• Ei tuloksia

CuInSe2 and related chalcopyrite compounds are the most promising absorber materials for polycrystalline thin film solar cells. CuInSe2 solar cells have shown the highest conversion efficiencies of all thin film solar cells. The record efficiency is 18.8 %, and several groups have achieved efficiencies over 18 %. Further, the operational lifetimes of this type of solar cells are long due to their extraordinary stability. CuInSe2 thin films can be prepared both from gas and liquid phases by a variety of methods, but the highest efficiencies have so far been obtained by absorbers prepared by co-evaporation. In order to lower the production costs of photovoltaic modules, alternative, low-cost deposition methods need to be developed. Electrodeposition is one alternative since it is a low-temperature liquid phase deposition method. The deposition equipment is relatively simple, and the advantages of the method include the potential for upscaling to large substrate areas and production volumes.

Electrodeposited CIS-based absorber films require generally annealing either under a Se-containing or an inert atmosphere prior to the cell preparation. Such approaches have resulted in conversion efficiencies between about 5 and 7 %. Even higher efficiencies, over 15.4 %, can be achieved if the stoichiometry of the electrodeposited precursor film is adjusted by adding In, Ga and Se by PVD prior to the cell preparation.

CIS-based films have been prepared by a variety of electrochemical techniques such as one-step deposition, sequential deposition of binary compounds, and deposition of elemental layers followed by annealing either under an inert or a reactive atmosphere. One-step electrodeposition is the most widely studied option. There are basically two alternative ways to control the film composition: either by balancing the diffusion fluxes of the constituent ions to the cathode, or by relying on thermodynamics. In the former case, the film composition is heavily dependent on the deposition potential and on the concentrations in the deposition solution. Small, unavoidable variations in concentrations and deposition potentials may therefore result in large changes in the film compositions which deteriorates reproducibility and may render upscaling to larger substrate areas problematic.

The latter option, in turn, utilizes induced co-deposition that has been used widely for binary compounds, especially CdTe. In a binary system, the deposition of the more noble ion induces the underpotential reduction of the less noble ion and the formation of the compound at less negative potentials than where the less noble ion would reduce on its own. The reason for the underpotential reduction of the less noble ion is the energy released in the compound formation.

When the deposition solution contains a large excess of the less noble ion, induced co-deposition ensures the formation of stoichiometric compound over wide concentration and potential ranges.

These kind of processes are thus much less sensitive to electrolyte composition and deposition potential than those based on the flux balance approach.

Despite its success in deposition of binary compounds, induced co-deposition had not been utilized for the deposition of ternary compound semiconductors prior to this work. In the case of CIS, this is partly because the formation of CIS occurs via Cu2-xSe, and the latter does not follow the induced mechanism. In the present work, suitable conditions for the induced co-deposition of Cu2-xSe and CuInSe2 were achieved by complexing the Cu+ ions by thiocyanate ions in order to shift the reduction potential of metallic Cu to the negative direction. Under these conditions, Se reduced first, i.e., at more positive potentials than Cu. The reduction of Se induced the formation of Cu2-xSe at more positive potentials than where the bulk deposition of metallic Cu began. Cu2-xSe, in turn, induced the formation of CuInSe2 at the same potential range, i.e., at more positive potentials than where the deposition of metallic Cu or In began. The electrochemistry of the Cu-Se and Cu-In-Se systems was studied by cyclic voltammetry and electrochemical quartz crystal microbalance measurements that verified the deposition mechanisms. Induced co-deposition allowed wide potential and concentration ranges for the formation of almost stoichiometric CuInSe2 films (Cu1.30In1.00Se2.20 according to RBS) as long as the concentrations of the metal precursors were much higher than that of the selenium precursor, and the concentration of the SCN- ions was high enough to keep all the Cu+ ions as [Cu(SCN)4]3- so that there were no free Cu+ ions in the solution.

The films were studied by a number of techniques: XRD, SEM, EDX, RBS, TOF-ERDA, photoelectrochemical and capacitance-voltage measurements. The as-deposited films were amorphous and contained hydrogen, oxygen, sulfur, carbon, and nitrogen as impurities. Hydrogen and oxygen originated apparently from the aqueous deposition solution and the other impurities from the thiocyanate ligands. The films became crystalline upon annealing that also reduced the impurity contents drastically. The relative amounts of Cu, In, and Se in the films remained essentially the same after annealing.

Since photovoltaic-quality CIS films should be Cu-deficient rather than Cu-rich like the films deposited in this study, two approaches were made to adjust the film compositions after deposition: etching in KCN solutions and addition of In2Se3. The effects of the post-deposition treatments on the film properties were studied by EDX, photoelectrochemical and capacitance measurements that verified more stoichiometric composition and more suitable carrier concentrations after the post-deposition treatments. However, the carrier concentration was still much higher than those measured for high-efficiency absorbers.

Solar cells were prepared from films deposited and treated under the conditions bound to give the highest photoactivities and lowest carrier concentrations. Doped ZnO films for the devices were prepared either electrochemically, by ALD, or by sputtering. For the first time, Al and In doped ZnO films were prepared by electrodeposition. The electrodeposited ZnO films were prepared from solutions containing Zn(NO3)2 and Al(NO3)3 or InCl3. The films were crystalline as deposited but did not result in good photoresponses due to their high resistivity. The

current-voltage characteristics measured in the dark showed, however, good rectifying behavior. This was also the first time when electrodeposited ZnO:Al and ZnO:In films were used as front electrodes in solar cells.

The photoresponses with the ALD-ZnO films were better than with the electrodeposited ZnO films. Yet, the best photoresponses were obtained from the devices with sputtered ZnO bilayers, prepared at HMI Berlin. The highest conversion efficiency, measured under AM 1.5 illumination, was 1.3 %. Although the efficiency was low, the open circuit voltages of these devices were comparable to those of higher efficiency devices with electrodeposited CIS absorbers.

References

[1] Suntola, T., in Proceedings of the PV CON ‘95, Kruger, South Africa, 1995.

[2] Solar Cells and Their Applications, Edited by L.D. Partain, John Wiley & Sons, Inc., N.Y., 1995. 600 p.

[3] Bahaj, A.S., Renew. Energy, 27 (2002) 097-105.

[4] Stone, J. L., Phys. Today, September 1993 22-29.

[5] Contreras, M. A., Egaas, B., Ramanathan, K., Hiltner, J., Swartzlander, A., Hasoon, F., and Noufi, R., Prog. Photovolt.: Res. Appl., 7 (1999) 311-316.

[6] Kröger, F. A., J. Electrochem. Soc., 125 (1978) 2028-2034.

[7] Panicker, M.P.R., Knaster, M., and Kröger, F.A., J. Electrochem. Soc., 125 (1978) 566-572.

[8] Shah, A., Torres, P., Tscharner, R., Wyrsch, N. and Keppner, H., Science, 285 (1999) 692-698.

[9] Tsubomura, H., and Kobayashi, H., Crit. Rev. Solid State Mater. Sci., 18 (1993) 261-326.

[10] ASTM E927-91. Standard specification for solar simulation for terrestrial photovoltaic testing.

[11] ASTM G159-98. Standard tables for references solar spectral irradiance at air mass 1.5:

Direct normal and hemispherical for a 37 E tilted surface (E891 & E892).

[12] Chapin, D.M., Fuller, C.S., and Pearson, G.L., J. Appl. Phys., 25 (1954) 676-677.

[13] Goetzberger, A., and Hebling, C., Sol. Energy Mater. Sol. Cells, 62 (2000) 1-19.

[14] Birkmire, R.W., Sol. Energy Mater. Sol. Cells, 65 (2001) 17-28.

[15] Goetzberger, A., Luther, J., and Willeke, G., Sol. Energy Mater. Sol. Cells, 74 (2002) 1-11.

[16] Schock, H.-W., and Noufi, R., Prog. Photovolt.: Res. Appl., 8 (2000) 151-160.

[17] Kojima, T., Koyanagi, T., Nakamura, K., Yanagisawa, T., Takahisa, K., Nishitani, M., and Wada, T., Sol. Energy Mater. Sol. Cells, 50 (1998) 87-95.

[18] Green, M.A., Emery, K., King, D.L., Igari, S., and Warta, W., Prog. Photovolt.: Res. Appl., 9 (2002) 55-61.

[19] Powder Diffraction Files, Card 40-1487, International Centre for Diffraction Data, Pennsylvania, PA

[20] Powder Diffraction Files, Card 23-0207, International Centre for Diffraction Data, Pennsylvania, PA

[21] Fthenakis, V. M., Morris, S. C., Moskowitz, P. D., and Morgan, D. L., Prog. Photovolt.:

Res. Appl., 7 (1999) 489-497 and references cited therein.

[22] Siebentritt, S., Thin Solid Films, 403-404 (2002) 1-8.

[23] Schmid, D., Ruckh, M., Grunwald, F., and Schock, H.W., J. Appl. Phys., 73 (1993) 2902-2909.

[24] Birkmire, R.W., and Eser, E., Annu. Rev. Mater. Sci., 27 (1997) 625-653.

[25] Klenk, R., Thin Solid Films, 387 (2001) 135-140.

[26] Kwon, S.H., Park, S.C., Ahn, B.T., Yoon, K.H., and Song, J., Sol. Energy, 64 (1998) 55-60.

[27] Negami, T., Kohara, N., Nishitani, M., Wada, T., and Hirao, T., Appl. Phys. Lett., 67 (1995) 825-827.

[28] Zhang, S.B., Wei, S.-H., Zunger, A., and Katayama-Yoshida, H., Phys. Rev. B, 57 (1998) 9642-9656.

[29] Schock, H.W., and Rau, U., Physica B, 308-310 (2001) 1081-1085.

[30] Zhang, S.B., Wei, S.-H., and Zunger, A., J. Appl. Phys., 83 (1998) 3192-3196.

[31] Rau, U., Jasenek, A., Schock, H.W., Engelhardt, F., and Meyer, Th., Thin Solid Films, 361-362 (2000) 298-302.

[32] Rau, U., Schmidt, M., Jasenek, A., Hanna, G., and Schock, H.W., Sol. Energy Mater. Sol.

Cells, 67 (2001) 137-143.

[33] Turcu, M., Pakma, O., and Rau, U., Appl. Phys. Lett., 80 (2002) 2598-2600.

[34] Shafarman, W.N., Klenk, R., and McCandless, B.E., J. Appl. Phys., 79 (1996) 7324-7328.

[35] Hanna, G., Jasenek, A., Rau, U., and Schock, H.W., Thin Solid Films, 387 (2001) 71-73.

[36] Contreras, M.A., Tuttle, J., Gabor, A., Tennant, A., Ramanathan, K., Asher, S., Franz, A., Keane, J., Wang, L., Scofield, J., and Noufi, R., in Proc. 1st World Conf. Photovolt. Energy Conv., Waikoloa, Hawaii (1994) p. 68-75.

[37] Dullweber, T., Lundberg, O., Malmström, J., Bodegård, M., Stolt, L., Rau, U., Schock, H.W., and Werner, J.H., Thin Solid Films, 387 (2001) 11-13.

[38] Dullweber, T., Hanna, G., Shams-Kolahi, W., Schwartzlander, A., Contreras, M.A., Noufi, R., Schock, H. W., Thin Solid Films, 361-362 (2000) 478-481.

[39] Wada, T., Kohara, N., Nishiwaki, S., and Negami, T., Thin Solid Films, 387 (2001) 118-122.

[40] Guillemoles, J.F., Kronik, L., Cahen, D., Rau, U., Jasenek, A., and Schock, H.-W., J. Phys.

Chem. B, 104 (2000) 4849-4862.

[41] Schmid, D., Ruckh, M., and Schock, H.W., Sol. Energy Mater. Sol. Cells, 41/42 (1996) 281-294.

[42] Guillemoles, J.-F., Cowache, P., Lusson, A., Fezzaa, K., Boisivon, F., Vedel, J., and Lincot, D. J. Appl. Phys., 79 (1996) 7293-7302.

[43] Schwartz, R.J., and Gray, J.L., Proc. 21st IEEE Photovolt. Spec. Conf., Kissimmee, FL, USA (1990) p. 570-574.

[44] Heske, C., Eich, D., Fink, R.,Umbach, E., van Buuren, T., Bostedt, C., Terminello, L.J., Kakar, S., Grush, M.M., Callcott, T.A., Himpsel, F.J., Ederer, D.L., Perera, R.C.C., Riedl, W., and Karg, F., Appl. Phys. Lett., 74 (1999) 1451-1453.

[45] Nakada, T., and Kunioka, A., Appl. Phys. Lett., 74 (1999) 2444-2446.

[46] Nakada, T., Kume, T., Mise, T., and Kunioka, A., Jpn. J. Appl. Phys., 37 (1998) L499-L501.

[47] Haug, F.-J., Rudmann, D., Bilger, G., Zogg, H., and Tiwari, A.N., Thin Solid Films, 403-404 (2002) 293-296.

[48] Tringe, J., Nocerino, J., Tallon, R., Kemp, W., Shafarman, W., and Marvin, D., J. Appl.

Phys., 91 (2002) 516-518.

[49] Jasenek, A., Rau, U., Weinert, K., Kötschau, I.M., Hanna, G., Voorwinden, G., Powalla, M., Schock, H.W., and Werner, J.H., Thin Solid Films, 387 (2001) 228-230.

[50] Jasenek, A., and Rau, U., J. Appl. Phys., 90 (2001) 650-658.

[51] Yamaguchi, M., J. Appl. Phys., 78 (1995) 1476-1480.

[52] Kawakita, S., Imaizumi, M., Yamaguchi, M., Kushiya, K., Ohshima, T., Itoh, H., and Matsuda, S., Jpn. J. Appl. Phys., Part 2, 41 (2002) L797-799.

[53] Boden, A., Bräunig, D., Klaer, J., Karg, F.H., Hosselbarth, B., La Roche, G., in Proc. 28th IEEE Photovolt. Spec. Conf., Anchorage, AK, USA (2000) p. 1038 -1041.

[54] Zabierowski, P., Rau, U., and Igalson, M., Thin Solid Films, 387 (2001) 147-150.

[55] Köntges, M., Reineke-Koch, R., Nollet, P., Beier, J., Schäffler, R., and Parisi, J., Thin Solid Films, 403-404 (2002) 280-286.

[56] Guillemoles, J.-F., Rau, U., Kronik, L., Schock, H.-W. and Cahen, D., Adv. Mater., 11 (1999) 957-961.

[57] Hedström, J., Ohlsen, H., Bodegård, M., Kylner, A., Stolt, L., Hariskos, D., Ruckh, M., and Schock, H.-W., in Proc. 23rd IEEE Photovolt. Spec. Conf., Louisville, KY, USA (1993) p. 364-371.

[58] Stolt, L., Hedström, J., Kessler, J., Ruckh, M., Velthaus, K-O., and Schock, H.-W., Appl.

Phys. Lett., 62 (1993) 597-599.

[59] Granath, K., Bodegård, M., and Stolt, L., Sol. Energy Mater. Sol. Cells, 60 (2000) 279-293.

[60] Bodegård, M., Granath, K. and Stolt, L., Thin Solid Films, 361-362 (2000) 9-16.

[61] Lammer, M., Klemm, U., and Powalla, M., Thin Solid Films, 387 (2001) 33-36.

[62] Contreras, M.A., Egaas, B., Dippo, P., Webb, J., Granata, J., Ramanathan, K., Asher, S., Swartzlander, A., and Noufi, R., in Proc. 26th IEEE Photovolt. Spec. Conf., Anaheim, CA, USA (1997) p. 359-362.

[63] Keyes, B.M., Hasoon, F., Dippo, P., Balcioglu, A., and Abulfotuh, F., in Proc. 26th IEEE Photovolt. Spec. Conf., Anaheim, CA, USA (1997) p. 479-482.

[64] Nakada, T., Iga, D., Ohbo, H., and Kunioka, A., Jpn. J. Appl. Phys., 36 (1997) 732-737.

[65] Granata, J.E., Sites, J.R., Asher, S., and Matson, J., in Proc. 26th IEEE Photovolt. Spec.

Conf., Anaheim, CA, USA (1997) p. 387-390.

[66] Braunger, D., Hariskos, D., Bilger, G., Rau, U., Schock, H.W., Thin Solid Films, 361-362 (2000) 161-166.

[67] Heske, C., Eich, D., Fink, R., Umbach, E., Kakar, S., van Buuren, T., Bostedt, C., Terminello, L.J., Grush, M.M., Callcott, T.A., Himpsel, F.J., Ederer, D.L., Perera, R.C.C., Riedl, W., and Karg, F., Appl. Phys. Lett., 75 (1999) 2082-2084.

[68] Rau, U., and Schock, H.W., Appl. Phys. A: Mater. Sci. Process., 69 (1999) 131-147.

[69] Niles, D., W., Ramanathan, K., Hasoon, F., Noufi, R., Tielsch, B.J., and Fulghum, J.E., J.

Vac. Sci. Technol., A 15 (1997) 3044-3049.

[70] Rockett, A., Britt, J.S., Gillespie, T., Marshall, C., Al Jassim, M.M., Hasoon, F., Matson, R., and Başol, B., Thin Solid Films, 372 (2000) 212-217.

[71] Kimura, R., Nakada, T., Fons, P., Yamada, A., Niki, S., Matsuzawa, T., Takahashi, K., and Kunioka, A., Sol. Energy Mater. Sol. Cells, 67 (2001) 289-295.

[72] Wei, S.-H., Zhang, S.B., and Zunger, A., J. Appl. Phys., 85 (1999) 7214-7218.

[73] Rockett, A., Granath, K., Asher, S., Al Jassim, M.M., Hasoon, F., Matson, R., Başol, B., Kapur, V., Britt, J.S., Gillespie, T., and Marshall, C., Sol. Energy Mater. Sol. Cells., 59 (1999) 255-264.

[74] Ruckh, M., Scmid, D., Kaiser, M., Schäffler, R., Walter, T., and Schock, H.W., in Proc. 1st World Conf. Photovolt. Energy Conv., Waikoloa, Hawaii (1994) p. 156-159.

[75] Kronik, L., Cahen, D., and Schock, H.W., Adv. Mater., 10 (1998) 31-36.

[76] Cahen, D., and Noufi, R., Appl. Phys. Lett., 54 (1989) 558-560.

[77] Kronik, L., Rau, U., Guillemoles, J.-F., Braunger, D., Schock, H.W., and Cahen, D., Thin Solid Films, 361-362 (2000) 353-359.

[78] Rau, U., Braunger, D., Herberholz, R., Schock, H.W., Guillemoles, J.-F., Kronik, L., and Cahen, D., J. Appl. Phys., 86 (1999) 497-505.

[79] Caballero, R., and Guillén, C., Thin Solid Films, 403-404 (2002) 107-111.

[80] Marudachalam, M., Hichri, H., Klenk, R., Birkmire, R.W., Shafarman, W.N., and Schultz, J.M., Appl. Phys. Lett., 67 (1995) 3978-3980.

[81] Klenk, M., Schenker, O., Alberts, V., and Bucher, E., Semicond. Sci. Technol., 17 (2002) 435-439.

[82] Devaney, W.E., Chen, W.S., Stewart, J.M., and Mickelsen, R.A., IEEE Trans. Electron Dev., 37 (1990) 428-433.

[83] Gabor, A.M., Tuttle, J.R., Albin, D.S., Contreras, M.A., and Noufi, R., Appl. Phys. Lett., 65 (1994) 198-200.

[84] Negami, T., Hashimoto, Y., and Nishiwaki, S., Sol. Energy Mater. Sol. Cells, 67 (2001) 331-335.

[85] Hagiwara, Y., Nakada, T., and Kunioka, A., Sol. Energy Mater. Sol. Cells, 67 (2001) 267-271.

[86] Chaisitsak, S, Yamada, A., and Konagai, M., Jpn. J. Appl. Phys., 41 (2002) 507-513.

[87] Nakada, T., and Mizutani, M., Jpn. J. Appl. Phys., 41 (2002) L165-L167.

[88] Contreras, M.A., Egaas, B., King, D., Schwartzlander, A., and Dullweber, T., Thin Solid Films, 361-362 (2000) 167-171.

[89] Contreras, M.A., Jones, K. M., Gedvilas, L., and Matson, R., Proc. 16th Eur. Photovolt.

Solar Energy Conf., Glasgow, UK (James & James, London, 2001), p. 732-735.

[90] Shafarman, W.N., and Zhu, J., Thin Solid Films, 361-362 (2000) 473-477.

[91] Niki, S., Yamada, A., Hunger, R., Fons, P.J., Iwata, K., Matsubara, K., Nishio, A., and Nakanishi, H., J. Cryst. Growth, 237-240 (2002) 1993-1999.

[92] Tiwari, A.N., Blunier, S., Kessler, K., Zelezny, V., and Zogg, H., Appl. Phys. Lett., 65 (1994) 2299-2301.

[93] Hermann, A.M., Gonzalez, C., Ramakrishnan, P.A., Balzar, D., Popa, N., Rice, B., Marshall, C.H., Hilfiker, J.N., Tiwald, T., Sebastian, P.J., Calixto, M.E., and Bhattacharya, R.N., Sol.

Energy Mater. Sol. Cells, 70 (2001) 345-361.

[94] Negami, T., Satoh, T., Hashimoto, Y., Shimakawa, S., Hayashi, S., Muro, M., Inoue, H., and Kitagawa, M., Thin Solid Films, 403-404 (2002) 197-203.

[95] Powalla, M., and Dimmler, B., Thin Solid Films, 361-362 (2000) 540-546.

[96] Dimmler, B., Gross, E., Menner, R., Powalla, M., Hariskos, D., Ruckh, M, Rühle, U., and Schock, H.W., in Proc. 25th IEEE Photovolt. Spec. Conf., Washington, D.C., USA (1996) p. 757-762.

[97] Knapp, K., and Jester, T., Sol. Energy, 71 (2001) 165-172.

[98] Zank, J., Mehlin, M., and Fritz, H.P., Thin Solid Films, 286 (1996) 259-263.

[99] Ramakrishna Reddy, K.T., Datta, P.K., and Carter, M.J., Phys. Stat. Sol. (a), 182 (2000) 679-685.

[100] Adurodija, F. O., Song, J., Kim, S. D., Kwon, S. H., Kim, S. K., Yoon, K. H. and Ahn, B.

T., Thin Solid Films, 338 (1999) 13-19.

[101] Marudachalam, M., Birkmire, R.W., Hichri, H., Schultz, J.M., Swartzlander, A., and Al-Jassim, M.M., J. Appl. Phys., 82 (1997) 2896-2905.

[102] Guillén, C., Martínez, M.A., and Herrero, J., Vacuum, 58 (2000) 594-601.

[103] Yüksel, Ö.F., Başol, B.M., Safak, H., and Karabiyik, H., Appl. Phys. A, 73 (2001) 387-389.

[104] Chowles, A.G., Neethling, J.H., van Niekerk, H., Engelbrecht, J.A.A., and Watters, V.J., Renew. Energy, 6 (1995) 613-618.

[105] Bandyopadhyaya, S., Roy, S., Chaudhuri, S., and Pal, A.K., Vacuum, 62 (2001) 61-73.

[106] Guillén, C., and Herrero, J., Sol. Energy Mater. Sol. Cells, 73 (2002) 141-149.

[107] Sadigov, M.S., Özkan, M., Bakacsiz, E., Altunbaş, M., and Kopya, A.I., J. Mater. Sci., 34 (1999) 4579-4584.

[108] Chu, T.L., Chu, S.S., Lin, S.C. and Yue, J., J. Electrochem. Soc., 131 (1984) 2182-2185.

[109] Bekker, J., Alberts, V., and Witcomb, M.J., Thin Solid Films, 387 (2001) 40-43.

[110] Chichibu, S.F., Sugiyama, M., Ohbasami, M., Hayakawa, A., Mizutani, T., Nakanishi, H., Negami, T., and Wada, T., J. Cryst. Growth, 243 (2002) 404-409.

[111] A. Garg, K.S. Balakrisnan and A.C. Rastogi, J. Electrochem. Soc. 141 (1994) 1566-1572.

[112] Rastogi, A.C., Balakrisnan, K.S., Sharma, R.K. and Jain, K., Thin Solid Films, 357 (1999) 179-188.

[113] Guillén, C., and Herrero, J., Thin Solid Films, 323 (1998) 93-98.

[114] Alberts, V., Klenk, M., and Bucher, E., Thin Solid Films, 387 (2001) 44-46.

[115] Calixto, M.E., and Sebastian, P.J., J. Mater. Sci., 33 (1998) 339-345.

[116] Hodes, G., Engelhardt, T., Cahen , D., Kazmerski, L.L., and Herrington, C.R., Thin Solid Films, 128 (1985) 93-106.

[117] Kumar, S.R., Gore, R.B., and Pandey, R.K., Thin Solid Films, 223 (1993) 109-113.

[118] Fritz, H.P. and Chatziagorastou, P., Thin Solid Films, 247 (1994) 129-133.

[119] Kapur, V.K., Başol, B.M., and Tseng, E.S., Sol. Cells, 21 (1987) 65-72.

[120] Prosini, P.P., Addonizio, M.L., Antonaia A. and Loreti, S. Thin Solid Films, 288 (1996) 90-94.

[121] Altosaar, M., Mellikov, E., Kois, J., Guo, Y. and Meissner, D., in Proceedings of Joint International Meeting of The Electrochemical Society, Inc. and The International Society of Electrochemistry, Paris, France (1997) p. 1314-1315

[122] Lokhande, C.D., Bull. Electrochem., 4 (1988) 131-136.

[123] Probst, V., Stetter, W., Riedl, W., Vogt, H., Wendl, M., Calwer, H., Zweigart, S., Ufert, K.-D., Freienstein, B., Cerva, H., and Karg, F., Thin Solid Films, 387 (2001) 262-267.

[124] Kushiya, K., Thin Solid Films, 387 (2001) 257-261.

[125] Kushiya, K., Tachiyuki, M., Nagoya, Y., Fujimaki, A., Sang, B., Okumura, D., Satoh, M., and Yamase, O., Sol. Energy Mater. Sol. Cells, 67 (2001) 11-20.

[126] Karg, F.H., Sol. Energy Mater. Sol. Cells, 66 (2001) 645-653.

[127] Wada, T., Hashimoto, Y., Nishiwaki, S., Satoh, T., Hayashi, S., Negami, T., and Miyake, H., Sol. Energy Mater. Sol. Cells, 67 (2001) 305-310.

[128] Başol, B.M., Halani, A., Leidholm, C., Norsworthy, G., Kapur, V.K., Swartzlander, A., and Matson, R., Prog. Photovolt.: Res. Appl., 8 (2000) 227-235.

[129] Keränen, J., Lu, J., Barnard, J., Sterner, J., Kessler, J., Stolt, L., Matthes, Th.W., and Olsson, E., Thin Solid Films, 387 (2001) 80-82.

[130] Gillespie, T.J., Marshall, C.H., Contreras, M., and Keane, J., Sol. Energy Mater. Sol. Cells, 59 (1999) 27-34.

[131] Hermann, A.M., Mansour, M., Badri, V., Pinkhasov, B., Gonzales, C., Fickett, F., Calixto, M.E., Sebastian, P.J., Marshall, C.H., and Gillespie, T.J., Thin Solid Films, 361-362 (2000) 74-78.

[132] Hermann, A.M., Gonzalez, C., Ramakrishnan, P.A., Balzar, D., Marshall, C.H., Hilfiker, J.N., and Tiwald, T., Thin Solid Films, 387 (2001) 54-56.

[133] Park, S.C., Lee, D.Y., Ahn, B.T., Yoon, K.H., and Song, J., Sol. Energy Mater. Sol. Cells, 69 (2001) 99-105.

[134] Lee, D.Y., Yun, J.H., Ahn, B.T., Yoon, K.H., and Song, J., Mater. Res. Soc. Symp. Proc., 668 (2001) H8.8.1-6.

[135] Ashida, A., Hachiuma, Y., Yamamoto, N., Ito, T., and Cho, Y., J. Mater. Sci. Lett., 13 (1994) 1181-1184.

[136] Klenk, M., Schenker, O., Alberts, V., and Bucher, E., Thin Solid Films, 387 (2001) 47-49.

[137] Merino, J.M., León, M., Rueda, F., and Diaz, R., Thin Solid Films, 361-362 (2000) 22-27.

[138] Sakata, H., and Ogawa, H., Sol. Energy Mater. Sol. Cells, 63 (2000) 259-265.

[139] Akl, A.A.S., Ashour, A., Ramadan, A.A., and El-Hady, K.A., Vacuum, 61 (2001) 75-84.

[140] Joseph, C.M., and Menon, C.S., J. Phys. D: Appl. Phys., 34 (2001) 1143-1146.

[141] Victor, P., Nagaraju, J., and Krupanidhi, S.B., Solid State Comm., 116 (2000) 649-653.

[142] Kuranouchi, S. and Yoshida, A., Thin Solid Films, 343-344 (1999) 123-126.

[143] McAleese, J., O’Brien, P., and Otway, D. J., Chem. Vap. Deposition, 4 (1998) 94-96.

[144] Jones, P.A., Jackson, A.D., Lickiss, P.D., Pilkington, R.D., and Tomlinson, R.D., Thin Solid Films, 238 (1994) 4-7.

[145] Duchemin, S., Artaud, M.C., Ouchen, F. and Bougnot, J., J. Mater. Sci.: Mater. Electron., 7 (1996) 201-205.

[146] Artaud, M.C., Ouchen, F., Martin, L., and Duchemin, S., Thin Solid Films, 324 (1998) 115-123.

[147] Massé, G., Djessas, K., Monty, C., and Sibieude, F., Thin Solid Films, 414 (2002) 192-198.

[148] El Haj Moussa, G.W., Ariswan, Khoury, A., Guastavino, F., and Llinarés, C., Solid State Comm., 122 (2002) 195-199.

[149] Bhattacharya, R.N., Hiltner, J.F., Batchelor, W., Contreras, M.A., Noufi, R.N., and Sites, J.R.,Thin Solid Films, 361-362 (2000) 396-399.

[150] Bhattacharya, R.N., Batchelor, W., Ramanathan, K., Contreras, M.A., and Moriarty, T., Sol. Energy Mater. Sol. Cells, 63 (2000) 367-374.

[151] Bhattacharya, R.N., J. Electrochem. Soc., 130 (1983) 2040-2042.

[152] Bhattacharya, R.N., Batchelor, W., Granata, J.E., Hasoon, F., Wiesner, H., Ramanathan, K., Keane, J., and Noufi, R. N., Sol. Energy Mater. Sol. Cells, 55 (1998) 83-94.

[153] Garg, J.C., Sharma, R.P., and Sharma, K.C., Thin Solid Films, 164 (1988) 269-273.

[154] Reddy, K.T.R., Chalapathy, R.B.V., Slifkin, M.A., Weiss, A.W., and Miles, R.W., Thin Solid Films, 387 (2001) 205-207.

[155] Shirakata, S., Kannaka, Y., Hasegawa, H., Kariya, T., and Isomura, S., Jpn. J. Appl. Phys., 38 (1999) 4997-5002.

[156] Başol, B. M., Thin Solid Films, 361-362 (2000) 514-519.

[157] Eberspacher, C., Fredric, C., Pauls, K., and Serra, J., Thin Solid Films, 387 (2001) 18-22.

[158] Norsworthy, G., Leidholm, C.R., Halani, A., Kapur, V.K., Roe, R., Başol, B.M., Matson, R., Sol. Energy Mater Sol. Cells, 60 (2000) 127-134.

[159] Rau, U., and Scmidt, M., Thin Solid Films, 387 (2001) 141-146.

[160] Contreras, M.A., Romero, M.J., To, B., Hasoon, F., Noufi, R., Ward, S., and Ramanathan, K., Thin Solid Films, 403-404 (2002) 204-211.

[161] Garg, P., Garg, A., Rastogi, A.C. and Garg, J.C., J. Phys. D: Appl. Phys., 24 (1991) 2026-2031.

[162] Qiu, C.X. and Shih, I., Can. J. Phys., 65 (1987) 1011-1014.

[163] Sahu, S.N., Kristensen, R.D.L., and Haneman, D., Sol. Energy Mater., 18 (1989) 385-397.

[164] Qiu, S.N., Li, L., Qiu, C.X., Shih, I., and Champness, C.H., Sol. Energy Mater. Sol. Cells, 37 (1995) 389-393.

[165] Rockett, A., and Birkmire, R.W., J. Appl. Phys., 70 (1991) R81-R97.

[166] Sudo, Y., Endo, S., and Irie, T., Jpn. J. Appl. Phys., 32 (1993) 1562-1567.

[167] Lincot, D., Froment, M., and Cachet, H., in Advances in Electrochemical Science and Engineering, Vol 6 , Edited by R.C. Alkire and D.M. Kolb, Wiley-VCH, Weinheim, Germany, 1999, p. 165-235

[168] Hashimoto, Y., Kohara, N., Negami, T., Nishitani, N., and Wada, T., Sol. Energy Mater.

Sol. Cells, 50 (1998) 71-77.

[169] Qiu, S.N., Lam, W.W., Qiu, C.X., and Shih, I., Appl. Surf. Sci., 113/114 (1997) 764-767.

[170] Kylner, A., Rockett, A. and Stolt, L., Solid State Phenom., 51-52 (1996) 533-540.

[171] Guillén, C., Martínez, M.A., Maffiotte, C., and Herrero, J., J. Electrochem. Soc., 148 (2001) G602-G606.

[172] Kylner, A., J. Appl. Phys., 85 (1999) 6858-6865.

[173] Friedlmeier, T.M., Braunger, D., Hariskos, D., Kaiser, M., Wanka, H.N., and Schock, H.W., in Proc. 25th IEEE Photovolt. Spec. Conf., Washington, D.C., USA (1996) p. 845-848.

[174] CRC Handbook of Chemistry and Physics 82nd Ed., Edited by D.R. Lide, CRC Press, Inc., Boca Raton, FL, 2001-2002.

[175] Canawa, B., Guillemoles, J.-F., Yousfi, E.-B., Cowache, P., Kerber, H., Loeffl, A., Schock, H.-W., Powalla, M., Hariskos, D., and Lincot, D., Thin Solid Films, 361-362 (2000) 187-192.

[176] Bär, M., Muffler, H.-J., Fischer, C.-H., Zweigart, S., Karg, F., and Lux-Steiner, M.C., Prog.

Photovolt.: Res. Appl., 10 (2002) 173-184.

[177] Başol, B. M., Kapur, V. K., Norsworthy, G., Halani, A., Leidholm, C. R., and Roe, R., Electrochem. Solid-State Lett., 1 (1998) 252-254.

[178] Kushiya, K., Nii, T., Sugiyama, I., Sato, Y., Inamori, Y., and Takeshita, H., Jpn. J. Appl.

Phys., 35 (1996) 4383-4388.

[179] Ennaoui, A., Siebentritt, S., Lux-Steiner, M.Ch., Riedl, W., and Karg, F., Sol. Energy Mater. Sol. Cells, 67 (2001) 31-40.

[180] Hariskos, D., Ruckh, M., Rühle, U., Walter, T., Schock, H.W., Hedström, J., and Stolt, L., Sol. Energy Mater. Sol. Cells, 41/42 (1996) 345-353.

[181] Muffler, H.-J Bär, M., Fischer, C.-H., Gay, R., Karg, F., and Lux-Steiner, M.C., in Proc.

28th IEEE Photovolt. Spec. Conf., Anchorage, AK, USA (2000) p. 610-613.

[182] Siebentritt, S., Kampschulte, T., Bauknecht, A., Blieske, U., Harneit, W., Fiedeler, U., and Lux-Steiner, M., Sol. Energy Mater. Sol. Cells, 70 (2002) 447-457.

[183] Guillemoles, J.-F., Canawa, B., Yousfi, E.B., Cowache, P., Galtayries, A., Asikainen, T., Powalla, M., Hariskos, D., Schock, H.-W., and Lincot, D., Jpn. J. Appl. Phys., 40 (2001) 6065-6068.

[184] Yousfi, E.B., Asikainen, T., Pietu, V., Cowache, P., Powalla, M., and Lincot, D., Thin Solid Films, 361-362 (2000) 183-186.

[185] Ohtake, Y., Kushiya, K., Ichikawa, M., Yamada, A., and Konagai, M., Jpn. J. Appl. Phys., 34 (1995) 5949-5955.

[186] Ohtake, Y., Okamoto, T., Yamada, A., Konagai, M., and Saito, K., Sol. Energy Mater. Sol.

Cells, 49 (1997) 269-275.

[187] Ohtake, Y., Ichikawa, M., Okamoto, T., Yamada, A., Konagai, M., and Saito, K., in Proc.

25th IEEE Photovolt. Spec. Conf., Washington, D.C., USA (1996) p. 793-796.

[188] Tuttle, J.R., Berens, T.A., Keane, J., Ramanathan, K.R., Granata, J., Bhattacharya, R.N., Wiesner, H., Contreras, M.A., and Noufi, R., Proc. 25th IEEE Photovolt. Spec. Conf., Washington, D.C., USA (1996) p. 797-800.

[189] Delahoy, A., Bruns, J., Chen, L., Akhtar, M., Kiss, Z., and Contreras, M., in Proc. 28th IEEE Photovolt. Spec. Conf., Anchorage, AK, USA (2000) p. 1437-1440.

[190] Sugiyama, T., Chaisitsak, S., Yamada, A., Konagai, M., Kudriavtsev, Y., Godines, A., Villegas, A., and Asomoza, R., Jpn. J. Appl. Phys., 39 (2000) 4816-4819.

[191] Nakada, T., and Mizutani, M., in Proc. 28th IEEE Photovolt. Spec. Conf., Anchorage, AK,

USA (2000) p. 529-534.

[192] Kushiya, K., and Yamase, O., Jpn. J. Appl. Phys., 39 (2000) 2577-2582.

[193] Hariskos, D., Powalla, M., Chevaldonnet, N., Lincot, D., Schindler, A., and Dimmler, B., Thin Solid Films, 387 (2001) 179-181.

[194] Cooray, N.F., Kushiya, K., Fujimaki, A., Sugiyama, I., Miura, T., Okumura, D., Sato, M., Ooshita, M., and Yamase, O., Sol. Energy Mater. Sol. Cells, 49 (1997) 291-297.

[195] Sang, B., Kushiya, K., Okumura, D., and Yamase, O., Sol. Energy Mater. Sol. Cells, 67 (2001) 223-245.

[196] Chaisitsak, S., Sugiyama, T., Yamada, A., and Konagai, M., Jpn. J. Appl. Phys., 38 (1999) 4989-4992.

[197] Stolt, L., Hedström, J., and Skarp, J., in Proc. 1st World Conf. Photovolt. Energy Conv., Waikoloa, Hawaii (1994) p. 250-253.

[198] Olsen, L.C., Addis, F.W., Huang, L., Shafarman, W.N., Eschbach, P., and Exarhos, G. J., in Proc. 28th IEEE Photovolt. Spec. Conf., Anchorage, AK, USA (2000) p. 458-461.

[199] Gal, D., Hodes, G., Lincot, D., and Schock, H.-W., Thin Solid Films, 361-362 (2000) 79-83.

[200] Pandey, R. K., Sahu, S.N., and Chandra, S., Handbook of Semiconductor Electrodeposition, Marcel Dekker, New York, 1996. 289 p.

[201] Saloniemi, H., Kanniainen, T., Ritala, M., and Leskelä, M., Thin Solid Films, 326 (1998) 78-82.

[202] Saloniemi, H., Kanniainen, T., Ritala, M., Leskelä M., and Lappalainen, R., J. Mater.

Chem., 8 (1998) 651-654.

[203] Thouin, L., Massaccesi, S., Sanchez, S., and Vedel, J., J. Electroanal. Chem., 374 (1994) 81-88.

[204] Massaccesi, S., Sanchez, S., and Vedel, J., J. Electrochem. Soc., 140 (1993) 2540-2546.

[205] Thouin, L., and Vedel, J., J. Electrochem. Soc., 142 (1995) 2996-3001.

[206] Pottier, T., and Maurin, G., J. Appl. Electrochem., 1 9 (1989) 361-367.

[207] Molin, A.N., Dikusar, A.I., Kiosse, G.A., Petrenko, P.A., Sokolovsky, A.I., and Saltanovsky, Yu.G., Thin Solid Films, 237 (1994) 66-71.

[208] Molin, A.N., and Dikusar, A.I., Thin Solid Films, 237 (1994) 72-77.

[209] Oliveira, M.C.F., Azevedo, M., and Cunha, A., Thin Solid Films, 405 (2002) 129-134.

[210] Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, New York (1966)

[211] Ganchev, M.G., and Kochev, K.D., Sol. Energy Mater. Sol. Cells, 31 (1993) 163-170.

[212] Guillén, C., and Herrero, J., J. Electrochem. Soc., 141 (1994) 225-230.

[213] Xu, J.L., Yao, X.F., and Feng, J.Y., Sol. Energy Mater. Sol. Cells, 73 (2002) 203-208.

[214] Ueno, Y., Kawai, H., Sugiura, T., and Minoura, H., Thin Solid Films, 157 (1988) 159-168.

[215] Raffaelle, R.P., Forsell, H., Potdevin, T., Friedfeld, R., Mantovani, J.G., Bailey, S.G., Hubbard, S.M., Gordon, E.M., and Hepp, A.F., Sol. Energy Mater. Sol. Cells., 57 (1999) 167-178.

[216] Tzvetkova, E, Stratieva, N., Ganchev, M., Tomov, I., Ivanova, K., and Kochev, K., Thin Solid Films, 311 (1997) 101-106.

[217] Edamura, T., and Muto, J., J. Mater. Sci., 5 (1994) 275-279.

[218] Kampmann, A., Sittinger, V., Rechid, J., and Reineke-Koch, R., Thin Solid Films, 361-362 (2000) 309-313.

[219] Calixto, M.E., and Sebastian, P.J., Sol. Energy Mater. Sol. Cells, 63 (2000) 335-345.

[220] Sebastian, P.J., Calixto, M.E., Bhattacharya, R.N., and Noufi, R., Sol. Energy Mater. Sol.

Cells, 59 (1999) 125-135.

[221] Khare, N., Razzini, G., and Bicelli, L.P, Thin Solid Films, 186 (1990) 113-128.

[222] Ugarte, R., Schrebler, R., Córdova, R., Dalchiele, E. A., and Gómez, H., Thin Solid Films, 340 (1999) 117-124.

[223] Lokhande, C.D., J. Electrochem. Soc., 134 (1987) 1727-1729.

[224] Nomura, S., Nishiyama, K., Tanaka, K., Sakakibara, M., Ohtsubo, M., Furutani, N., and Endo, S., Jpn. J. Appl. Phys., 37 (1998) 3232-3237.

[225] Chraibi, F., Fahoume, M., Ennaoui, A., and Delplancke, J.L., Phys. Stat. Sol. (a), 186 (2001) 373-381.

[226] Pern, F. J., Noufi, R., Mason, A., and Franz, A., Thin Solid Films, 202 (1991) 299-314.

[227] Guillén, C., and Herrero, J., J. Electrochem. Soc., 141 (1995) 1834-1838.

[228] Friedfeld, R., Raffaelle, R.P., and Mantovani, J.G., Sol. Energy Mater. Sol. Cells., 58 (1999) 375-385.

[229] Menezes, S., Electrochem. Solid-State Lett., 5 (2002) C79-C81.

[230] Baoming, H.M., Lister, T.E. and Stickney, J.L., in The Handbook of Surface Imaging and Visualization, Edited by Arthur T. Hubbard, CRC Press, Inc., Boca Raton, Florida, 1995, p. 75-91 [231] Buttry, D. A., and Ward, M. D., Chem. Rev., 92 (1992) 1355-1378.

[232] Deakin, M. R., and Buttry, D. A., Anal. Chem., 61 (1989) 1147A-1154A.

[233] Sauerbrey, G., Z. Phys., 155 (1959) 206-222.

[234] Buttry, D.A., in Electroanalytical Chemistry, Vol. 17, Edited by A.J. Bard, Dekker, New York, 1991, p. 1-85

[235] Mori, E., Baker, C.K., Reynolds, J.R., and Rajeshwar, K., J. Electroanal. Chem., 252 (1988) 441-451.

[236] Matias, J.G.N., Juliao, J.F., Soares, D.M., and Gorenstein, A., J. Electroanal.Chem., 451 (1997) 163-169.

[237] Wei, C., Myung, N., and Rajeshwar, K., J. Electroanal. Chem., 347 (1993) 223-235.

[238] Saloniemi, H., Kemell, M., Ritala, M., and Leskelä, M., J. Electroanal. Chem., 482 (2000) 139-148.

[239] Wei, C., Bose, C.S.C., and Rajeshwar, K., J. Electroanal. Chem., 327 (1992) 331-336.

[240] Myung, N., Jun, J.H., Ku, H.B., Chung, H.K., and Rajeshwar, K., Microchem. J., 62 (1999) 15-25.

[241] Saloniemi, H., Kemell, M., Ritala, M., and Leskelä, M., J. Mater. Chem., 10 (2000) 519-525.

[242] Neshkova, M.T., Nikolova, V.D., and Petrov, V., J. Electroanal. Chem., 487 (2000) 100-110.

[243] Marlot, A., and Vedel, J., J. Electrochem. Soc., 146 (1999) 177-183.

[244] de Tacconi, N.R., Rajeshwar, K., Lezna, R.O., J. Phys. Chem., 100 (1996) 18234-18239.

[245] de Tacconi, N. R., and Rajeshwar, K., J. Electroanal. Chem., 444 (1998) 7-10.

[246] de Tacconi, N.R., Medvedko, O., and Rajeshwar, K., J. Electroanal. Chem., 379 (1994) 545-547.

[247] Saloniemi, H., Kemell, M., Ritala, M., and Leskelä, M., Thin Solid Films, 386 (2001) 32-40.

[248] Pauporté, T., and Lincot, D., J. Electroanal. Chem., 517 (2001) 54-62.

[249] Tan, M.X., Laibinis, P.E., Nguyen, S.T., Kesselman, J.M., Stanton, C.E., and Lewis, N.S., Prog. Inorg. Chem., 41 (1994) 21-144.

[250] Nozik, A. J., and Memming, R., J. Phys. Chem., 100 (1996) 13061-13078.

[251] Rajeshwar, K. and de Tacconi, N. R., in Studies in Surface Science and Catalysis, Vol 103, Edited by P.V. Kamat and D. Meisel, (editors), Elsevier, Amsterdam, 1996, p.321-351

[252] Menezes, S., Mater. Res. Soc. Symp. Proc., 426 (1996) 189-194.

[253] Mishra, K.K., and Rajeshwar, K., J. Electroanal. Chem., 271 (1989) 279-294.

[254] Guillén, C., Herrero, J., and Lincot, D., J. Appl. Phys., 76 (1994) 359-362.

[255] Siripala, W., Vedel, J., Lincot, D., and Cahen, D., Appl. Phys. Lett., 62 (1993) 519-521.

[256] Ahrland, S., and Tagesson, B., Acta Chem. Scand., A 31 (1977) 615-624.

[257] Waldo, R. A., Microbeam Anal. (1988) 310.

[258] Ylilammi, M., Ranta-aho, T., Thin Solid Films, 232 (1993) 56-62.

[259] Koh, W. Kutner, W., Jones, M.T., and Kadish, K.M., Electroanalysis, 5 (1993) 209-214.

[260] Massaccesi, S., Sanchez, S., and Vedel, J., J. Electroanal. Chem., 412 (1996) 95-101.

[261] Kylner, A., J. Electrochem. Soc. 146 (1999) 1816-1823.

[262] M. Izaki, and T. Omi, J. Electrochem. Soc., 143 (1996) L53-L55.

[263] Schroder, D.K., Semiconductor material and device characterization, Wiley, New York, 2nd ed. (1998)

[264] Mauk, P.H., Tavakolian, H., and Sites, J.R., IEEE Trans. Electron Dev., 37 (1990) 422-427.

[265] Powder Diffraction Files, Card 06-0680, International Centre for Diffraction Data, Pennsylvania, PA

[266] Schumacher, R., Borges, G. and Kanazawa, K. K., Surf. Sci. 163 (1985) L621-L626.

[267] Shih, I., Qiu, C.X., Qiu, S.N., and Huang, J.F., J. Appl. Phys., 63 (1988) 439-441.

[268] Santamaria, J., Gonzalez-Diaz, G., Iborra, E., Martil, I., and Sanchez-Quesada, F., J. Appl.

Phys., 65 (1989) 3236-3241.

[269] Noufi, R., Axton, R., Herrington, C., and Deb, S.K., Appl. Phys. Lett., 45 (1984) 668-670.

[270] Smith, R.M., and Martell, A.E., NIST Critically Selected Stability Constants for Metal Complexes Database, Version 4.0 (1997)

[271] Minami, T., MRS Bull., 25 (2000) 38-44.

[272] Naghavi, N., Marcel, C., Dupont, L., Rougier, A., Leriche, J.-B., and Guéry, C., J. Mater.

Chem., 10 (2000) 2315-2319.

[273] Powder Diffraction Files, Card 36-1451, International Center for Diffraction Data, Haverford, PA

[274] Powder Diffraction Files, Card 16-0161, International Center for Diffraction Data, Haverford, PA

[275] Nunes, P., Fortunato, E., Vilarinho, P., and Martins, R., Int. J. Inorg. Mater., 3 (2001) 1211-1213.

[276] Martínez, M.A., and Guillén, C., Surf. Coat. Technol., 110 (1998) 62-67.