• Ei tuloksia

Thermal energy is good solution for greenhouse gas problem and ever-growing future energy need. The problem with this renewable energy storage starting cost is high. In order to get financing from banks are difficult. Better way to solving this problem is government financial help or getting tax deduction from them. At the same time, conventional energy producers (greenhouse gas emitters) have to pay carbon tax. This would be balance the financial burden from renewable energy producers.

These underground storages have less greenhouse gas emission but first have to dig big hole. Those underground storage holes or space digger uses diesel or other fuel to dick the hole or tank storage space. Those fuels did not put to the calculation. These storage systems have only heat energy storage. This heat energy to electricity production is difficult job.

Usually these storage systems are connecting to heat pump. Heat pump works with electricity and those are not cheap. Also heat pumps are expensive and short life expectancy then the storage tank or borehole components. Heat pumps are high maintains costs than conventional system. The electricity used in the heat pump usually comes with high carbon footprint. These entire problems can be or could be solved in the future because of the technology is developing in these sector.

REFERENCES Muller-Steinhagen (2010). German central solar heating plants with seasonal heat storage.

Institute of Thermodynamics and Thermal Engineering (ITW) and University of Stuttgart, Stuttgart, Germany. ScienceDirect [cited 27 June 2009]. 612-623. Available from Internet: <URL: http://ac.els-cdn.com.proxy.uwasa.fi/S0038092X09001224/1-

s2.0-S0038092X09001224-main.pdf?_tid=db38ac38-b6e0-11e6-bc00-00000aab0f6c&acdnat=1480498934_f6935c5d077392cd4aa0e088bc70ec4f>.

Li Binbin and Sun Liankun (2014). Automatic Monitor for the Step Utilization of Deep Geothermal Well Based on Expert Systems. School of Computer Science and software Engineering Tianjin Polytechnic University Tianjin, China. IEEEXplore [cited 3 July

2014]. 2183-2187. Available from Internet: <URL:

http://ieeexplore.ieee.org.proxy.uwasa.fi/stamp/stamp.jsp?arnumber=7231956>.

Matthijs Bonte (2013). Impacts of shallow geothermal energy on groundwater quality.

Karlsruhe Institute of Technology. Amsterdam, The Netherlands. VU University Amsterdam [cited 16 December 2013]. 993-1008. Available from Internet: <URL:

http://dare.ubvu.vu.nl/handle/1871/49188>.

Jordann Brown (2016). How to Calculate Coefficient of Performance. Centre for Renewable Energy Systems Technologies (CREST),Maritime Geothermal Ltd.

Petitcodiac, NB, Canada. Nordic heating cooling [cited 1.12.2016].Online. Available from Internet: <URL: http://www.nordicghp.com/2015/08/how-to-calculate-coefficient-of-performance/>.

Tivadar Feczko, Laszlo Trif and Daniel Horak (2016). Latent heat storage by silica-coated polymer beads containing organic phase change materials. Institute of Materials

and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar, Budapest, Hungary. ScienceDirect [cited 31 March 2016]. 993-1008. Available from Internet: <URL: http://ac.els-cdn.com.proxy.uwasa.fi/S0038092X16002231/1-s2.0-S0038092X16002231-

main.pdf?_tid=10ff5a3c-b147-11e6-a3fa-00000aab0f27&acdnat=1479883126_5a9682339176e57a4f46fd4ffff04b17>.

B. Fumeya , R. Webera , P. Gantenbeinb , X. Daguenet-Frickb , T. Williamsonc , V.

Dorera and J. Carmelieta (2014). EXPERIENCE ON THE DEVELOPMENT OF A THERMO-CHEMICAL STORAGE SYSTEM BASED ON AQUEOUS SODIUM HYDROXIDE. EMPA, Dübendorf, Switzerland. ScienceDirect [cited September 2014]. 2370-2379. Available from Internet: <URL: http://ac.els- cdn.com/S1876610214016129/1-s2.0-S1876610214016129-main.pdf?_tid=02c1ca34-

b086-11e6-8fc8-00000aab0f6b&acdnat=1479800210_e5a063d15ab4a3a06be79cdd81f92d4b>.

N. Giordano, C. Comina, G. Mandrone and A. Cagni (2015). Borehole thermal energy storage (BTES). First results from the injection phase of a living lab in Torino (NW Italy). Earth Science Department, Torino Universit. ScienceDirect [cited 22 September 2015]. 993-1008. Available from Internet: <URL: http://ac.els-

cdn.com.proxy.uwasa.fi/S0960148115302524/1-s2.0-S0960148115302524-

main.pdf?_tid=cd019a58-ae39-11e6-b17f-00000aacb362&acdnat=1479547575_9635458818620c9acda123c2dc3dfdfa>.

Roberto Grena and Pietro Tarquini (2011). Solar linear Fresnel collector using molten nitrates as heat transfer fluid. ENEA, C. R. Casaccia, Roma, Italy. ScienceDirect [cited 8 January 2011]. 1048-1056. Available from Internet: <URL: http://ac.els-

cdn.com.proxy.uwasa.fi/S0360544210006936/1-s2.0-S0360544210006936-

main.pdf?_tid=04e0563e-b01b-11e6-99bd-00000aab0f27&acdnat=1479754257_d59724a354e5f4b1b34d424c13c08779>.

Curator Hall (2015). Climatology [online]. Retrieved March 10, 2017. Available from Internet: <URL: https://curatorhall.wordpress.com/category/climatology/>.

Lukas Heller and Paul Gauche (2013). Modeling of the rock bed thermal energy storage system of a combined cycle solar thermal power plant in South Africa. Solar Thermal Energy Research Group, Stellenbosch University, Matieland, South Africa.

ScienceDirect [cited 16 April 2013]. 345-356. Available from Internet: <URL:

http://ac.els-cdn.com.proxy.uwasa.fi/S0038092X13001606/1-s2.0-

S0038092X13001606-main.pdf?_tid=e67951ec-af6f-11e6-896a-00000aacb360&acdnat=1479680762_672fed0fa58e09aff60d74e97cf8a41e>.

Henrik Holmberg, Jose Acuna, Erling Naess and Otto K. Sonju (2016). Thermal evaluation of coaxial deep borehole heat exchangers. Department of Energy and Process Engineering, Norwegian University of Science and Technology, Norway. ScienceDirect [cited 26 May 2016]. 65-76. Available from Internet: <URL: http://ac.els-

cdn.com.proxy.uwasa.fi/S096014811630458X/1-s2.0-S096014811630458X-

main.pdf?_tid=54cc6500-ae92-11e6-82c9-00000aacb361&acdnat=1479585599_01d51fea6be4246fa86f91fa6c91e032>.

Peixue Jiang, Xiaolu Li, Ruina Xu, Fuzhen Zhang (2016). Heat extraction of novel underground well pattern systems for geothermal energy exploitation. Key Laboratory of CO2 Utilization and Reduction Technology of Beijing, Department of Thermal Engineering, Tsinghua University, Beijing, PR China. ScienceDirect [cited 2 January 2016]. 83-94. Available from Internet: <URL: http://ac.els-

cdn.com.proxy.uwasa.fi/S0960148115305668/1-s2.0-S0960148115305668-

main.pdf?_tid=5205e6e2-af6f-11e6-8d37-00000aacb35d&acdnat=1479680513_3b6e0d38c1e69f9a9c8f18629c357d07>.

Geoffrey John, Andreas Konig-Haagen, Cecil K. King-ondu, Dieter Bruggemann and Lameck Nkhonjera (2015). Galactitol as phase change material for latent heat storage of solar cookers: Investigating thermal behavior in bulk cycling. Nelson Mandela African Institution of Science and Technology, Department of Materials and Energy Science and Engineering, Arusha, Tanzania. ScienceDirect [cited 24 July 2015]. 993-1008.

Available from Internet: <URL:

http://ac.els-

cdn.com.proxy.uwasa.fi/S0038092X15003692/1-s2.0-S0038092X15003692-

main.pdf?_tid=42915710-b144-11e6-964f-00000aab0f26&acdnat=1479881921_d21ec8e62341cef911ad2dab3caa40c1>.

Murat Kenisarin, Khamid Mahkamov (2015). Salt hydrates as latent heat storage materials:Thermophysical properties and costs. Department of Mechanical and Construction Engineering, Northumbria University, Wynne-Jones Centre, Newcastle, UK. ScienceDirect [cited 17 November 2015]. 255-286. Available from Internet:

<URL:http://ac.els-cdn.com.proxy.uwasa.fi/S0927024815005401/1-s2.0-

S0927024815005401-main.pdf?_tid=d8f5ea9e-af01-11e6-9d79-00000aacb35d&acdnat=1479633495_108bfd765027fb12c5483082edb7c7ad>.

G.Kumaresan, R. Velraj and S.Iniyan (2011).Thermal analysis of D-mannitol for use as phase change material for latent heat storage. College of engineering guindy, Anna university, Chennai, Tamil Nadu, India. Journal of applied sciences. [cited September

2011]. 3044-3048. Available from Internet: <URL:

http://docsdrive.com/pdfs/ansinet/jas/2011/3044-3048.pdf .ISSN 1812-5654>.

Maricopa (2015). Static trinity [online]. Retrieved March 10, 2017. Available from

Internet: <URL:

http://static.trunity.net/images/177776/308x516/scale/Specific_heat_table.jpg/>.

Edina Milisic (2013). Modelling of energy storage using phase-change materials (PCM materials): Department of Energy and Process Engineering (20.3.2017) [online].

Norway: Norwegian University of Science and Technology [cited July 2013]. Available

from World Wide Web: <URL:

http://www.diva-portal.org/smash/get/diva2:665418/fulltext01.pdf>.

Mpoweruk (2005). [online] Battery and Energy Technologies. Woodbank

Communications Ltd, United Kingdom

(21.11.2016) [online]. Available from Internet: <URL:

http://www.mpoweruk.com/geothermal_energy.htm/>.

Nordic heating & cooling (2015). How to calculate coefficient of performance?

[online]. Retrieved December 1, 2016. Available from Internet: <URL:

http://www.nordicghp.com/2015/08/how-to-calculate-coefficient-of-performance/>.

H.O. Paksoy, Z. Gurbuz, B. Turgut, D. Dikici and H. Evliya (2004). Aquifer thermal storage (ATES) for airconditioning of a supermarket in Turkey. Faculty of Arts and Sciences, Chemistry Department, Cukurova University, 01330 Adana, Turkey.

ScienceDirect [cited 17 March 2004]. 1991–1996. Available from Internet: <URL:

http://ac.els-cdn.com.proxy.uwasa.fi/S0960148104001211/1-s2.0-S0960148104001211-

main.pdf?_tid=9fb2a088-ae61-11e6-9061-00000aacb35e&acdnat=1479564679_72240860477b57bb6f9d545f1d0b4e12>.

V. Pandiyarajan, M.Chinnappandian, V.Raghavan and R.Velraj (2011). Second law analysis of a diesel engine waste heat recovery with a combined sensible and latent heat storage system. Institute for Energy Studies, Anna University, Chennai, India.

ScienceDirect [cited 30 June 2011]. 6011-6020. Available from Internet: <URL:

http://ac.els-cdn.com.proxy.uwasa.fi/S0301421511005210/1-s2.0-S0301421511005210-

main.pdf?_tid=26d6a480-b18a-11e6-860a-00000aab0f02&acdnat=1479911939_c96317ea6e0ebead941611c2f3ef00fb>.

Dohyun Park, Hyung-Mok Kim, Dong-Woo Ryu, Byung-Hee Choi, Choon Sunwoo, Kong-Chang Han (2013). The effect of aspect ratio on the thermal stratification and heat loss in rock caverns for underground thermal energy storage. Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, Korea.

ScienceDirect [cited 27 September 2013]. 201-209. Available from Internet: <URL:

http://ac.els-cdn.com.proxy.uwasa.fi/S1365160913001548/1-s2.0-S1365160913001548-

main.pdf?_tid=bc3ef462-afb1-11e6-852b-00000aab0f26&acdnat=1479709038_28132351746cef9f67502586392ca971>.

Likhendra Prasad and P. Muthukumar (2013). Design and optimization of lab-scale sensible heat storage prototype for solar thermal power plant application. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, India.

ScienceDirect [cited 13 September 2013]. 217-229. Available from Internet: <URL:

http://ac.els-cdn.com.proxy.uwasa.fi/S0038092X13003320/1-s2.0-

S0038092X13003320-main.pdf?_tid=408dbc52-b1a2-11e6-8434-00000aacb35f&acdnat=1479922290_037b6e0ff2b34223e5f62104f3fb0f47>.

Farzin M. Rad, Alan S. Fung (2016). Solar community heating and cooling system with borehole thermal energy storage-Review of systems. Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario, Canada. ScienceDirect [cited 24 March 2016]. 1550-1561. Available from Internet: <URL: http://ac.els-

cdn.com.proxy.uwasa.fi/S1364032116002604/1-s2.0-S1364032116002604-

main.pdf?_tid=51eec3e8-afb2-11e6-8a06-00000aab0f02&acdnat=1479709289_b146f0e47db104c4607c4baf67d05a4a>.

M. K. Rathod1 and J. Banerjee (2013). Experimental Investigations on Latent Heat Storage Unit using Paraffin Wax as Phase Change Material. Mechanical Engineering Department, National Institute of Technology Surat, Gujarat, India. Taylor & Francis [cited 11 Mar 2013]. 40-55. Available from Internet: <URL: http://www-tandfonline-com.proxy.uwasa.fi/doi/pdf/10.1080/08916152.2012.719065?needAccess=true >. ISSN:

0891-6152 (Print) 1521-0480 (Online).

Gilian Schout, Benno Drijver, Mariene Gutierrez-Neri and Ruud Schotting (2013).

Analysis of recovery efficiency in high-temperature aquifer thermal energy storage: a Rayleigh-based method. Environmental Hydrogeology Group, Faculty of Geosciences, Utrecht University,CD, Utrecht, The Netherlands. SpringerLink. [cited : 3 October

2013]. 281-291. Available from Internet: <URL:

http://download.springer.com.proxy.uwasa.fi/static/pdf/542/art%253A10.1007%252Fs1

Andrew Simons, Steven K. Firth (2010). Life-cycle assessment of a 100% solar fraction thermal supply to a European apartment building using water-based sensible heat

storage. Dept. of Civil and Building Engineering, Loughborough University, UK.

ScienceDirect [cited 23 December 2010]. 1231-1240. Available from Internet: <URL:

http://ac.els-cdn.com.proxy.uwasa.fi/S0378778811000028/1-s2.0-S0378778811000028-

main.pdf?_tid=22caabfe-af26-11e6-bf0a-00000aacb360&acdnat=1479649081_853a5370cc7a72ef45d4250cbf950ed4>.

SlideShare. (2007). [online] Discover, share & present. LinkedIn Corporation, 1000

West Maude Avenue, Sunnyvale, CA94085, USA

(21.3.2017) [online]. Available from Internet: <URL:

https://www.slideshare.net/shafie_sofian/thermal-properties-of-matter-40467137/>.

Lavinia Socaciu (2012). SEASONAL THERMAL ENERGY STORAGE CONCEPTS.

Universitatea tehnica Cluj-Napoca. Cluj-Napoca, Romania. ResearchGate [online]

[cited January 2012]. [7.12.2016]. 1-12. Available from Internet: <URL:

https://www.researchgate.net/figure/272179312_fig8_Fig-8-Gravel-water-thermal-energy-storage>.

Statistics Finland (2016). Energy consumption [online]. Retrieved 8 December 2016.

Available from Internet: <URL: http://www.stat.fi/til/asen/2015/asen_2015_2016-11-18_tau_001_en.html/>.

Chika Takai-Yamashita, Ibuki Shinkai, Masayoshi Fuji and M.S. EL Salmawy (2016).

Effect of water soluble polymers on formation of Na2SO4 contained SiO2 microcapsules by W/O emulsion for latent heat storage. Advanced Ceramics Research Center, Nagoya Institute of Technology, Tajimi, Gifu, Japan [cited 6 August 2016]. 2032-2038.

Available from Internet: <URL:

http://ac.els- cdn.com.proxy.uwasa.fi/S0921883116301881/1-s2.0-S0921883116301881-

main.pdf?_tid=334a11a4-b0c0-11e6-a855-00000aab0f6c&acdnat=1479825202_287a8b2c39737f9f150f1b2a1c6955ad>.

Tee Itse magazine (2016). 16/2016 edition. [Cited 24 July 2016]. www.teeitse.com.

Nasim Uddin (2012). Geotechnical Issues in the Creation of Underground Reservoirs for Massive Energy Storage. Department of Civil, Construction, and Environmental Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.

IEEEXplore [cited 2 February 2012]. 484-492. Available from Internet: <URL:

http://ieeexplore.ieee.org.proxy.uwasa.fi/stamp/stamp.jsp?arnumber=6018977>.

Utexas (2016). Latent heats of fusion and vaporization [online]. Retrieved 20 December 2016. Available from Internet: <URL: https://web2.ph.utexas.edu/~coker2/index.files/>.

D. Vanhoudt, J. Desmedt, J. Van Bael, N. Robeyn and H. Hoes (2011). An aquifer thermal storage system in a Belgian hospital: Long-term experimental evaluation of energy and cost savings. Flemish Institute for Technological Research, Mol, Belgium.

ScienceDirect [cited 30 September 2011]. 3657-3665. Available from Internet: <URL:

http://ac.els-cdn.com.proxy.uwasa.fi/S0378778811004427/1-s2.0-S0378778811004427-

main.pdf?_tid=53973c52-ae4a-11e6-b73a-00000aab0f6b&acdnat=1479554673_2a6896054d7e34ae871ed6626a15fd76>.

Wanyue Wang and Xian Zhang (2010). Application Study on Heat Pump and Floor Radiant Heating in Geothermal Heating. Dept. of Civil Engineering the North University of China Shanxi Taiyuan, China. IEEEXplore [cited September ©2010].

1-3. Available from Internet: <URL:

http://ieeexplore.ieee.org.proxy.uwasa.fi/stamp/stamp.jsp?arnumber=5448268 >.

Helmut Weinlädera, Werner Körnera and Birgit Strieder (2014). A ventilated cooling ceiling with integrated latent heat storage-Monitoring results. Bavarian Center for Applied Energy Research (ZAE Bayern), Am Galgenberg, Würzburg, Germany.

ScienceDirect [cited 12 July 2014]. 65-72. Available from Internet: <URL: http://ac.els-

cdn.com.proxy.uwasa.fi/S0378778814005507/1-s2.0-S0378778814005507-

main.pdf?_tid=5c08a424-af6d-11e6-a798-00000aab0f01&acdnat=1479679671_a11236022a5d82ebadbb2c7971d938f6>.

Bastian Welsch (2015). [online] Technical and Economical Evaluation of Medium Deep Borehole Thermal Energy Storages. Youtube (15.11.2016) [online]. Germany.

Available from World Wide Web: https://www.youtube.com/watch?v=5QlhAPg7C3A White house web (2017). Climate change [online]. Retrieved September 4, 2017.

Available from Internet:

https://clintonwhitehouse5.archives.gov/Initiatives/Climate/next100.html

Li Xinguo, Hu Xiaochen and Jia Yanmin (2011). The Operation Mode and Energy Analyses on Solar-Ground Coupled Heat Pump with Energy Storage. Department of Mechanical Engineering, Tianjin University, Tianjin, P.R. China. IEEEXplore [cited September 2011]. 882-886. Available from Internet: <URL:

http://ieeexplore.ieee.org.proxy.uwasa.fi/stamp/stamp.jsp?arnumber=5721630>.

N. Yu, R.Z. Wang and L.W. Wang (2013). Sorption thermal storage for solar energy.

Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai, China. ScienceDirect [cited 21 June 2013]. 489-514. Available from Internet: <URL: tank. Department of Mechanical Engineering, University of Gaziantep, Gaziantep, Turkey. ScienceDirect [cited 31 January 2012]. 983-993. Available from Internet:

<URL:http://ac.els-cdn.com.proxy.uwasa.fi/S0038092X12000242/1-s2.0-

S0038092X12000242-main.pdf?_tid=a5fb2418-b3f4-11e6-a0a7-00000aacb362&acdnat=1480177582_3e495b071bfa39eb79eb91a5d8deabf8>.

Koen G. Zuurbier , Niels Hartog, Johan Valstar, Vincent E.A. Post and Boris M. van Breukelen (2013). The impact of low-temperature seasonal aquifer thermal energy storage (SATES) systems on chlorinated solvent contaminated groundwater: Modeling of spreading and degradation. KWR Watercycle Research Institute, PE, Netherlands.

ScienceDirect [cited 30 January 2013]. 1-13. Available from Internet: <URL:

http://ac.els-cdn.com.proxy.uwasa.fi/S0169772213000144/1-s2.0-S0169772213000144-

main.pdf?_tid=d3df3c0a-ae56-11e6-a7e2-00000aab0f27&acdnat=1479560052_9e818a957048ee908cbdc034a76040c8>.

C.Y.Zhao, YunanJi and ZhiguoXu (2015). Investigation of the Ca(NO3)2–NaNO3

mixture for latent heat storage. Earth Science Department, Institute of Engineering Thermophysics, Shanghai Jiao Tong University, Shanghai, China [cited 14 May 2015].

281-288. Available from Internet: <URL: http://ac.els-

cdn.com.proxy.uwasa.fi/S0927024815001609/1-s2.0-S0927024815001609-

main.pdf?_tid=45219ace-b13c-11e6-980a-00000aacb35e&acdnat=1479878489_177fa3cd53c14f95696a76b28e7e5fc7 >.

Zhengguo Zhang, Guoquan Shi, Shuping Wang, Xiaoming Fang and Xiaohong Liu (2012). Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material. Key Laboratory of Enhanced Heat Transfer and Energy Conservation, the Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.

ScienceDirect [cited 4 September 2012]. 670-675. Available from Internet: <URL:

http://ac.els-cdn.com.proxy.uwasa.fi/S0960148112004946/1-s2.0-S0960148112004946-

main.pdf?_tid=d9ea277e-b183-11e6-b010-00000aacb35e&acdnat=1479909233_c23368aead0c0c0b8c9279013590d6a9>.

Dan Zhou and Philip Eames (2016). Thermal characterization of binary sodium/lithium nitrate salts for latent heat storage at medium temperatures. Centre for Renewable Energy Systems Technologies (CREST), Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire, UK.

ScienceDirect [cited 1 September 2016]. 1019-1025. Available from Internet: <URL:

http://ac.els-cdn.com.proxy.uwasa.fi/S0927024816303051/1-s2.0-S0927024816303051-

main.pdf?_tid=3c8c9cbe-b0e8-11e6-8fa1-00000aab0f6c&acdnat=1479842397_b486ff4e0dd28aecd6e3e8d119474180>.