source in Eastern Canadian forests. Ecosystems 13: 917–931.

https://doi.org/10.1007/s10021-010-9364-z

Eriksson, M., Neuvonen, S., Roininen, H. (2007). Retention of wind-felled trees and the risk of consequential tree mortality by the European spruce bark beetle Ips typographus in Finland. Scandinavian Journal of Forest Research 22: 516–523.

https://doi.org/10.1080/02827580701800466

Eriksson, M., Pouttu, A., Roininen, H. (2005). The influence of windthrow area and timber characteristics on colonization of wind-felled spruces by Ips typographus (L.). Forest Ecology and Management 216: 105–116.

https://doi.org/10.1016/j.foreco.2005.05.044

Fahse, L., Heurich, M. (2011). Simulation and analysis of outbreaks of bark beetle infestations and their management at the stand level. Ecological Modelling 222:

1833–1846. https://doi.org/10.1016/j.ecolmodel.2011.03.014

Frankel, S. (1998). User’s guide to the Western Root Disease Model, version 3.0., Gen.

Tech. Rep. PSW-GTR-165. Albany, CA.

https://www.fs.fed.us/foresthealth/technology/pdfs/Gtr-PSW-165_Western_Root.pdf [Cited 20 Oct 2016]

Franklin, A.J., Grégoire, J.-C. (1999). Flight behaviour of Ips typographus L. (Col., Scolytidae) in an environment without pheromones. Annals of Forest Science 56:

591–598. https://doi.org/10.1051/forest:19990706

Fraser, A.I. (1962). The soil and roots as factors in tree stability. Forestry 23: 117–127.

https://doi.org/10.1093/forestry/34.2.117

Fuhr, M.J., Schubert, M., Schwarze, F.W.M.R., Herrmann, H.J. (2011). Modelling the hyphal growth of the wood-decay fungus Physisporinus vitreus. Fungal Biology 115:

919–932. https://doi.org/10.1016/j.funbio.2011.06.017

Garbelotto, M., Gonthier, P. (2013). Biology, epidemiology, and control of Heterobasidion species worldwide. Annual review of phytopathology 51: 39–59.

https://doi.org/10.1146/annurev-phyto-082712-102225

Garbelotto, M., Slaughter, G., Popenuck, T., Cobb, F.W., Bruns, T.D. (1997). Secondary spread of Heterobasidion annosum in white fir root-disease centers. Canadian Journal of Forest Research 27: 766–773. https://doi.org/10.1139/x96-193

Gardiner, B., Byrne, K., Hale, S., Kamimura, K., Mitchell, S.J., Peltola, H., Ruel, J.-C.

(2008). A review of mechanistic modelling of wind damage risk to forests. Forestry 81: 447–463. https://doi.org/10.1093/forestry/cpn022

Gardiner, B., Peltola, H., Kellomäki, S. (2000). Comparison of two models for predicting the critical wind speeds required to damage coniferous trees. Ecological Modelling 129: 1–23. https://doi.org/10.1016/S0304-3800(00)00220-9

Gilbert, M., Nageleisen, L.-M., Franklin, A., Gregoire, J.-C. (2005). Post-storm surveys reveal large-scale spatial patterns and influences of site factors, forest structure and diversity in endemic bark-beetle populations. Landscape Ecology 20: 35–49.

https://doi.org/10.1007/s10980-004-0465-y

Giordano, L., Lione, G., Nicolotti, G., Gonthier, P. (2012). Effect of Heterobasidion annosum s.l. root and butt rots on the stability of Norway spruce: an uprooting test, in: Capretti, P., Comparini, P., Garbelotto, M., La Porta, N., Santini, A. (Eds.), Proceeding of the XIII International Conference on Root and Butt Root of Forest Trees. Firenze (FI) – S. Martino Di Castrozza (TN), Italy, 4th – 10th September 2012.

University Press, Firenze, pp. 247–250.

Gonthier, P., Anselmi, N., Capretti, P., Bussotti, F., Feducci, M., Giordano, L., Honorati, T., Lione, G., Luchi, N., Michelozzi, M., Paparatti, B., Sillo, F., Vettraino, A.M., Garbelotto, M. (2014). An integrated approach to control the introduced forest pathogen Heterobasidion irregulare in Europe. Forestry 87: 471–481.

https://doi.org/10.1093/forestry/cpu015

Gonthier, P., Garbelotto, M., Nicolotti, G. (2005). Seasonal patterns of spore deposition of Heterobasidion species in four forests of the Western alps. Phytopathology 95: 759–

767. https://doi.org/10.1094/PHYTO-95-0759

Gonthier, P., Nicolotti, G., Linzer, R., Guglielmo, F., Garbelotto, M. (2007). Invasion of European pine stands by a North American forest pathogen and its hybridization with a native interfertile taxon. Molecular ecology 16: 1389–1400.

https://doi.org/10.1111/j.1365-294X.2007.03250.x

Gordon, D.T. (1973). Damage from wind and other causes in mixed white fir – red fir

stands adjacent to clearcuttings, USDA For. Serv. Res. Pap. PSW-90. Berkeley, California.

https://www.fs.fed.us/psw/publications/documents/psw_rp090/psw_rp090.pdf [Cited 3 Sep 2016]

Grégoire, J.-C., Raffa, K.F., Lindgren, B.S. (2015). Economics and politics of bark beetles, in: Vega, F.E., Hofstetter, R.W., (Eds.) Bark Beetles. pp. 585–613.

https://doi.org/10.1016/B978-0-12-417156-5.00015-0

Gregow, H. (2013). Impacts of strong winds, heavy snow loads and soil frost conditions on the risks to forests in northern Europe. Finn. Meteorol. Inst. Contrib., Finn. Meteorol.

Inst. Contrib. 94: 1–178.

Gregow, H., Peltola, H., Laapas, M., Saku, S., Venäläinen, A. (2011). Combined

occurrence of wind, snow loading and soil frost with implications for risks to forestry in Finland under the current and changing climatic conditions. Silva Fennica 45: 35–

54. https://doi.org/10.14214/sf.30

Greig, B.J.W., Low, J.D. (1975). An experiment to control Fomes annosus in second rotation pine crops. Forestry 47: 147–163. https://doi.org/10.1093/forestry/48.2.147 Grime, J.P. (2001). Plant strategies, vegetation processes, and ecosystem properties, 2nd ed.

ed. Wiley, Chichester. 417 p.

Grünwald, M. (1986). Ecological segregation of bark beetles (Coleoptera, Scolytidae) of spruce. Journal of Applied Entomology 101: 176–187. https://doi.org/10.1111/j.1439-0418.1986.tb00846.x

Hanewinkel, M., Hummel, S., Albrecht, A. (2011). Assessing natural hazards in forestry for risk management: a review. European Journal of Forest Research 130: 329–351.

https://doi.org/10.1007/s10342-010-0392-1

Healey, S.P., Raymond, C.L., Lockman, I.B., Hernandez, A.J., Garrard, C., Huang, C.

(2016). Root disease can rival fire and harvest in reducing forest carbon storage.

Ecosphere 7: e01569. https://doi.org/10.1002/ecs2.1569

Hedgren, P.O., Schroeder, L.M., Weslien, J. (2003). Tree killing by Ips typographus (Coleoptera: Scolytidae) at stand edges with and without colonized felled spruce trees. Agricultural and Forest Entomology 5: 67–74. https://doi.org/10.1046/j.1461-9563.2003.00164.x

Heinonen, T., Pukkala, T., Ikonen, V.-P., Peltola, H., Gregow, H., Venäläinen, A. (2011).

Consideration of strong winds, their directional distribution and snow loading in wind risk assessment related to landscape level forest planning. Forest Ecology and Management 261: 710–719. https://doi.org/10.1016/j.foreco.2010.11.030

Heinonen, T., Pukkala, T., Ikonen, V.-P., Peltola, H., Venäläinen, A., Dupont, S. (2009).

Integrating the risk of wind damage into forest planning. Forest Ecology and Management 258: 1567–1577. https://doi.org/10.1016/j.foreco.2009.07.006 Horntvedt, R., Christiansen, E., Solheim, H., Wang, S. (1983). Artificial inoculation with

Ips typographus-associated blue stain fungi can kill healthy Norway spruce trees.

Meddelelser fra Norsk institutt for skogforskning 38.4: 1–20.

Huitu, O., Kiljunen, N., Korpimäki, E., Koskela, E., Mappes, T., Pietiäinen, H., Pöysä, H., Henttonen, H. (2009). Density-dependent vole damage in silviculture and associated economic losses at a nationwide scale. Forest Ecology and Management 258: 1219–

1224. https://doi.org/10.1016/j.foreco.2009.06.013

Hynynen, J., Salminen, H., Ahtikoski, A., Huuskonen, S., Ojansuu, R., Siipilehto, J., Lehtonen, M., Eerikäinen, K. (2015). Long-term impacts of forest management on biomass supply and forest resource development: a scenario analysis for Finland.

European Journal of Forest Research 134: 415–431. https://doi.org/10.1007/s10342-014-0860-0

Hynynen, J., Salminen, H., Ahtikoski, A., Huuskonen, S., Ojansuu, R., Siipilehto, J., Lehtonen, M., Rummukainen, A., Kojola, S., Eerikäinen, K. (2014). Scenario analysis for the biomass supply potential and the future development of Finnish forest resources. Working papers of the Finnish Forest Research Institute 302. 106 p.

http://urn.fi/URN:ISBN:978-951-40-2487-0

Isomäki, A., Kallio, T. (1974). Consequences of injury caused by timber harvesting

machines on the growth and decay of spruce (Picea abies (L.) Karst.). Acta Forestalia Fennica 136: 1-25.

Jones, H.G. (1983). Plants and microclimate. A quantitative approach to environmental plant physiology, Cambridge,. ed. Cambridge University Press. 428 p.

Kaila, A., Ihalainen, A. (2014). Forest resources, in: Peltola, A. (Ed.), Finnish Statistical Yearbook of Forestry 2014. Finnish Forest Research Institute, pp. 33–78.

Kallio, T. (1970). Aerial distribution of the root-rot fungus Fomes annosus (Fr.) Cooke in Finland. Acta Forestalia Fennica 1107: 1-55. http://hdl.handle.net/1975/8428 Kalliokoski, T., Sievänen, R., P., N. (2010). Tree roots as self-similar branching structures;

axis differentiation and segment tapering in coarse roots of three boreal forest tree species. Trees 24: 219–236. https://doi.org/10.1007/s00468-009-0393-1

Kaplan, S., Garrick, B.J. (1981). On the quantitative definition of risk. Risk Analysis 1: 11–

27. https://doi.org/10.1111/j.1539-6924.1981.tb01350.x

Kasanen, R., Terhonen, E., Huuskonen, S., Sun, H., Uotila, A. (2011). High infection rate of residual conifer stumps by Heterobasidion species in an area with assumed low infection pressure. Scandinavian Journal of Forest Research 26: 404–412.

https://doi.org/10.1080/02827581.2011.586366

Kautz, M., Schopf, R., Imron, M.A. (2014). Individual traits as drivers of spatial dispersal and infestation patterns in a host–bark beetle system. Ecological Modelling 273: 264–

276. https://doi.org/10.1016/j.ecolmodel.2013.11.022

Kautz, M., Schopf, R., Ohser, J. (2013). The “sun-effect”: microclimatic alterations predispose forest edges to bark beetle infestations. European Journal of Forest Research 132: 453–465. https://doi.org/10.1007/s10342-013-0685-2

Kellomäki, S., Maajärvi, M., Strandman, H., Kilpeläinen, A., Peltola, H. (2010). Model computations on the climate change effects on snow cover, soil moisture and soil frost in the boreal conditions over Finland. Silva Fennica 44: 213–233.

https://doi.org/10.14214/sf.455

Kellomäki, S., Peltola, H., Nuutinen, T., Korhonen, K.T., Strandman, H. (2008). Sensitivity of managed boreal forests in Finland to climate change, with implications for

adaptive management. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 2339–2349. https://doi.org/10.1098/rstb.2007.2204

Kolström, M., Lindner, M., Vilén, T., Maroschek, M., Seidl, R., Lexer, M.J., Netherer, S., Kremer, A., Delzon, S., Barbati, A., Marchetti, M., Corona, P. (2011). Reviewing the science and implementation of climate change adaptation measures in European forestry. Forests 2: 961–982. https://doi.org/10.3390/f2040961

Komonen, A., Schroeder, L.M., Weslien, J. (2011). Ips typographus population

development after a severe storm in a nature reserve in southern Sweden. Journal of Applied Entomology 135: 132–141.

https://doi.org/10.1111/j.1439-0418.2010.01520.x

Korhonen, K. (1978). Intersterility groups of Heterobasidion annosum. Commun. Inst. For.

Fenn. 94: 1–25. http://urn.fi/URN:NBN:fi-metla-201207171125 Korhonen, K., Capretti, P., Karjalainen, R., Stenlid, J. (1998). Distribution of

Heterobasidion intersterility groups in Europe, in: Woodward, S., Stenlid, J., Karjalainen, R., Hütterman, A. (Eds.), Heterobasidion Annosum: Biology, Ecology, Impact and Control. pp. 93–104.

Korhonen, K., Piri, T. (1994). The main hosts and distribution of the S and P groups of Heterobasidion annosum in Finland, in: Johansson, M., Stenlid, J. (Eds.),

Proceedings of the 8th Int. Conf. on Root and Butt Rots, Sweden and Finland, Aug.

9-16, 1993. Swedish University of Agricultural Sciences, Uppsala, Sweden, pp. 260–

267.

Kurz, W.A., Dymond, C.C., Stinson, G., Rampley, G.J., Neilson, E.T., Carroll, A.L., Ebata, T., Safranyik, L. (2008). Mountain pine beetle and forest carbon feedback to climate change. Nature 452: 987–990. https://doi.org/10.1038/nature06777

Kuuluvainen, T., Aakala, T. (2011). Natural forest dynamics in boreal Fennoscandia: a review and classification. Silva Fennica 45: 823–841. https://doi.org/10.14214/sf.73 La Porta, N., Capretti, P., Thomsen, I.M., Kasanen, R., Hietala, A.M., Von Weissenberg, K.

(2008). Forest pathogens with higher damage potential due to climate change in Europe. Canadian Journal of Plant Pathology 30: 177–195.

https://dx.doi.org/10.1080/07060661.2008.10540534

Laiho, O. (1987). Metsiköiden alttius tuulituholle Etelä-Suomessa [Susceptibility of forest stands to windthrow in southern Finland]. Folia Forestalia 706: 1–

24. http://urn.fi/URN:ISBN:951-40-0801-4

Lindén, M., Vollbrecht, G. (2002). Sensitivity of Picea abies to butt rot in pure stands and in mixed stands with Pinus sylvestris in southern Sweden. Silva Fennica 36: 767–778.

https://doi.org/10.14214/sf.519

Lindner, M., Fitzgerald, J.B., Zimmermann, N.E., Reyer, C., Delzon, S., van der Maaten, E., Schelhaas, M.-J., Lasch, P., Eggers, J., van der Maaten-Theunissen, M., Suckow, F., Psomas, A., Poulter, B., Hanewinkel, M. (2014). Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management 146: 69–83.

https://doi.org/10.1016/j.jenvman.2014.07.030

Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M., Lexer, M.J., Marchetti, M. (2010).

Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259: 698–709.

https://doi.org/10.1016/j.foreco.2009.09.023

Lintunen, A., Kalliokoski, T. (2010). The effect of tree architecture on conduit diameter and frequency from small distal roots to branch tips in Betula pendula, Picea abies and Pinus sylvestris. Tree physiology 30: 1433–1447.

https://doi.org/10.1093/treephys/tpq085.

Louis, M., Dohet, L., Grégoire, J.-C. (2016a). Fallen trees’ last stand against bark beetles.

Forest Ecology and Management 359: 44–50.

https://doi.org/10.1016/j.foreco.2015.09.046

Louis, M., Grégoire, J.-C., Pélisson, P.-F. (2014). Exploiting fugitive resources: How long-lived is “fugitive”? Fallen trees are a long-lasting reward for Ips typographus (Coleoptera, Curculionidae, Scolytinae). Forest Ecology and Management 331: 129–

134. https://doi.org/10.1016/j.foreco.2014.08.009

Louis, M., Toffin, E., Gregoire, J.-C., Deneubourg, J.-L. (2016b). Modelling collective

foraging in endemic bark beetle populations. Ecological Modelling 337: 188–199.

https://doi.org/10.1016/j.ecolmodel.2016.07.008

Lundström, T., Jonas, T., Stöckli, V., Ammann, W. (2007). Anchorage of mature conifers:

resistive turning moment, root-soil plate geometry and root growth orientation. Tree physiology 27: 1217–27. https://doi.org/10.1093/TREEPHYS/27.9.1217

Mäkelä, M., Lipponen, K., Sainio, M. (1998). Tyvilahoa sisältävän kuusen määrä, laatu ja käyttömahdollisuudet sellun raaka-aineena [in Finnish]. Metsätehon raportti 50.

http://www.metsateho.fi/uploads/w0x7eqx.PDF

Marçais, B., Dupuis, F., Desprez-Loustau, M. (1996). Modelling the influence of winter frosts on the development of the stem canker of red oak, caused by Phytophthora cinnamomi. Annales des Sciences Forestières 53: 369–382.

https://doi.org/10.1051/forest:19960219

Mattila, U., Nuutinen, T. (2007). Assessing the incidence of butt rot in Norway spruce in southern Finland. Silva Fennica 41: 29–43. https://doi.org/10.14214/sf.473 Morgan, J., Cannell, M.G. (1994). Shape of tree stems-a re-examination of the uniform stress hypothesis. Tree physiology 14: 49–62.

https://doi.org/10.1093/treephys/14.1.49

Möykkynen, T., Kontiokari, J. (2001). Spore deposition of Heterobasidion annosum coll. in Picea abies stands of North Karelia, eastern Finland. Forest Pathology 31: 107–114.

https://doi.org/10.1046/j.1439-0329.2001.00229.x

Möykkynen, T., Miina, J., Pukkala, T., von Weissenberg, K. (1998). Modelling the spread of butt rot in a Picea abies stand in Finland to evaluate the profitability of stump protection against Heterobasidion annosum. Forest Ecology and Management 106:

247–257. https://doi.org/10.1016/S0378-1127(97)00317-4

Möykkynen, T., Pukkala, T. (2010). Optimizing the management of Norway spruce and Scots pine mixtures on a site infected by Heterobasidion coll. Scandinavian Journal of Forest Research 25: 127–137. https://doi.org/10.1080/02827581003667322 Möykkynen, T., Weissenberg, K., Pappinen, A. (1997). Estimation of dispersal gradients of

S- and P-type basidiospores of Heterobasidion annosum. Forest Pathology 27: 291–

300. https://doi.org/10.1111/j.1439-0329.1997.tb01083.x

Mulock, P., Christiansen, E. (1986). The threshold of successful attack by Ips typographus on Picea abies: A field experiment. Forest Ecology and Management 14: 125–132.

https://doi.org/10.1016/0378-1127(86)90097-6

Müller, M.M., Sievänen, R., Beuker, E., Meesenburg, H., Kuuskeri, J., Hamberg, L., Korhonen, K. (2014). Predicting the activity of Heterobasidion parviporum on Norway spruce in warming climate from its respiration rate at different temperatures.

Forest Pathology 44: 325–336. https://doi.org/10.1111/efp.12104

Nageleisen, L.-M. (2001). Monitoring of bark and wood-boring beetles in France after the December 1999 storms. Integrated Pest Management Reviews 6: 159–162.

https://doi.org/10.1023/A:1025707031489

Nevalainen, S., Ihalainen, A., Korhonen, K.T. (2015). Metsätuhojen esiintyminen 11.

VMI:n koealoilla vuosina 2009-2013 [in Finnish], in: Heino, E., Pouttu, A. (Eds.), Metsätuhot Vuonna 2014. Natural Resources Institute Finland (Luke), pp. 7–10.

URN:ISBN:978-952-326-048-1

Nicoll, B.C., Gardiner, B.A., Rayner, B., Peace, A.J. (2006). Anchorage of coniferous trees in relation to species, soil type, and rooting depth. Canadian Journal of Forest Research 36: 1871–1883. https://doi.org/10.1139/x06-072

Oliva, J., Bernat, M., Stenlid, J. (2013). Heartwood stump colonisation by Heterobasidion

parviporum and H. annosum ss. in Norway spruce (Picea abies) stands. Forest Ecology and Management 295: 1–10. https://doi.org/10.1016/j.foreco.2013.01.005

parviporum and H. annosum ss. in Norway spruce (Picea abies) stands. Forest Ecology and Management 295: 1–10. https://doi.org/10.1016/j.foreco.2013.01.005