• Ei tuloksia

This study demonstrated that there is a great deal of variation in the effects of different management regimes on different indicators at landscape scale. It also demonstrated that conserving ecosystem services and biodiversity cannot be achieved by applying only one regime but requires careful planning and the use of many management regimes. This study also supports earlier results and suggests that BAU–style forestry, although producing a high timber yield compared to other management regimes, is not the optimal regime for biodiversity, or ecosystem services apart from cowberry and marketed mushrooms. Instead, less intensive regimes and actions such as CCF, refraining from thinning and extended rotation

length are often better for biodiversity on a long timescale, since they offer more habitats for deadwood-dependent species and species requiring mature forest structure and continuous forest cover. Quite often, however, the negative effects of management cannot be fully alleviated with any regime, highlighting the need for conservation areas to maintain habitats for the most demanding species. These results therefore indicate that maximising timber production has a negative effect for biodiversity and for some ecosystem services, and the use of more conservation-minded regimes results in slightly lower timber yield, which is in line with earlier studies. These results also question the effectiveness of green tree retention as an adequate method to increase the amount of deadwood and provide habitats for deadwood-dependent species.

In the light of Finland’s increased harvest targets, these results provide important information on how to simultaneously harvest timber and minimize harm to biodiversity and ecosystem services on a long timescale, as well as point out the conflict between timber harvest and biodiversity. These results could be applied to forest management to promote the use of less intensive management methods.

There are also opportunities for further studies, for example on how to optimize biodiversity and ecosystem services values and the production of timber, in the light of these results. Including climate change and natural disturbances in the simulation model would also provide important information on how the effects of climate change affect the results.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisors Anna Repo, Kyle Eyvindson and Mikko Mönkkönen for their invaluable help and guidance during this project.

Extra thanks to Kyle for running the simulations and helping me with the R code, which would have been impossible for me to do alone. Also thank you Anna for your encouraging comments and advice on my thesis and writing. I appreciated

that you were both easy to reach and offered help and answers to my questions. I would also like to thank Tuomas Ruottinen for always supporting me and cheering me on during this thesis project.

BIBLIOGRAPHY

Allison S. & Treseder K. 2011. Climate change feedbacks to microbial decomposition in boreal soils. Fungal ecology. 4: 362-374.

Andreassen K. & Oyen B. 2002. Economic consequences of three silvicultural methods in uneven-aged mature coastal spruce forests of central Norway.

Forestry. 75:483-488.

Andrén H. 1994. Effects of Habitat Fragmentation on Birds and Mammals in Landscapes with Different Proportions of Suitable Habitat: A Review. Oikos.

71: 355-366.

Asikainen A.-R., Hujala T. & Kurttila M. 2014. Maanomistajien näkemyksiä metsänkäsittelyn vaihtoehdoista ja metsäammattilaisten

palvelunkehittämisnäkökulmia – Metsänhoitoyhdistys Päijät-Hämeen tapaustutkimus. Metsätieteen aikakauskirja. 3/2014: 149–162.

Atlegrim O. & Sjöberg K. 2004. Selective felling as a potential tool for maintaining biodiversity in managed forests. Biodiversity and conservation. 13:1123-1133.

Bradshaw C., Warkentin I. & Sodhi N. 2009. Urgent preservation of boreal carbon stocks and biodiversity. Trends Ecol. Evol. 24: 541-548.

Cimon‐Morin J., Darveau M. & Poulin M. 2013. Fostering synergies between ecosystem services and biodiversity in conservation planning: a

review. Biological Conservation, 166: 144–154.

Dale V., Joyce L., McNulty S., Neilson R., Ayres M., Flannigan M., Hanson P., Irland L., Lugo A., Peterson C., Simberloff D., Swanson F., Stocks B., Wotton M. 2001. Climate change and forest disturbances. BioScience. 51: 723-734.

Egli S., Ayer F., Peter M., Eilmann B. & Rigling A. 2010. Is forest mushroom productivity driven by tree growth? Results from a thinning experiment.

Annals of forest science. 67: 509-509.

Eyvindson K., Repo A. & Mönkkönen M. 2018. Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy. Forest Policy and Economics. 92:119-127.

Gamfeldt L., Snäll T., Bagchi R., Jonsson M., Gustafsson L., Kjellander P., Ruiz-Jaen M.C., Fröberg M., Stendahl J., Philipson C.D. 2013. Higher levels of multiple ecosystem services are found in forests with more tree species.

Nature communications. 4:1-8.

Gustafsson L., Kouki J. & Sverdrup-Thygeson A. 2010. Tree retention as

conservation measure in clear-cut forests of northern Europe: a review of ecological consequences. Scandinavian journal of forest research.25:295-308.

Haines-Young R., Potschin M. 2010. The links between biodiversity, ecosystem services and human well-being. In: Raffaelli DG, Frid CLJ (eds) Ecosystems ecology: a new synthesis. Cambridge University Press.

Hansen A., Spies T., Swanson F., Ohmann J. 1991. Conserving biodiversity in managed forests. Bioscience. 41:382–392.

Hedwall P.O., Brunet J., Nordin A. & Bergh J. 2013. Changes in the abundance of keystone forest floor species in response to changes of forest structure. J. Veg.

Sci. 24: 296–306.

Hjältén J., Joelsson K., Gibb H., Work T., Löfroth T., Roberge J. 2017. Biodiversity benefits for saproxylic beetles with uneven-aged silviculture. Forest ecology and management. 402:37-50.

Hokkanen H., Törmälä T. & Vuorinen H. 1982. Decline of the flying squirrel Pteromys volans L. populations in Finland. Biological Conservation. 23: 273–

284.

Hynynen J., Ojansuu R., Hökkä H., Siipilehto J., Salminen H., Haapala P. 2002.

Models for Predicting Stand Development in MELA System. In: Finnish Forest Research Institute, Res. Papers 835: 1-116.

Hynynen J., Ahtikoski A., Siitonen J., Sievänen R., Liski J. 2005. Applying the MOTTI simulator to analyse the effects of alternative management schedules on timber and non-timber production. For. Ecol. Manage. 207:5-18.

Hyvärinen E., Juslén A., Kemppainen E., Uddström A. & Liukko U.-M. (eds.) 2019.

The 2019 Red List of Finnish Species. Ympäristöministeriö & Suomen ympäristökeskus. Helsinki. 704 p

Kaipainen T., Liski J., Pussinen A., Karjalainen T. 2004. Managing carbon sinks by changing rotation length in European forests. Environ Sci Pol. 7:205–219.

Kaukonen M., Eskola T., Herukka I., Karppinen H., Karvonen L., Korhonen I., Kuokkanen P. & Ervola, A. (toim.) 2018. Metsähallitus Metsätalous Oy:n ympäristöopas. 130 s.

Kellomäki S., Peltola H., Nuutinen T., Korhonen K.T. & Strandman

H. 2008. Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Philosophical Transactions of the Royal Society B: Biological Sciences. 363: 2339–2349.

Klapwijk M., Bylund H., Schroeder M., Björkman C. 2016. Forest management and natural biocontrol of insect pests. Forestry. 89:253-262

Kouki J., Löfman S., Martikainen P., Rouvinen S. & Uotila A. 2001. Forest Fragmentation in Fennoscandia: Linking Habitat Requirements of Wood-associated Threatened Species to Landscape and Habitat Changes.

Scandinavian Journal of Forest Research. 16: 27-37.

Kouki J. & Tikkanen O. 2007. Uhanalaisten lahopuulajien elinympäristöjen turvaaminen suojelualueilla ja talousmetsissä. Suomen Ympäristö. 24.

Kuuluvainen T. 2002. Natural variability of forests as a reference for restoring and managing biological diversity in boreal Fennoscandia. Silva Fenn. 36:97-125.

Kuuluvainen T. & Aakala T. 2011. Natural forest dynamics in boreal Fennoscandia: a review and classification. Silva Fenn. 45:823–841

Liski J., Pussinen A., Pingoud K., Mäkipää R., Karjalainen T. 2001. Which rotation length is favourable to carbon sequestration? Can J For Res. 31:2004–2013.

Liski J., Palosuo T., Peltoniemi M., Sievänen R. 2005. Carbon and decomposition model yasso for forest soils. Ecological modelling. 189: 168-182

Luonnonvarakeskus. 2014. Metsätilastollinen vuosikirja.

http://www.metla.fi/metinfo/tilasto/julkaisut/vsk/2014/ (luettu 13.3.2018)

Maa-ja metsätalousministeriö. 2019. Kansallinen metsästrategia 2025-päivitys.

Maa- ja metsätalousministeriön julkaisuja 2019:7.

Macdonald E., Gardiner B. & Mason W. 2010. The effects of transformation of even-aged stands to continuous cover forestry on conifer log quality and wood properties in the UK. Forestry. 83:1-16.

Mace G., Norris K. & Fitter A. 2012. Biodiversity and ecosystem services: a multi-layered relationship. Trends in ecology and evolution. 27: 19-26.

Malhi Y., Baldocchi D. & Jarvis P. 1999. The carbon balance of tropical, temperate and boreal forests. Plant, cell and environment. 22: 715-740.

Metsäteollisuus ry. 2017. Tilastot: metsäteollisuus.

https://www.metsateollisuus.fi/tilastot/metsateollisuus/ (luettu 26.3.2018)

Miettinen J. 2009. Capercaillie (Tetrao urogallus L.) habitats in managed Finnish forests – the current status, threats and possibilities. Dissertationes Forestales 90. 32 p

Millenium Ecosystem Assessment. 2005. Ecosystems ad human well-being:

synthesis. Island Press, Washington, DC

Miina J., Hotanen J. & Salo K. 2009. Modelling the abundance and temporal variation in the production of bilberry (Vaccinium myrtillus L.) in Finnish mineral soil forests. Silva Fennica. 43: 577-593.

Miina J., Pukkala T., Hotanen J., Salo K. 2010. Optimizing the joint production of timber and bilberries. Forest Ecology and Management. 259: 2065–2071.

Mönkkönen M., Juutinen A., Mazziotta A., Miettinen K., Podkopaev D., Reunanen P., Salminen H., Tikkanen O.P. 2014. Spatially dynamic forest management to sustain biodiversity and economic returns. J. Environ. Manag. 134: 80–89.

Nilsson S., Niklasson M., Hedin J., Aronsson G., Gutowski J., Linder P., Ljungberg H., Mikusinski G., Ranius T. 2002. Densities of large living and dead trees in old growth temperate and boreal forests. For. Ecol. Manag. 161: 189–204.

Ojanen P., Lehtonen A., Heikkinen J., Penttilä T., Minkkinen K. 2014. Soil CO 2 balance and its uncertainty in forestry-drained peatlands in Finland.

For.Ecol.Manag. 325: 60-73

Pakkala T., Hanski I., Tomppo E. 2002. Spatial ecology of the three-toed woodpecker in managed forest landscapes. Silva Fenn. 36:279–288 Pakkala T., Pellikka J., Linden H. 2003. Capercaillie Tetrao urogallus, a good

candidate for an umbrella species in taiga forests. Wildl. Biol. 9: 309-316.

Pan Y., Birdsey R., Fang J., Houghton R., Kauppi P., Kurz W., Phillips O.,

Shvidenko A., Lewis S., Canadell J., Ciais P., Jackson R., Pacala S., McGuire A., Piao S., Rautiainen A., Sitch S., Hayes D. 2011. A large and persistent carbon sink in the world’s forests. Science 333:988–993.

Perhans K., Glöde D., Gilbertsson J., Persson A., Gustafsson L. 2011. Fine-scale conservation planning outside of reserves: cost-effective selection of retention patches at final harvest. Ecol. Econ. 70, 771-777.

Peura M., Triviño M., Mazziotta A., Podkopaev D., Juutinen A., Mönkkönen M.

2016. Managing boreal forests for the simultaneous production of collectable goods and timber revenues. Silva Fenn. 50:1672

Peura M., Burgas D., Eyvindson K., Repo A. & Mönkkönen M. 2017. Continuous cover forestry is a cost-efficient tool to increase multifunctionality of boreal production forest in Fennoscandia. Biological Conservation. 217: 104-112.

Pilz D., Molina R. & Mayo J. 2006. Effects of thinning young forests on chanterelle production. Journal of Forestry. January/February 2006: 6-16.

Pregitzer K. & Euskirchen E. 2004. Carbon cycling and storage in world forests:

biome patterns related to forest age. Global change biology. 10: 2052-2077.

Pukkala T. 2016a. Which type of forest management provides most ecosystem services? For. Ecosyst. 3, 9

Pukkala T. 2016b. Plenterwald, Dauerwald, or clearcut? Forest Policy and Economics.

62: 125-134.

Pukkala T., Lähde E., Laiho O., Salo K., Hotanen J. 2011. A multifunctional comparison of even-aged and uneven-aged forest management in a boreal region. Canadian Journal of Forest Research 41: 851–862.

Pukkala T., Lähde E. & Laiho O. 2012. Continuous cover forestry in Finland – Recent research results. Continuous cover forestry. 23:85-128.

Pukkala T., Lähde E., Laiho O. 2013. Species interactions in the dynamics of even- and uneven-aged boreal forests. J. Sustain. For. 32: 371–403.

Pukkala T., Laiho O., Lähde E. 2016. Continuous cover management reduces wind damage. For. Ecol. Manag. 372:120-127.

Päivinen R. & Schneider H. 2019. Monimuotoisuuden turvaaminen talousmetsissä.

Tapion raportteja nro 37.

Ranius T., Korosuo A., Roberge J., Juutinen A., Mönkkönen M., Schroeder M. 2016.

Cost-efficient strategies to preserve deadwood-dependent species in a managed forest landscape. Biological conservation. 204B:197-204.

Rasinmäki J., Mäkinen A. & Kalliovirta J. 2009. SIMO: an adaptable simulation framework for multiscale forest resource data. Computers and electronics in agriculture. 66: 76-84.

Repo A., Tuomi M. & Liski J. 2011. Indirect carbon dioxide emissions from

producing bioenergy from forest harvest residues. GCB Bioenergy. 3: 107–115.

Roberge J-M., Öhman K., Lämås T., Felton A., Ranius T., Lundmark T & Nordin A.

2018. Modified forest rotation lengths: Long-term effects on landscape-scale habitat availability for specialized species. Journal of Environmental

Management. 210: 1-9.

Routa J., Kellomäki S., Kilpeläinen A., Peltola H. & Strandman H. 2011. Effects of forest management on the carbon dioxide emissions of wood energy in integrated production of timber and energy biomass. GCB Bioenergy. 3: 483-497

Saastamoinen O., Matero J., Horne P., Kniivilä M., Haltia E., Vaara M.,

Mannerkoski H. 2014. Classification of boreal forest ecosystem goods and services in Finland. Publications of the University of Eastern Finland. Reports and studies in forestry and natural sciences Number 11, University of

Eastern Finland, Faculty of Science and Forestry, School of Forest Sciences Siitonen J. 2001. Forest management, coarse woody debris and saproxylic

organisms: Fennoscandian boreal forests as an example. Ecol Bull. 49:11–41.

Stenbacka F., Hjältén J., Hilszczanski J., Dynesius M. 2010. Saproxylic and non‐ saproxylic beetle assemblages in boreal spruce forests of different age and forestry intensity. Ecological applications. 20:2310-2321.

Tahvanainen V., Miina J., Kurttila M. & Salo K. 2016. Modelling the yields of marketed mushrooms in Picea abies stands in Eastern Finland. Forest Ecology and Management. 362: 79-88.

Tilman D., Isbell F & Cowles J. 2014. Biodiversity and ecosystem functioning.

Annu. Rev. Ecol. Evol. Syst. 45: 471-493.

Triviño M., Juutinen A., Mazziotta A., Miettinen K., Podkopaev D., Reunanen P. & Mönkkönen M. 2015. Managing a boreal forest landscape for providing timber, storing and sequestering carbon. Ecosystem Services, 14: 179–189.

Triviño M., Pohjanmies T., Mazziotta A., Juutinen A., Podkopaev D., Le Tortorec E., Mönkkönen M. 2017. Optimizing management to enhance

multifunctionality in a boreal forest landscape. J Appl Ecol. 54:61–70.

Tuomi M., Thum T., Järvinen H., Fronzek S., Berg B., Harmon M., Trofymow J., Sevanto S., Liski J. 2009. Leaf litter decomposition — estimates of global variability based on Yasso07 model. Ecol. Model. 220: 3362-3371

Tuomi M., Laiho R., Repo A., Liski J. 2011. Wood decomposition model for boreal forests. Ecol. Model. 222: 709-718

Turtiainen M., Miina J., Salo K., Hotanen J. 2013. Empirical prediction models for the coverage and yields of cowberry in Finland. Silva Fennica. 47(3) article 1005.

Vanha-Majamaa I. & Jalonen J. 2001. Green tree retention in Fennoscandian Forestry. Scand. J. For. Res. 16: 79-90.

Vanhanen H., Jonsson R., Gerasimov Y., Krankina O. & Messier C. 2012. Making boreal forests work for people and nature. IUFRO's special project on world forests, society and environment

Vítková L. & Dhubháin A. 201 3. Transformation to continuous cover forestry: a review. Irish forestry 70:119–140

Äijälä O., Koistinen A., Sved J., Vanhatalo K., Väisänen P. 2014. Metsänhoidon suositukset. Metsäkustannus oy, forestry development Centre Tapio, Helsinki.

LIITTYVÄT TIEDOSTOT