• Ei tuloksia

In this work a prototype of a continuous 2D-ThFFF instrument was constructed, a preliminary theoretical model of its operation was developed, and the experimental and theoretical results were compared. An analytical ThFFF method was used for the determination of polymer concentrations in each continuously collected fraction and determination of the retention factor . The samples were polystyrene polymer standards with different molar masses and narrow polydispersity. In the continuous 2D-ThFFF, cyclohexane and a binary solvent consisting of cyclohexane and ethylbenzene were used as carriers. Both are suitable for ThFFF experiments, and the instrument was inert to their physico-chemical properties. In the analytical ThFFF, however, tetrahydrofuran was used as the carrier, after first evaporating the collected fractions to dryness and then adding the THF solvent to dissolve the samples. This was done for practical reasons and to decrease the consumption of other carrier solvents.

In the first experiments two polystyrene samples of different molar masses were used for preliminary testing of the performance and experimental conditions of the continuous 2D-ThFFF method. A positive effect of the thermal gradient on the sample deflection was observed, although increased rotation rate resulted in broader deflected sample zones. In further study, a 50% decrease in the channel thickness led to significant reduction in the zone broadening with and without the thermal field. In addition, with decrease of both the radial and angular flow rates the deflection of the sample trajectories increased. In addition to the flow components and channel geometry, the use of a cyclohexane‒ethylbenzene binary carrier and samples of higher molar mass showed enhanced performance in the continuous fractionation. The systematic variation of the experimental parameters allowed determination of the conditions required for the continuous fractionation of polystyrene polymers according to their molar mass. As an example, almost baseline separation was achieved with two polystyrene samples of molar mass 51.000 and 1000.000 g/mol (Fig.

18).

48

Figure 18 Continuous fractionation of a mixture of two polystyrene samples: , PS 51k; ■, PS 1000k. The carrier was a binary solvent of cyclohexane and ethylbenzene and the run conditions were rotation speed 0.024 rpm, radial flow rate 9.6 l/min, channel thickness 125 m, collection time 90 min.

Sample introduction rate was 1.250 l/min (paper III).

A theoretical model was developed and applied for prediction of the sample trajectory and its angular displacement under various experimental conditions. The trends in the deflection angles without and with a thermal gradient (θ0 and θr, respectively) were qualitatively in agreement with predictions of the model, but significant quantitative differences between the experimental results and theoretical predictions were also found.

Some possible reasons for the discrepancies between theory and experiment were discussed. The stop-flow procedure used for sample relaxation in conventional FFF is not possible with the continuous separation system, and the sample is assumed to be relaxed already at the sample inlet point. The instrumental limitations, such as a rather low maximum thermal gradient, a limited number of collection ports, and the noncontinuous fraction collection, restrict the full-scale operation. However, none of the considered complications could provide an unambiguous explanation for the observed discrepancies.

The theoretical model will, however, provide guidelines for future interpretation and optimization of separations by the continuous 2D-ThFFF method. The theoretical model constitutes a first step in the modeling of the system, and there are structural design and construction issues that can be addressed in future instruments.

Since ThFFF separates samples according to their chemical composition, molar mass, and particle size, the applications of continuous 2D-ThFFF in science and industry can be extended from polymers to other macroscopic objects, such as particles and microgels.

Through use of some other fields than thermal force field, the continuous 2D method can be extended to biotechnology and the characterization of new materials. However, in the present form, the preparative separation of the continuous 2D-ThFFF is not very good in practice, because the separation resolution in FFF techniques is generally not very high,

49

and the much narrower molar mass distributions needed in analytical and industrial chemistry cannot easily be achieved by any elution-based separation methods. Therefore, much additional experimental and theoretical work will be needed to discover the benefits and drawbacks associated with the continuous 2D-FFF channel variants.

50

References

1. Giddings, J. C., A new separation concept based on a coupling of concentration and flow nonuniformities, Sep. Sci. 1 (1966) 123-125.

2. Giddings, J. C. in Field-Flow Fractionation Handbook, eds. M. Schimpf, K.

Caldwell, and J. C. Giddings, Wiley-Interscience, New York, 2000, pp. 7-10.

3. Bigelow, J. C. in Field-Flow Fractionation Handbook, eds. M. Schimpf, K. Caldwell, and J. C. Giddings, Wiley-Interscience, New York, 2000, pp. 313-324.

4. Giddings, J. C., Field-flow fractionation: Analysis of macromolecular, colloidal and particulate materials, Science 260 (1993) 1456-1465.

5. Giddings, J. C., Myers, M. N., Lin, G. C., Martin, M. J., Polymer Analysis and Characterization by Field-Flow Fractionation (One-Phase Chromatography), J.

Chromatogr. 142 (1977) 23-38.

6. Giddings, J. C., Field-flow fractionation: A versatile method for the characterization of macromolecular and particulate materials, Anal. Chem. 58 (1981) 1170A-1178A.

7. Myers, M. N., Overview of field-flow fractionation, J. Microcol. Sep. 9 (1997) 151-162.

8. Messaud, F. A., Ron D. Sanderson, R. D, Runyon, J. R., Otte, T, Pasch, H., S. Kim Ratanathanawongs Williams, S. K., An overview on field-flow fractionation techniques and their applications in the separation and characterization of polymers, Progr. Polym. Sci. 34 (2009) 351-368.

9. Ratanathanawongs, S. K., Lee, I., Giddings, J. C. Separation and Characterization of 0.01-5 m Particles Using Flow FFF. In Particle Size Distribution II.

Assessment and Characterization; Provder, T., Ed.; ACS Symposium Series No 472; ACS Publications: Washington, D.C., USA, 1991; Chapter 14, 217-228.

10. Thompson, G. H., Myers, M. N., Giddings, J. C., An observation of a field-flow fractionation effect with polymer samples, Sep. Sci. 2 (1967) 797-800.

11. Giddings, J. C., Caldwell, K. D., Myers, M. N., Thermal diffusion of polystyrene in eight solvents by an improved thermal field-flow fractionation methodology, Macromol. 9 (1976) 106-112.

12. Hovingh, M. E., Thompson, G. E., Giddings. J. C., Column parameters in thermal field-flow fractionation, Anal. Chem. 42 (1970) 195-203.

13. Myers, M. N., Caldwell, K. D., Giddings, J. C., A study of retention in thermal field-flow fractionation, Sep. Sci. 9 (1974) 47-70.

14. Giddings, J. C., Li, S., Williams, P. S., Schimpf, M. E., High speed separation of ultra-high-molecular-weight polymers by thermal/hyperlayer field-flow fractionation, Macromol. Chem., Rapid Commun. 9 (1988) 817-823.

15. Gao, Y. S., Caldwell, K. D., Myers, M. N., Giddings, J. C., Extension of thermal field-flow fractionation to ultrahigh (20 x 106) molecular weight polystyrenes, Macromol. 18 (1985) 1272-1277.

51

16. Janča, J., Martin. M., Influence of operational parameters on retention of ultra-high molecular weight polystyrenes in thermal field-flow fractionation, Chromatographia 34 (1992) 125-131.

17. Schimpf, M. E., Polymer analysis by thermal field-flow fractionation, J. Liq.

Chromatogr. Rel. Technol. 25 (2002) 2101-2134.

18. Gunderson, J. J., Caldwell, K. D., Giddings, J. C., Influence of temperature gradients of velocity profiles and separation parameters in thermal field-flow fractionation, Sep. Sci. Technol. 19 (1984) 667-683.

19. Martin, M. In Advances in Chromatography; Brown, P.R., Grushka, E., Eds.;

Dekker: New York, 1998; Vol 39, 1-138. “Influence of temperature gradients of velocity profiles and separation parameters in thermal field-flow fractionation.”

20. van Asten, A. C., Boelens, H. F. M., Kok, W. T., Poppe, H., Williams, P. S., Giddings, J. C., Temperature dependence of solvent viscosity, solvent thermal conductivity, and Soret coefficient in thermal field-flow fractionation, Sep. Sci.

Technol. 29 (1994) 513-533.

21. Schimpf, M. E. in Field-Flow Fractionation Handbook, eds. M. Schimpf, K.

Caldwell and J. C. Giddings, Wiley-Interscience, New York, 2000, pp. 248-249.

22. Schimpf, M. E. and Giddings, J. C., Characterization of thermal diffusion in polymer solutions by thermal field-flow fractionation: Effects of molecular weight and branching, Macromol. 7 (1987) 1561-1563.

23. Schimpf, M. E. and Giddings, J. C., Characterization of thermal diffusion in polymer solutions by thermal field-flow fractionation: Dependence on polymer and solvent parameters, J. Polym. Sci. - Polym. Phys. 27 (1989) 1317-1332.

24. Schimpf, M., Studies in thermodiffusion by thermal field-flow fractionation, Entropie 217 (1999) 67-71.

25. Nguyen, M., Beckett, R., Calibration methods for field-flow fractionation using broad standards. 1. Thermal field-flow fractionation, Sep. Sci. Technol. 31 (1996) 291-317.

26. Giddings, J. C., Universal calibration in size exclusion chromatography and thermal field-flow fractionation, Anal. Chem. 66 (1994) 2783-2787.

27. Reschiglian, P., Martin, M., Contado, C., Dondi, F., Evaluation of standardless method of determination of molecular weight and polydispersity of a polystyrene sample by thermal field-flow fractionation, J. Liq. Chrom. & Rel. Technol. 20 (1997) 2723-2739.

28. Gunderson, J. J., Giddings, J. C., Chemical composition and molecular-size factors in polymer analysis by ThFFF and SEC, Macromol. 19 (1986) 2618-2621.

29. Schimpf, M. E., Giddings, J. C., Characterization of thermal diffusion of copolymer in a solution by thermal field-flow fractionation, J. Polym. Sci.: Polym.

Phys. Ed. 28 (1990) 2673-2680.

30. Mes, E. P. C., Kok, W. Th., Tijssen, R., Thermal field-flow fractionation of (co)polymers; determination of the thermal diffusion coefficient, Entropie 217 (1999) 76-79.

52

31. Sisson, R. M., Giddings, J. C., Effects of solvent composition on polymer retention in thermal field-flow fractionation: Retention enhancement in binary solvent mixtures, Anal. Chem. 66 (1994) 4043-4053.

32. Rue, C. A., Shimpf, M. E., Thermal diffusion in liquid mixtures and its effect on polymer retention in thermal field-flow fractionation, Anal. Chem., 66 (1994) 4054-4062.

33. Brimhall, S. L., Myers, M. N., Caldwell, K. D., Giddings, J. C., Study of temperature dependence of thermal diffusion in polystyrene/ethylbenzene by thermal field-flow fractionation, J. Polym. Sci., Polym. Phys. Ed. 23 (1985) 2443-2456.

34. van Asten, A. C., Kok, W. T., Tijssen, R., Poppe, H., Characterization of thermal diffusion of polystyrene in binary mixtures of THF/dioxane and THF/cyclohexane, J. Polym. Sci. B-Polym. Phys. 34 (1996) 283-295.

35. Kassalainen, G., Ratanathanawongs Williams, S. K., Lowering the molecular mass limit of thermal field-flow fractionation for polymer separations, J. Chromatogr. A 988 (2003) 285-295.

36. Giddings, J. C., Smith, L. K., Myers, M. N., Thermal field-flow fractionation:

Extension to lower molecular weight separations by increasing the liquid temperature range using a pressurized system, Anal. Chem. 47(1975) 2389-2394.

37. Giddings, J. C., Smith, L. K., Myers, M. N., Programmed thermal field-flow fractionation, Anal. Chem. 48 (1976) 1587-1592.

38. Williams, P. S., Giddings, J. C., Power programmed field-flow fractionation: A new program form for improved uniformity of fractionating power, Anal. Chem. 59 (1987) 2038-2044.

39. Pasti, L., Bedani, F., Contado, C., Mingozzi, I., Dondi, F., Programmed field decay thermal field-flow fractionation of polymers: a calibration method, Anal. Chem. 76 (2004) 6665-6680.

40. Kirkland, J. J., Rementer, S. W., Yau, W. W., Molecular-Weight Distribution of Polymers by Thermal Field-Flow Fractionation with Exponential Temperature Programming, Anal. Chem. 60 (1988) 610-616.

41. Schimpf, M. E., Advances in field-flow fractionation for polymer analysis, Trends Polym. Sci. 4 (1996) 114-121.

42. Lou, J., Myers, M. N., Giddings, J. C., Separation of polysaccharides by thermal field-flow fractionation, J. Liq. Chromatogr. 17 (1994) 3239-3260.

43. Liu, G., Giddings, J. C., Separation of particles in non-aqueous suspensions by thermal-electrical field-flow fractionation, Anal. Chem. 63 (1991) 296-299.

44. Mes, E. P. C., Tijssen, R., Kok, W. Th., Influence of the carrier composition on thermal field-flow fractionation for the characterisation of sub-micron polystyrene latex particles, J. Chromatogr. A 907 (2001) 201-209.

45. Lang, T., Eslahian, K. A., Maskos, M., Ion effects in field-flow fractionation of aqueous colloidal polystyrene, Macromol. Chem. Phys. 213 (2012) 2353-2361.

53

46. Liu, G., Giddings, J. C., Separation of particles in aqueous suspensions by thermal field-flow fractionation. Measurement of thermal diffusion coefficients Chromatogr. 34 (1992) 483-492.

47. Shiundu, P. M., Munguti, S. M., Ratanathanawongs Williams, S. K., Retention behaviour of metal particle dispersions in aqueous and nonaqueous carriers in thermal field-flow fractionation, J. Chromatogr. A 983 (2003) 163-176.

48. Martin, M., Hoyos, M., The thermogravitational effect in thermal field-flow fractionation, Entropie 217 (1999) 72-75.

49. Martin, M., Carcia-Martin, S., Hoyos, M., On void time determination in thermal field-flow fractionation, J. Chromatogr. A 960 (2002) 165-174.

50. Martin, M., Min, B. R., Moon, M. H., Interpretation of thermal field-flow fractionation experiments in a tilted channel, J. Chromatogr. A 788 (1997) 121-130.

51. van Asten, A. C., Kok, W. T., Tijssen, R., Poppe, H., Thermal field-flow fractionation of polytetrahydrofuran, J. Chromatogr. A 676 (1994) 361-373.

52. Brimhall, S. L., Myers, M. N., Caldwell, K. D., Giddings, J. C., High temperature field-flow fractionation for the characterization of polyethylene, Sep. Sci. Technol.

16 (1981) 671-689.

53. Giddings, J. C., Myers, M. N., Janča, J., Retention characteristics of various polymers in thermal field-flow fractionation, J. Chromatogr. 186 (1979) 37-44.

54. van Asten, A. C., Venema, E., Kok, W. T., Poppe, H., Use of thermal field-flow fractionation for the fractionation of polybutadiene in various organic solvents, J.

Chromatogr. 644 (1993) 83-94.

55. Jeon, S. J., Lee, D. W., Thermal diffusion and molecular weight calibration of poly(ethylene-co-vinyl acetate)s by thermal field-flow fractionation, J. Polym. Sci., B, Polym. Phys. 33 (1995) 411-416.

56. Pasti, L., Roccasalvo, S., Dondi, F., Reschiglian, P., High temperature thermal field-flow fractionation of polyethylene and polystyrene, J. Polym. Sci., B, Polym. Phys.

33 (1995) 1225-1234.

57. Shiundu, P. M., Remsen, E. E., Giddings, J. C., Isolation and characterization of polymeric and particulate components of acrylonitrile-butadiene-styrene (ABS) plastics by thermal field-flow fractionation, J. Appl. Polym. Sci. 60 (1996) 1695-1707.

58. van Batten, C., Hoyos, M., Martin, M., Thermal field-flow fractionation of colloidal materials: Methylmethacrylate-styrene linear di-block copolymers, Chromatographia 45 (1997) 121-126.

59. van Asten, A. C., Kok, W. Th., Tijssen, R., Poppe, H., Study of thermal diffusion of polybutadiene and polytetrahydrofuran in various organic solvents, J. Polym. Sci. B, Polym. Phys. 34 (1996) 297-308.

60. Dammert, R., Jussila, M., Vastamäki, P., Riekkola, M.-L., Sundholm, F., Determination and comparison of molar mass distributions of substituted polystyrenes and block copolymers by using thermal field-flow fractionation, size exclusion chromatography and light scattering, Polymer 38 (1997) 6237-6280.

54

61. Ponyik, C. A., Wu, D. T., Williams, S. K. Ratanathanawongs, Separation of composition distribution determination of triblock copolymers by thermal field-flow fractionation, Anal, Bioanal. Chem. 405 (2013) 9033-9040.

62. Kirkland, J. J., Yau, W. W., Thermal field-flow fractionation of water soluble macromolecules, J. Chromatogr. 353 (1986) 95-107.

63. Lou, J., Salt effect on separation of polyvinylpyridines by thermal field-flow fractionation, J. Liq. Chromatogr. Rel Technol. 26 (2003) 165-175.

64. Shiundu, P. M., Liu, G., Giddings, J. C., Separation of particles in nonaqueous suspensions by thermal field-flow fractionation, Anal. Chem. 67 (1995) 2705-2713.

65. Mes. E. P. C., Kok, W. Th., Tijssen, R., Sub-micron particle analysis by thermal field-flow fractionation and multi-angle light scattering detection, Chromatographia 53 (2001) 697-703.

66. Shiundu, P. M., Munguti, S. M., Ratanathanawongs Williams, S. K., Practical implications of ionic strength effects on particle retention in thermal field-flow fractionation, J. Chromatogr. A 984 (2003) 67-79.

67. Shiundu, P. M., Williams, K. R., Giddings, J. C., Magnitude and direction of thermal diffusion of colloidal particles measured by thermal field-flow fractionation, J. Colloid Interface 266 (2003) 366-376.

68. Shiundu, P. M., Williams, K. R., Thermal field-flow fractionation for particle analysis: opportunities and challenges, Polym. Mater. Sci. Eng. 87 (2002) 342-344.

69. Ratanathanawongs, S. K., Shiundu, P. M., Giddings, J. C., Size and compositional studies of core-shell latexes using flow and thermal field-flow fractionation, Colloids and Surfaces A: Physicochemical Aspects, 105 (1995) 243-250.

70. Jeon, S. J., Schimpf, M. E., Nyborg, A., Compositional effects in the retention of colloids by thermal field-flow fractionation, Anal. Chem. 69 (1997) 3442-3450.

71. Ragazzetti, A., Hoyos, M., Martin, M., Influence of operating parameters on the retention of chromatographic particles by thermal field-flow fractionation, Anal.

Chem. 76 (2004) 5787-5798.

72. Edwards, T. H., Gale, B. G., Frazier, B., A Microfabricated thermal field-flow fractionation system, Anal. Chem. 74 (2002) 1211-1216.

73. Janča, J., Micro-channel thermal field-flow fractionation: new challenge in analysis of macromolecules and particles, J. Liq. Chromatogr. Rel. Technol. 25 (2002) 683-704.

74. Janča, J., Micro-channel thermal field-flow fractionation: High-speed analysis of colloidal particles, J. Liq. Chromatogr. Rel. Technol. 26 (2003) 849-869.

75. Kašpárková, V., Halabalová, V., Šimek, L., Růžička, J., Janča, J., Separation of bacteria in temperature gradient: Micro-Thermal Focusing Field-Flow Fractionation, J. Biochem. Biophys. Methods 70 (2007) 685-687.

76. Weidner, S., Kuhn, G., Decker, R., Roessner, D., Friedrich, J., Influence of plasma treatment on the molar mass of poly(ethylene terephthalate) investigated by different chromatographic and spectroscopic methods, J. Polym. Sci. Part A Polym. Chem. 36 (1998) 1639-1648.

55

77. Lee, S., Application of thermal field-flow fractionation for characterization of industrial polymers, J. Microcolumn Sep. 9 (1997) 281-286.

78. Lee, S., Eum, C. H., Plepys, A. R., Capability of thermal field-flow fractionation for analysis of processed natural rubber, Bull. Korean Chem. Soc. 21 (2000) 69-74.

79. Chubarova, E. V., Thermal field-flow fractionation of initially dilute polymer solutions as a shear degradation model. scaling model of macromolecule degradation at concentrations exceeding the critical entanglement value, J.

Macromol. Sci.-Phys. B39 (2000) 583-604.

80. Janča, J., Strnad, P., Micro- and frontal thermal field-flow fractionation: On the shear degradation of ultra-high molar mass polymers, J. Liq. Chromatogr. Rel Technol. 27 (2004) 193-214.

81. Choi, Y. J., Kim, S. T., Lee, S. H., Kim, A.-J., Kwag, G., Lee, S., Molecular characterization of solution styrene-butadiene rubber: Thermal field-flow fractionation/multi-angle light scattering studies, J. Chromatogr. A 1314 (2013) 306-312.

82. Lee, S., Determination of gel content in polymers, Trends Polym. Sci. 1 (1993) 303-309.

83. Kim, W.-S., Eum, C. H., Molnár, A., Yu, J.-S., Lee, S., Repeatibility and reproducibility of thermal field-flow fractionation in molecular weight determination of processed natural rubber, Analyst 131 (2006) 429-433.

84. Antonietti, M., Briel, A., Tank, C., Chromatographic characterization of complex polymer systems with thermal field-flow fractionation, Acta Polym. 46 (1995) 254-260.

85. Sibbald, M., Lewandowski, L., Mallamaci, M., Johnson, E., Multidisciplinary characterization of novel emulsion polymers, Macromol. Symp. 155 (2000) 213-228.

86. Lewandowski, L., Sibbald, M. S., Jonson, E., Mallamaci, M. P., New emulsion SBR technology: Part I: Raw polymer study, Rubber Chem. Technol. 73 (2000) 731-742.

87. Kronholm, J., Vastamäki, P., Räsänen, R., Ahonen, A., Hartonen, K., Riekkola, M.-L., Thermal Field-Flow Fractionation and Gas Chromatography-Mass Spectrometry in Determination of Decomposition Products of Expandable Polystyrene after Reactions in Pressurized Hot Water and Supercritical Water, Ind. Eng. Chem. Res.

45 (2006) 3029-3035.

88. Colvin, H. A., Senyek, M. L., Goodyear Tire and Rubber Co., US, Patent EP942042, Emulsion styrene-butadiene rubber composition, preparation thereof, and tires therefrom.

89. Nguyen, M., Beckett, R., Pille, L., Solomon, D. H., Determination of thermal diffusion coefficients for polydisperse polymers and microgels by ThFFF and SEC-MALLS, Macromol. 31 (1998) 7003-7009.

90. Cho, K.-Y., Park, Y. H., Jeon, S. J., Kim, W.-S., Lee, D. W., Retention behavior of copolymers in thermal field-flow fractionation and gel permeation chromatography, J. Liq. Chrom. Rel. Technol. 29 (1997) 2741-2756.

56

91. Martin, M, Ignatiadis, I., Reynaud, R., Thermal field-flow fractionation of asphaltenes, Fuel 66 (1987) 1436-1444.

92. Kowalkowski, T., Buszewski, B., Contado, C., Dondi, F., Field flow fractionation:

Theory, techniques, applications and the challenges, Crit. Rev. Anal. Chem. 36 (2006) 129-135.

93. Giddings, J. C., Micro-FFF: Theoretical and practical aspects of reducing the dimensions of field-flow fractionation channels, J. Microcol. Sep. 5 (1993) 497-503.

94. Sant, H. J. and Gale, B. K., Geometric scaling effects on instrumental plate height in field flow fractionation, J. Chromatogr. A 1104 (2006) 282-290.

95. Kirkland, J. J., Rementer, S. W., Yau, W. W., Polymer characterization by thermal field-flow fractionation with a continuous viscosity detector, J. Appl. Polym. Sci. 38 (1989) 1383-1395.

96. Kassalainen, G., Ratanathanawongs Williams, S. K., Coupling thermal field-flow fractionation with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the analysis of synthetic polymers, Anal. Chem. 75 (2003) 1887-1894.

97. van Aswegen, W., Hiller, W., Hehn, M., Pasch, H., Comprehensive triblock copolymer analysis by coupled thermal field-flow fractionation-NMR, Macromol.

Rapid Commun. 34 (2013) 1098-1103.

98. Hiller, W., van Aswegen, W., Hehn, M., Pasch, H., Online ThFFF-NMR: A novel tool for molar mass and chemical composition analysis of complex macromolecules, Macromol. 46 (2013) 2544-2552.

99. LaRell, K. S., Myers, M. N., Giddings, J. C., Peak broadening factors in thermal field-flow fractionation, Anal. Chem. 49 (1977) 1750-1756.

100. Wankat, P. C., The relationship between one-dimensional and two- dimensional separation processes, AIChE J. 23 (1977) 859-867.

101. Wankat, P. C., Two-dimensional separation processes, Sep. Sci. Technol.19 (1984) 801-829.

102. Giddings, J. C., Two-dimensional separations: Concept and promise, Anal. Chem. 56 (1984) 1258A-1270A.

103. Giddings, J. C. In Unified Separation Science; John Wiley & Sons, Inc.: New York, NY, 1991, pp 112-140.

104. Strain, H. H., Sullivan, J. C., Analysis by Electromigration plus Chromatography, Anal. Chem.23 (1951) 816-823.

105. Arcus, A. C., McKinnon, A. E., Livesey, J. N., Metcalf, W. S., Vaughan, S., Keey, R. B., Continuous-flow, support-free, electrophoretic separation in thin layers:

towards large scale operation, J. Chromatogr. A 202 (1980) 157-177.

106. Zborowski, M., Moore, L. R., Reddy, S., Chen, G.-H., Sun, L., Chalmers, J. J., Magnetic flow sorting using a model system of human lymphocytes and a colloidal magnetic label, ASAIO J. 42 (1996) 666-671.

57 kontinuierliche Stofftrennung aus der Gasphase, Fresenius J. Anal. Chem.189 (1962) 100-106.

110. Giddings, J. C., Theoretical Basis for a Continuous Large-Capacity Gas Chromatographic Apparatus, Anal. Chem. 34 (1962) 37-39.

111. Sussman, M. V., Huang, C. C., Continuous gas chromatography, Science 156 (1967) 974-976.

112. Sussman, M. V., Astill, K. N., Rombach, R., Cerullo, A., Chen, S. S., Continuous Surface Chromatography, Ind. Eng. Chem. Fundam. 11 (1972) 181-190.

113. Sussman, M. V., Astill, K. N., Rathore, R. N. S., Continuous Gas Chromatography, J. Chromatogr. Sci. 12 (1974) 91-97.

114. Scott, C. D., Spence, R. D., Sisson, W. G., Pressurized, annular chromatograph for continuous separations, J. Chromatogr. 126 (1976) 381-400.

115. Goto, M., Goto, S., Continuous separation using an annular chromatograph with rotating inlet and outlet, J. Chem. Eng. Jpn. 20 (1987) 598-603.

116. Uretschläger, A., Jungbauer, A., Preparative continuous annular chromatography (P-CAC), Bioproc. Biosyst. Eng. 25 (2002) 129-140.

117. Giddings, J. C., A System Based on Split-Flow Lateral-Transport Thin (SPLITT) Separation Cells for Rapid and Continuous Particle Fractionation, Sep. Sci.

Technol. 20 (1985) 749-768.

118. Gao, Y., Myers, M.N., Barman, B.N., and Giddings, J.C., Continuous Fractionation of Glass Microspheres by Gravitational Sedimentation in Split-Flow Thin (SPLITT) Cells, Part. Sci. Technol. 9 (1991) 105-118.

119. Springston, S. R., Myers, M. N., Giddings, J. C., Continuous particle fractionation based on gravitational sedimentation in split-flow thin cells, Anal. Chem. 59 (1987) 344-350.

120. Fuh, C. B., Myers, M. N., Giddings, J. C., Centrifugal SPLITT fractionation: new technique for separation of colloidal particles, Ind. Eng. Chem. Res. 33 (1994) 355-362.

121. Myers, M. N., Giddings, J. C., A Continuous Steric FFF Device for the Size Separation of Particles, Powder Technol. 23 (1979) 15-20.

122. Schure, M. R., Myers, M. N., Caldwell, K. D., Byron, C., Chen, K. P., Giddings, J.

C., Separation of Coal Fly Ash Using Continuous Steric Field-Flow Fractionation, Environ. Sci. Technol. 19 (1985) 686-689.

58

123. Ivory, C. F., Gilmartin, M., Gobie, W. A., McDonald, C. A., Zollars, R. L., A Hybrid Centrifuge Rotor for Continuous Bioprocessing, Biotechnol. Progr. 11 (1995) 21-32.

124. Giddings, J. C., Two-dimensional field-flow fractionation, J. Chromatogr. 504 (1990) 247-258.

125. Svensson, H., Preparative Electrophoresis and Ionophoresis, Adv. Protein Chem. 4 (1948) 251-295.

126. Grassmann, W., Hannig, K., Simple process for continuous separation of mixtures on filter paper by electrophoresis, Naturwissenschaften 37 (1950) 397.

127. Durrum, E., L., Continuous electrophoresis and ionophoresis on filter paper, J. Am.

Chem. Soc. 73 (1951) 4875-4880.

128. Strain, H., H., Sullivan, J. C., Analysis by electromigration plus chromatography, J. C., Anal. Chem. 23 (1951) 816-823.

129. Sato, T. R., Norris, W. P., Strain, H. H., Apparatus for continuous electrochromatography, Anal. Chem. 24 (1952) 776-778.

130. Micheel, F., van de Kamp, F.-P., Die Trennung von Zuckergemischen durch kombinierte Elektrophorese und Papierchromatographie, Angew. Chem. 64 (1952) 607-608.

131. Larson, D. L., Feinberg, R., Fractionation of Human Serum Albumin Using Continuous Filter-Paper Electrophoresis, Science 120 (1954) 426-427.

132. Sansoni, B., Klement, R., Kontinuierliche Papierelektrophorese von kondensierten Phosphaten, Angew. Chem. 66 (1954) 598-602.

133. Barrollier, J., Watzke, E., Gibian, H., Einfache Apparatur für die trägerfreie präparative Durchlauf-Elektrophorese, Z. Naturforsch., B: Chem. Sci. 13B (1958) 754-755.

134. Hannig, K., Fresenius J., Die trägerfreie kontinuierliche electrophorese und ihre anwendung, Anal. Chem. 181 (1961) 244-254.

135. Arcus, A. C., McKinnon, A. E., Livesey, J. N., Metcalf, W. S., Vaughan, S., Keey, R. B., Continuous-flow, support-free, electrophoretic separation in thin layers:

towards large-scale operation, J. Chromatogr. A 202 (1980) 157-177.

136. Pearlstein, A. J., Shieu, M.-L., Three-Dimensional Field-Flow Fractionation Using Helical Flow, Sep. Sci. Technol. 30 (1995) 2251-2258.

137. Shiue, M.-P., Pearlstein, A. J., Free-solution electrophoresis with amplification of small mobility differences by helical flow, J. Chromatogr. A 707 (1995) 87-103.

138. Righetti, P. G., Gianazza, E., Ek, K., New developments in isoelectric focusing J.

Chromatogr. 184 (1980) 415-456.

139. Roman, M. C., Brown, P. R., Free-flow electrophoresis as a preparative separation technique, Anal. Chem. 66 (1994) 86A-94A.

140. Křivánková, L., Boček, P., Continuous free-flow electrophoresis, Electrophoresis 19 (1998) 1064-1074.

59

141. Caslavska, J., Gebauer, P., Thormann, W., Purification of ovalbumin and lysozyme from a commercial product by recycling isotachophoresis, J. Chromatogr. A 585

141. Caslavska, J., Gebauer, P., Thormann, W., Purification of ovalbumin and lysozyme from a commercial product by recycling isotachophoresis, J. Chromatogr. A 585