• Ei tuloksia

As demonstrated in this thesis, there are clear differences in resting-state brain activity between awake and anesthetized rats, and anesthesia can modulate brain activity even over the long-term. Although some anesthetics can be said to preserve brain activity such that it resembles the conscious state, each anesthetic agent has its unique modulatory effect on brain function and connectivity. In addition, as these effects are further modulated by anesthesia, specific long-term functional changes, the interpretations drawn from preclinical fMRI studies using anesthetized animals can be complicated and compromised. If anesthesia is used, one needs to be careful

invasive and potentially unpleasant procedures, it is important to consider the above-mentioned factors.

However, when studying the brain functional networks at the whole-brain level, with the aim of exploring cognition, awareness, memory and behavior etc., there are justifiable reasons for utilizing fully awake animals. Indeed, there has been a growing interest in conducting awake animal fMRI imaging. Even though there have been and still are certain limitations in awake animal imaging, which are mainly related to animal motion and stress, improved MRI sequences, post-processing techniques, and imaging and habituation applications have been developed and there are several active research projects aiming to reduce these obstacles. The usage of fully conscious animals opens many exciting possibilities for incorporation into a variety of different fMRI study schemes, such as in the assessment of animal behavior. By broadening fMRI study design possibilities, preclinical fMRI can hopefully even further increase its translational value in the future. It can also be predicted that multimodal neuroimaging techniques where fMRI imaging techniques are combined with various forms of stimulation (e.g.

deep brain electrical, optogenetic or transcranial magnetic stimulation) or other brain measuring techniques (e.g. calcium and ultrasound imaging, microelectrode arrays) will become increasingly popular in the near future.

REFERENCES

Akata, T., 2007. General anesthetics and vascular smooth muscle: Direct actions of general anesthetics on cellular mechanisms regulating vascular tone.

Anesthesiology.

Aksenov, D.P., Li, L., Miller, M.J., Iordanescu, G., Wyrwicz, A.M., 2015. Effects of anesthesia on BOLD signal and neuronal activity in the somatosensory cortex.

J. Cereb. Blood Flow Metab. 35, 1819–26.

Alberini, C.M., 2009. Transcription factors in long-term memory and synaptic plasticity. Physiol. Rev. https://doi.org/10.1152/physrev.00017.2008

Alkire, M.T., Nathan, S. V., McReynolds, J.R., 2005. Memory Enhancing Effect of Low-dose Sevoflurane Does Not Occur in Basolateral Amygdala–lesioned Rats. Anesthesiology 103, 1167–1173.

AM, W., N, C., L, L., C, W., JF, D., 2000. fMRI of Visual System Activation in the Conscious Rabbit. Magn. Reson. Med. 44.

Amzica, F., 2009. Basic physiology of burst-suppression. Epilepsia.

Andrea Pisauro, M., Dhruv, N.T., Carandini, M., Benucci, A., 2013. Fast hemodynamic responses in the visual cortex of the awake mouse. J. Neurosci.

33, 18343–18351.

Armstrong-James, M., George, M.J., 1988. Influence of anesthesia on spontaneous activity and receptive field size of single units in rat Sm1 neocortex. Exp.

Neurol. 99, 369–387.

Baek, K., Shim, W.H., Jeong, J., Radhakrishnan, H., Rosen, B.R., Boas, D., Franceschini, M., Biswal, B.B., Kim, Y.R., 2016. Layer-specific interhemispheric functional connectivity in the somatosensory cortex of rats: resting state electrophysiology and fMRI studies. Brain Struct. Funct. 221, 2801–2815.

Bammer, R., Skare, S., Newbould, R., Liu, C., Thijs, V., Ropele, S., Clayton, D.B., Krueger, G., Moseley, M.E., Glover, G.H., 2005. Foundations of advanced magnetic resonance imaging. NeuroRx 2, 167–196.

Baria, A.T., Centeno, M. V., Ghantous, M.E., Chang, P.C., Procissi, D., Apkarian, A.V., 2018. Bold temporal variability differentiates wakefulness from anesthesia-induced unconsciousness. J. Neurophysiol. 119, 834–848.

Barttfelda, P., Uhriga, L., Sitta, J.D., Sigmane, M., Jarrayaa, B., Dehaene, S., 2015.

Signature of consciousness in the dynamics of resting-state brain activity.

Proc. Natl. Acad. Sci. U. S. A. 112, 887–892.

migraine. Brain Res. 1660, 36–46.

Becerra, L., Pendse, G., Chang, P.C., Bishop, J., Borsook, D., 2011. Robust reproducible resting state networks in the awake rodent brain. PLoS One 6.

Beierlein, M., Gibson, J.R., Connors, B.W., 2003. Two Dynamically Distinct Inhibitory Networks in Layer 4 of the Neocortex. J. Neurophysiol. 90, 2987–

3000.

Bigatello, L., Pesenti, A., 2019. Respiratory Physiology for the Anesthesiologist.

Anesthesiology.

Bishop, J., Becerra, L., Barmettler, G., Chang, P.C., Kainz, V., Burstein, R., Borsook, D., 2019. Modulation of brain networks by sumatriptan-naproxen in the inflammatory soup migraine model. Pain 160, 2161–2171.

Biswal, B., Zerrin Yetkin, F., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn. Reson. Med. 34, 537–541.

Blanchard, R.J., McKittrick, C.R., Blanchard, D.C., 2001. Animal models of social stress: Effects on behavior and brain neurochemical systems. Physiol. Behav.

73, 261–271.

Blumenfeld, H., 2012. Impaired consciousness in epilepsy. Lancet Neurol.

Boly, M., Moran, R., Murphy, M., Boveroux, P., Bruno, M.A., Noirhomme, Q., Ledoux, D., Bonhomme, V., Brichant, J.F., Tononi, G., Laureys, S., Friston, K., 2012. Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. J. Neurosci. 32, 7082–7090.

Bradley W.G., Lisanti C.J., 2018. MRI: The Basics 4th edition.

Broad, K.D., Hassell, J., Fleiss, B., Kawano, G., Ezzati, M., Rocha-Ferreira, E., Hristova, M., Bennett, K., Fierens, I., Burnett, R., Chaban, B., Alonso-Alconada, D., Oliver-Taylor, A., Tachsidis, I., Rostami, J., Gressens, P., Sanders, R.D., Robertson, N.J., 2016. Isoflurane Exposure Induces Cell Death, Microglial Activation and Modifies the Expression of Genes Supporting Neurodevelopment and Cognitive Function in the Male Newborn Piglet Brain. PLoS One 11, e0166784.

Brown, E.N., Lydic, R., Schiff, N.D., 2010. General anesthesia, sleep, and coma. N.

Engl. J. Med.

Brown, E.N., Purdon, P.L., Van Dort, C.J., 2011. General Anesthesia and Altered States of Arousal: A Systems Neuroscience Analysis. Annu. Rev. Neurosci. 34, 601–628.

Brynildsen, J.K., Hsu, L.M., Ross, T.J., Stein, E.A., Yang, Y., Lu, H., 2017.

Physiological characterization of a robust survival rodent fMRI method.

Magn. Reson. Imaging 35, 54–60.

Buchsbaum, M.S., Gillin, J.C., Wu, J., Hazlett, E., Sicotte, N., Dupont, R.M., Bunney,

interactions. Front. Neural Circuits 11.

Buljubasic, N., Rusch, N.J., Marijic, J., Kampine, J.P., Bosnjak, Z.J., 1992. Effects of Halothane and Isoflurane on Calcium and Potassium Channel Currents in Canine Coronary Arterial Cells. Anesthesiology 76, 990–998.

Bunting, K.M., Nalloor, R.I., Vazdarjanova, A., 2015. Influence of Isoflurane on Immediate-Early Gene Expression. Front. Behav. Neurosci. 9, 363.

Buxton, R.B. Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques. 2002.

Buxton, R.B., Wong, E.C., Frank, L.R., 1998. Dynamics of blood flow and oxygenation changes during brain activation: The balloon model. Magn.

Reson. Med. 39, 855–864.

Callaway, J.K., Jones, N.C., Royse, A.G., Royse, C.F., 2012. Sevoflurane Anesthesia Does Not Impair Acquisition Learning or Memory in the Morris Water Maze in Young Adult and Aged Rats. Anesthesiology 117, 1091–1101.

Cao, L., Li, L., Lin, D., Zuo, Z., 2012. Isoflurane Induces Learning Impairment That Is Mediated by Interleukin 1β in Rodents. PLoS One 7, e51431.

Chang, C., Leopold, D.A., Schölvinck, M.L., Mandelkow, H., Picchioni, D., Liu, X., Ye, F.Q., Turchi, J.N., Duyn, J.H., 2016. Tracking brain arousal fluctuations with fMRI. Proc. Natl. Acad. Sci. U. S. A. 113, 4518–4523.

Chang, C., Glover, G.H., 2009. Relationship between respiration, end-tidal CO2, and BOLD signals in resting-state fMRI. Neuroimage 47, 1381–1393.

Chang, P.C., Centeno, M.V., Procissi, D., Baria, A., Apkarian, A.V., 2017. Brain activity for tactile allodynia: A longitudinal awake rat functional magnetic resonance imaging study tracking emergence of neuropathic pain. Pain 158, 488–497.

Chang, P.-C., Procissi, D., Bao, Q., Centeno, M.V., Baria, A., Apkarian, A.V., 2016.

Novel method for functional brain imaging in awake minimally restrained rats. J. Neurophysiol. 116, 61–80.

Chen, C., Li, M., Wang, K., Shen, J., Yang, L., Bu, X., Gao, G., 2017. Protective effect of combined general and regional anesthesia on postoperative cognitive function in older arthroplasty patients, Int J Clin Exp Med.

Chin, C.L., Fox, G.B., Hradil, V.P., Osinski, M.A., McGaraughty, S.P., Skoubis, P.D., Cox, B.F., Luo, Y., 2006. Pharmacological MRI in awake rats reveals neural activity in area postrema and nucleus tractus solitarius: Relevance as a potential biomarker for detecting drug-induced emesis. Neuroimage 33, 1152–

1160.

Chin, C.-L., Tovcimak, A.E., Hradil, V.P., Seifert, T.R., Hollingsworth, P.R.,

Sci. U. S. A. 109, 3095–3100.

Chu, X., Zhou, Y., Hu, Z., Lou, J., Song, W., Li, J., Liang, X., Chen, C., Wang, S., Yang, B., Chen, L., Zhang, X., Song, J., Dong, Y., Chen, S., He, L., Xie, Q., Chen, X., Li, W., 2016. 24-hour-restraint stress induces long-term depressive-like phenotypes in mice. Sci. Rep. 6, 1–12.

Cohen, E.R., Ugurbil, K., Kim, S.-G., 2002. Effect of Basal Conditions on the Magnitude and Dynamics of the Blood Oxygenation Level-Dependent fMRI Response. J. Cereb. Blood Flow Metab. 22, 1042–1053.

Cole, D.M., Smith, S.M., Beckmann, C.F., 2010. Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front. Syst. Neurosci.

Colon, E., Bittner, E.A., Kussman, B., McCann, M.E., Soriano, S., Borsook, D., 2017.

Anesthesia, brain changes, and behavior: Insights from neural systems biology. Prog. Neurobiol.

Corum, C., Idiyatullin, D., Moeller, S., Park, J.Y., Garwood, M., 2007. Introduction to SWIFT (sweep imaging with fourier transformation) for magnetic resonance imaging of materials, in: Materials Research Society Symposium Proceedings. Cambridge University Press, pp. 104–108.

Costa-Mattioli, M., Sossin, W.S., Klann, E., Sonenberg, N., 2009. Translational Control of Long-Lasting Synaptic Plasticity and Memory. Neuron.

Culley, D.J., Baxter, M.G., Crosby, C.A., Yukhananov, R., Crosby, G., 2004.

Impaired acquisition of spatial memory 2 weeks after isoflurane and isoflurane-nitrous oxide anesthesia in aged rats. Anesth. Analg. 99, 1393–1397.

Culley, D.J., Yukhananov, R.Y., Xie, Z., Gali, R.R., Tanzi, R.E., Crosby, G., 2006.

Altered hippocampal gene expression 2 days after general anesthesia in rats.

Eur. J. Pharmacol. 549, 71–78.

de Graaf, R.A., 2007. In Vivo NMR Spectroscopy, In Vivo NMR Spectroscopy:

Principles and Techniques: 2nd Edition.

de Sousa, S.L.M., Dickinson, R., Lieb, W.R., Franks, N.P., 2000. Contrasting Synaptic Actions of the Inhalational General Anesthetics Isoflurane and Xenon.

Anesthesiology 92, 1055–1066.

Deiner, S., Luo, X., Silverstein, J.H., Sano, M., 2015. Can Intraoperative Processed EEG Predict Postoperative Cognitive Dysfunction in the Elderly? Clin. Ther.

37, 2700–2705.

Derbyshire, A.J., Rempel, B., Forbes, A., Lambert, E.F., 1936. THE EFFECTS OF ANESTHETICS ON ACTION POTENTIALS IN THE CEREBRAL CORTEX OF THE CAT. Am. J. Physiol. Content 116, 577–596.

Desai, M., Kahn, I., Knoblich, U., Bernstein, J., Atallah, H., Yang, A., Kopell, N., Buckner, R.L., Graybiel, A.M., Moore, C.I., Boyden, E.S., 2011. Mapping brain networks in awake mice using combined optical neural control and fMRI. J.

Ding, X.Y., Xue, R.L., Niu, X.L., Gao, Y.F., Gu, R., Wu, X.M., Zhang, H.Q., Liu, X.G., Gao, Y., 2017. Effect of isoflurane on related gene expression in hippocampus of rats. Biomed. Res. 28, 5546–5550.

Donahue, M.J., Jezzard, P., 2010. MR perfusion imaging in neuroscience, in: Clinical Perfusion MRI: Techniques and Applications. Cambridge University Press, pp. 103–126.

Dong, H., Fukuda, S., Murata, E., Higuchi, T., 2006. Excitatory and Inhibitory Actions of Isoflurane on the Cholinergic Ascending Arousal System of the Rat.

Anesthesiology 104, 122–133.

Dopfel, D., Zhang, N., 2018. Mapping stress networks using functional magnetic resonance imaging in awake animals. Neurobiol. Stress 9, 251–263.

Drew, P.J., Shih, A.Y., Kleinfeld, D., 2011. Fluctuating and sensory-induced vasodynamics in rodent cortex extend arteriole capacity. Proc. Natl. Acad. Sci.

U. S. A. 108, 8473–8478.

Dubowitz, D.J., Chen, D.Y., Atkinson, D.J., Grieve, K.L., Gillikin, B., Bradley, W.G., Andersen, R.A., 1998. Functional magnetic resonance imaging in macaque cortex. Neuroreport 9, 2213–2218.

Dumais, K.M., Kulkarni, P.P., Ferris, C.F., Veenema, A.H., 2017. Sex differences in neural activation following different routes of oxytocin administration in awake adult rats. Psychoneuroendocrinology 81, 52–62.

Duong, T.Q., 2007. Cerebral blood flow and BOLD fMRI responses to hypoxia in awake and anesthetized rats.

Edmands, S.D., Ladow, E., Hall, A.C., 2013. Microarray analyses of genes regulated by isoflurane anesthesia in vivo: a novel approach to identifying potential preconditioning mechanisms. Anesth. Analg. 116, 589–95.

Ferris, C.F., Stolberg, T., 2010. Imaging the immediate non-genomic effects of stress hormone on brain activity. Psychoneuroendocrinology 35, 5–14.

Ferron, J.-F., Kroeger, D., Chever, O., Amzica, F., 2009. Cortical Inhibition during Burst Suppression Induced with Isoflurane Anesthesia. J. Neurosci. 29, 9850–

9860.

Fox, M.D., Corbetta, M., Snyder, A.Z., Vincent, J.L., Raichle, M.E., 2006.

Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl. Acad. Sci. U. S. A. 103, 10046–10051.

Fox, P.T., Raichle, M.E., 1986. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl. Acad. Sci. U. S. A. 83, 1140–1144.

Franks, N.P., 2008. General anaesthesia: From molecular targets to neuronal

3314–3319.

Gao, J.H., Liu, H.L., 2012. Inflow effects on functional MRI. Neuroimage.

Gao, Y.R., Greene, S.E., Drew, P.J., 2015. Mechanical restriction of intracortical vessel dilation by brain tissue sculpts the hemodynamic response.

Neuroimage 115, 162–176.

Gao, Y.R., Ma, Y., Zhang, Q., Winder, A.T., Liang, Z., Antinori, L., Drew, P.J., Zhang, N., 2017. Time to wake up: Studying neurovascular coupling and brain-wide circuit function in the un-anesthetized animal. Neuroimage 153, 382–398.

Garcia, P.S., Kolesky, S.E., Jenkins, A., 2010. General anesthetic actions on GABA(A) receptors. Curr. Neuropharmacol. 8, 2–9.

Garrett, R.H., Grisham, C.M., 1997. Biochemistry, Fifth Edition. J. Chem. Educ. 74, 189.

Ge, H.W., Hu, W.W., Ma, L.L., Kong, F.J., 2015. Endoplasmic reticulum stress pathway mediates isoflurane-induced neuroapoptosis and cognitive impairments in aged rats. Physiol. Behav. 151, 16–23.

Geng, Y. jie, Wu, Q. hua, Zhang, R. qin, 2017. Effect of propofol, sevoflurane, and isoflurane on postoperative cognitive dysfunction following laparoscopic cholecystectomy in elderly patients: A randomized controlled trial. J. Clin.

Anesth. 38, 165–171.

Ghahremani, M., Yoo, J., Chung, S.J., Yoo, K., Ye, J.C., Jeong, Y., 2018. Alteration in the Local and Global Functional Connectivity of Resting State Networks in Parkinson’s Disease. J. Mov. Disord. 11, 13–23.

Glover, G.H., Pauly, J.M., 1992. Projection Reconstruction Techniques for Reduction of Motion Effects in MRI. Magn. Reson. Med. 28, 275–289.

Grandjean, J., Schroeter, A., Batata, I., Rudin, M., 2014. Optimization of anesthesia protocol for resting-state fMRI in mice based on differential effects of anesthetics on functional connectivity patterns. Neuroimage 102, 838–847.

Greenberg, D.S., Houweling, A.R., Kerr, J.N.D., 2008. Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nat. Neurosci. 11, 749–751.

Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V., 2003. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc.

Natl. Acad. Sci. U. S. A. 100, 253–258.

Gu, Y., Han, F., Liu, X., 2019. Arousal Contributions to Resting-State fMRI Connectivity and Dynamics. Front. Neurosci. 13, 1190.

Guedri, K., Frih, H., Chettoum, A., Rouabhi, R., 2017. Chronic restraint stress induced neurobehavioral alterations and histological changes in rat. Toxicol.

Environ. Health Sci. 9, 123–129.

activity in the rat assessed by functional magnetic resonance imaging. Brain Res. 813, 367–373.

Hale, J.R., White, T.P., Mayhew, S.D., Wilson, R.S., Rollings, D.T., Khalsa, S., Arvanitis, T.N., Bagshaw, A.P., 2016. Altered thalamocortical and intra-thalamic functional connectivity during light sleep compared with wake.

Neuroimage 125, 657–667.

Hamilton, C., Ma, Y., Zhang, N., 2017. Global reduction of information exchange during anesthetic-induced unconsciousness. Brain Struct. Funct. 222, 3205–

3216.

Han, Z., Chen, W., Chen, X., Zhang, K., Tong, C., Zhang, X., Li, C.T., Liang, Z., 2019.

Awake and behaving mouse fMRI during Go/No-Go task. Neuroimage 188, 733–742.

Havlicek, M., Ivanov, D., Roebroeck, A., Uludağ, K., 2017. Determining excitatory and inhibitory neuronal activity from multimodal fMRI data using a generative hemodynamic model. Front. Neurosci. 11, 616.

Hirano, Y., Stefanovic, B., Silva, A.C., 2011. Spatiotemporal evolution of the functional magnetic resonance imaging response to ultrashort stimuli. J.

Neurosci. 31, 1440–1447.

Hirata, A., Castro-Alamancos, M.A., 2010. Neocortex network activation and deactivation states controlled by the Thalamus. J. Neurophysiol. 103, 1147–

1157.

Hatch, A., Wibero, G.S., Balazs, T., Grice, H.C., 1963. Long-term isolation stress in rats. Sci. Sci. 142, 507.

Hudetz, A.G., Imas, O.A., 2007. Burst activation of the cerebral cortex by flash stimuli during isoflurane anesthesia in rats. Anesthesiology 107, 983–991.

Hutchison, R.M., Hutchison, M., Manning, K.Y., Menon, R.S., Everling, S., 2014.

Isoflurane induces dose-dependent alterations in the cortical connectivity profiles and dynamic properties of the brain’s functional architecture. Hum.

Brain Mapp. 35, 5754–5775.

Hutchison, R.M., Mirsattari, S.M., Jones, C.K., Gati, J.S., Leung, L.S., 2010.

Functional networks in the anesthetized rat brain revealed by independent component analysis of resting-state fMRI. J. Neurophysiol. 103, 3398–3406.

Idiyatullin, D., Corum, C.A., Garwood, M., 2015. Multi-Band-SWIFT. J. Magn.

Reson. 251, 19–25.

Ii, R.P.L., Aroniadou-anderjaska, V., Prager, E.M., Pidoplichko, V.I., Figueiredo, T.H., Braga, M.F.M., 2016. Repeated Isoflurane Exposures Impair Long-Term Potentiation and Increase Basal GABAergic Activity in the Basolateral

K.G., Pressler, R., Deuschl, G., Stephani, U., Siniatchkin, M., 2015. Neuronal Networks during Burst Suppression as Revealed by Source Analysis. PLoS One 10, e0123807.

Jezzard, P., 2012. Correction of geometric distortion in fMRI data. Neuroimage.

Jha, M.K., Morrison, B.M., 2018. Glia-neuron energy metabolism in health and diseases: New insights into the role of nervous system metabolic transporters.

Exp. Neurol.

Jonckers, E., Palacios, R.D., Shah, D., Guglielmetti, C., Verhoye, M., Van Der Linden, A., 2014. Different anesthesia regimes modulate the functional connectivity outcome in mice. Magn. Reson. Med. 72, 1103–1112.

Jones, M. V, Brooks, P.A., Harrison, N.L., 1992. Enhancement of gamma-aminobutyric acid-activated Cl- currents in cultured rat hippocampal neurones by three volatile anaesthetics. J. Physiol. 449, 279–93.

Kalthoff, D., Po, C., Wiedermann, D., Hoehn, M., 2013. Reliability and spatial specificity of rat brain sensorimotor functional connectivity networks are superior under sedation compared with general anesthesia. NMR Biomed. 26, 638–650.

Kalthoff, D., Seehafer, J.U., Po, C., Wiedermann, D., Hoehn, M., 2011. Functional connectivity in the rat at 11.7T: Impact of physiological noise in resting state fMRI. Neuroimage 54, 2828–2839.

Kenny, J.D., Westover, M.B., Ching, S.N., Brown, E.N., Solt, K., 2014. Propofol and sevoflurane induce distinct burst suppression patterns in rats. Front. Syst.

Neurosci. 8.

Khubchandani, M., Jagannathan, N.R., Mallick, H.N., Kumar, V.M., 2005.

Functional MRI shows activation of the medial preoptic area during sleep.

Neuroimage 26, 29–35.

Khubchandani, M., Mallick, H.N., Jagannathan, N.R., Kumar, V.M., 2003.

Stereotaxic assembly and procedures for simultaneous electrophysiological and MRI study of conscious rat. Magn. Reson. Med. 49, 962–967.

Kim, S.G., Harel, N., Jin, T., Kim, T., Lee, P., Zhao, F., 2013. Cerebral blood volume MRI with intravascular superparamagnetic iron oxide nanoparticles. NMR Biomed. 26, 949–962.

King, J.A., Garelick, T.S., Brevard, M.E., Chen, W., Messenger, T.L., Duong, T.Q., Ferris, C.F., 2005. Procedure for minimizing stress for fMRI studies in conscious rats. J. Neurosci. Methods 148, 154–160.

Kiviniemi, V.J., Haanpää, H., Kantola, J.H., Jauhiainen, J., Vainionpää, V., Alahuhta, S., Tervonen, O., 2005. Midazolam sedation increases fluctuation and synchrony of the resting brain BOLD signal. Magn. Reson. Imaging 23, 531–

537.

Kong, F., Chen, S., Cheng, Y., Ma, L., Lu, H., Zhang, H., Hu, W., 2013. Minocycline Attenuates Cognitive Impairment Induced by Isoflurane Anesthesia in Aged Rats. PLoS One 8, e61385.

Koretsky, A.P., 2012. Early development of arterial spin labeling to measure regional brain blood flow by MRI. Neuroimage.

Kroeger, D., Florea, B., Amzica, F., 2013. Human brain activity patterns beyond the isoelectric line of extreme deep coma. PLoS One 8, e75257.

Kulkarni, P., Stolberg, T., Sullivan, J.M., Ferris, C.F., 2012. Imaging evolutionarily conserved neural networks: Preferential activation of the olfactory system by food-related odor. Behav. Brain Res. 230, 201–207.

Kundu, P., Inati, S.J., Evans, J.W., Luh, W.M., Bandettini, P.A., 2012. Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI.

Neuroimage 60, 1759–1770.

Lahti, K.M., Ferris, C.F., Li, F., Sotak, C.H., King, J.A., 1999. Comparison of evoked cortical activity in conscious and propofol- anesthetized rats using functional MRI. Magn. Reson. Med. 41, 412–416.

Langers, D.R.M., Van Dijk, P., 2011. Robustness of intrinsic connectivity networks in the human brain to the presence of acoustic scanner noise. Neuroimage 55, 1617–1632.

Lauritzen, M., Mathiesen, C., Schaefer, K., Thomsen, K.J., 2012. Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses. Neuroimage.

Lee, U.C., Mashour, G.A., Kim, S., Noh, G.J., Choi, B.M., 2009. Propofol induction reduces the capacity for neural information integration: Implications for the mechanism of consciousness and general anesthesia. Conscious. Cogn. 18, 56–

64.

Lehto, L.J., Idiyatullin, D., Zhang, J., Utecht, L., Adriany, G., Garwood, M., Gröhn, O., Michaeli, S., Mangia, S., 2017. MB-SWIFT functional MRI during deep brain stimulation in rats. Neuroimage 159, 443–448.

Leopold, D.A., Murayama, Y., Logothetis, N.K., Planck, M., 2003. Very Slow Activity Fluctuations in Monkey Visual Cortex : Implications for Functional Brain Imaging Takatomi Kubo Data acquisition and processing 422–433.

Lewis, L.D., Setsompop, K., Rosen, B.R., Polimeni, J.R., 2018. Stimulus-dependent hemodynamic response timing across the human subcortical-cortical visual pathway identified through high spatiotemporal resolution 7T fMRI.

Neuroimage 181, 279–291.

Li, B., Freeman, R.D., 2007. High-resolution neurometabolic coupling in the lateral

Liang, Z., Wang, Y., Ren, Y., Li, D., Voss, L., Sleigh, J., Li, X., 2014. Detection of burst suppression patterns in EEG using recurrence rate. Sci. World J. 2014.

Lin, D., Zuo, Z., 2011. Isoflurane induces hippocampal cell injury and cognitive impairments in adult rats. Neuropharmacology 61, 1354–1359.

Liu, Xiping, Pillay, S., Li, R., Vizuete, J.A., Pechman, K.R., Schmainda, K.M., Hudetz, A.G., 2013. Multiphasic modification of intrinsic functional connectivity of the rat brain during increasing levels of propofol. Neuroimage 83, 581–592.

Liu, Xiao, Zhu, X.H., Zhang, Y., Chen, W., 2013a. The change of functional connectivity specificity in rats under various anesthesia levels and its neural origin. Brain Topogr.

Liu, Xiao, Zhu, X.H., Zhang, Y., Chen, W., 2013b. The change of functional connectivity specificity in rats under various anesthesia levels and its neural origin. Brain Topogr. 26, 363–377.

Liu, X., Zhu, X.H., Zhang, Y., Chen, W., 2011. Neural origin of spontaneous hemodynamic fluctuations in rats under burst-suppression anesthesia condition. Cereb. Cortex 21, 374–384.

Liu, Y., Perez, P.D., Ma, Zilu, Ma, Zhiwei, Dopfel, D., Cramer, S., Tu, W., Zhang, N., 2019. An open database of resting-state fMRI in awake rats. bioRxiv 842807.

Liu, Y., Zhang, N., 2019. Propagations of spontaneous brain activity in awake rats.

Neuroimage 202, 116176.

Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A., 2001.

Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157.

Lowes, D.A., Galley, H.F., Moura, A.P.S., Webster, N.R., 2017. Brief isoflurane anaesthesia affects differential gene expression, gene ontology and gene networks in rat brain. Behav. Brain Res. 317, 453–460.

Lu, H., Golay, X., Pekar, J.J., Van Zijl, P.C.M., 2003. Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn. Reson. Med.

50, 263–274.

Lu, H., Zou, Q., Gu, H., Raichle, M.E., Stein, E.A., Yang, Y., 2012. Rat brains also have a default mode network. Proc. Natl. Acad. Sci. 109, 3979–3984.

Lu, Hanbing, Zuo, Y., Gu, H., Waltz, J.A., Zhan, W., Scholl, C.A., Rea, W., Yang, Y., Stein, E.A., 2007. Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proc. Natl. Acad. Sci. U. S. A. 104, 18265–18269.

Lu, H., Zuo, Y., Gu, H., Waltz, J.A., Zhan, W., Scholl, C.A., Rea, W., Yang, Y., Stein, E.A., 2007. Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proc. Natl. Acad. Sci. 104, 18265–18269.

Luo, F., Li, Z., Treistman, S.N., Kim, Y.R., King, J.A., Fox, G.B., Ferris, C.F., 2007.

schizophrenia. J. Neurosci. 30, 9477–9487.

Ma, Y., Hamilton, C., Zhang, N., 2017. Dynamic Connectivity Patterns in Conscious and Unconscious Brain. Brain Connect.

Ma, Y., Ma, Z., Liang, Z., Neuberger, T., Zhang, N., 2020. Global brain signal in awake rats. Brain Struct. Funct. 225, 227–240.

Ma, Y., Shaik, M.A., Kozberg, M.G., Kim, S.H., Portes, J.P., Timerman, D., Hillman, E.M.C., 2016. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons. Proc. Natl.

Acad. Sci. U. S. A. 113, E8463–E8471.

Ma, Zhiwei, Perez, P., Ma, Zilu, Liu, Y., Hamilton, C., Liang, Z., Zhang, N., 2018.

Functional atlas of the awake rat brain: A neuroimaging study of rat brain specialization and integration. Neuroimage 170, 95–112.

Magistretti, P.J., Pellerin, L., 1999. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos. Trans. R. Soc. Lond. B.

Biol. Sci. 354, 1155–63.

Magri, C., Schridde, U., Murayama, Y., Panzeri, S., Logothetis, N.K., 2012. The amplitude and timing of the BOLD signal reflects the relationship between local field potential power at different frequencies. J. Neurosci. 32, 1396–1407.

Maier, S.F., Watkins, L.R., 2005. Stressor controllability and learned helplessness:

The roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci. Biobehav. Rev.

Majeed, W., Magnuson, M., Keilholz, S.D., 2009. Spatiotemporal dynamics of low frequency fluctuations in BOLD fMRI of the rat. J. Magn. Reson. Imaging 30, 384–393.

Mandeville, J.B., Marota, J.J.A., Kosofsky, B.E., Keltner, J.R., Weissleder, R., Rosen, B.R., Weisskoff, R.M., 1998. Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magn. Reson. Med. 39, 615–

624.

Martin, C., Martindale, J., Berwick, J., Mayhew, J., 2006. Investigating neural-hemodynamic coupling and the neural-hemodynamic response function in the awake rat. Neuroimage 32, 33–48.

Masaki, Y., Kashiwagi, Y., Watabe, H., Abe, K., 2019. (R)- and (S)-ketamine induce differential fMRI responses in conscious rats. Synapse 73.

Masaki, Y., Kashiwagi, Y., Watabe, H., Abe, K., 2019. (R)- and (S)-ketamine induce differential fMRI responses in conscious rats. Synapse 73.