• Ei tuloksia

3D histology allows visualization of a tissue’s structure in three dimensions with high resolution which can be utilized in detection of diseased or injured areas of the tissue or in examination of different organs, tissues or cellular structures in more accurate manner than by conventional histology. With conventional histology, it is not possible to analyse all of the connections between cells since the third dimension is not taken into account.

In addition, it requires high amount of work and time to process the tissue slices and analyse them with a microscope, and it is usually done by a highly experienced person.

However, the studied 3D methods also require expertise and time, but the advantage of them is the automate functioning after the imaging settings have been chosen properly.

In this thesis, techniques and applications of micro-CT, SPIM and SBF-SEM have been discussed based on previous studies. Table 2 in chapter 5.4 contains a summary of the methods in the field of breast cancer detection, and table 3, which combines the general information of each 3D histology method, can be found below. As existent research of each method was studied, we could notice that each method has a wide range of appli-cations in medical field. Micro-CT has been implemented to imaging both soft and hard tissue types, such as bones, teeth, lungs and different biological implants. In addition, visualization and detection of tumours in breast tissue has been noticed to be possible with the current resolution of micro-CT devices. Results of several studies were encour-aging as the margin status and tumour size detection appeared to be even more accurate than currently used methods, such as MRI or histopathological survey. However, some challenges still exist, and therefore improvements in resolution, scanning time and au-tomatization are needed in order to make micro-CT practicable to use during a breast surgery. On the other hand, SPIM has been applied especially to cell detection during tumour genesis within cell cultures or living embryos which is advantageous as, for in-stance, the development process of breast cancer is studied. In addition, with some mod-ifications to the imaging system, SPIM is usable in margin status determination, although currently only as a surface view. The third method, SBF-SEM, has some limitations, such as the small specimen size and requirement of challenging preparation, but it can also achieve the highest resolution of the studied methods in this thesis. As it is a new ap-proach in medical field, imaging of breast tissue or tumours has not been implemented yet. However, SBF-SEM can reach the level of a single cell and visualize structures in-side a cell and it seems that such information could be also useful especially in scientific associations.

Method Energy Table 3. Summary of different 3D histology methods.

Comparison of the 3D methods is rather difficult since they operate on different scales.

The selection of a suitable method is dependent on what is the target of study and which structures are desired to be visualized. Anyhow, it seems that there are still some prop-erties that need to be improved in each method, such as the resolution of micro-CT and the limited sample size of both SPIM and SBF-SEM. The amount of preparation needed for micro-CT is the smallest of all of the methods, while SBF-SEM requires the most. In addition, the number of different applications seems to be the highest for micro-CT, but the potential of SPIM and SBF-SEM may be uncovered as research continues.

REFERENCES

Alladin, A., Chaible, L., Garcia Del Valle, L., Sabine, R., Loeschinger, M., Wachsmuth, M., Hé-riché, J., Tischer, C., & Jechlinger, M. (2020). Tracking cells in epithelial acini by light sheet microscopy reveals proximity effects in breast cancer initiation. eLife, Vol. 9. Available:

https://doi.org/10.7554/eLife.54066

American Cancer Society. (2015) What do doctors look for in biopsy and cytology speci-mens? Available (Referenced 23.4.2021): https://www.cancer.org/treatment/understand- ing-your-diagnosis/tests/testing-biopsy-and-cytology-specimens-for-cancer/what-doc-tors-look-for.html

Asokan, N., Daetwyler, S., Bernas, S., Schmied, C., Vogler, S., Lambert, K., Wobus, M., Wermke, M., Kempermann, G., Huisken, J., Brand, M., & Bornhäuser, M. (2020). Long-term in vivo imaging reveals tumor-specific dissemination and captures host tumor interaction in zebrafish xenografts. Scientific Reports, Vol. 10(1), pp. 13254–13254. Available:

https://doi.org/10.1038/s41598-020-69956-2

Bancroft, J., Layton, C., & Suvarna, S. (2019). Bancroft’s theory and practice of histological techniques / [edited by] S. Kim Suvarna, Christopher Layton, John D. Bancroft. (8th edi-tion). Elsevier. 672 p.

Boca, C., Truyen, B., Henin, L., Schulte, A., Stachniss, V., De Clerck, N., Cornelis, J., & Bot-tenberg, P. (2017). Comparison of micro-CT imaging and histology for approximal caries detection. Scientific Reports, Vol. 7(1), pp. 6680–6689. Available:

https://doi.org/10.1038/s41598-017-06735-6

Chang, Y., Menges, S., Westhof, A., Kleinschmidt-Doerr, K., Brenneis, C., & Pitsillides, A.

(2021). Systematic analysis reveals that colony housing aligns gait profiles and strength-ens link between histological and micro-CT bone markers in rat models of osteoarthri-tis. The FASEB Journal, Vol. 35(4), pp. e21451–e21451. Available:

https://doi.org/10.1096/fj.202002009R

Chen, B., Yusuf, M., Hashimoto, T., Estandarte, A., Thompson, G., & Robinson, I. (2017).

Three-dimensional positioning and structure of chromosomes in a human prophase nu-cleus. Science Advances, Vol. 3(7), pp. e1602231–e1602231. Available:

https://doi.org/10.1126/sciadv.1602231

Cocks, E., Taggart, M., Rind, F., & White, K. (2018). A guide to analysis and reconstruction of serial block face scanning electron microscopy data. Journal of Microscopy (Ox-ford), Vol. 270(2), pp. 217–234. Available: https://doi.org/10.1111/jmi.12676

Denk, W., & Horstmann, H. (2004). Serial block-face scanning electron microscopy to re-construct three-dimensional tissue nanostructure. PLoS Biology, Vol. 2(11), pp. e329–

e329. Available: https://doi.org/10.1371/journal.pbio.0020329

DiCorpo, D., Tiwari, A., Tang, R., Griffin, M., Aftreth, O., Bautista, P., Hughes, K., Gershen-feld, N., & Michaelson, J. (2020). The role of Micro-CT in imaging breast cancer speci-mens. Breast Cancer Research and Treatment, Vol. 180(2), pp. 343–357. Available:

https://doi.org/10.1007/s10549-020-05547-z

du Plessis, A., Broeckhoven, C., Guelpa, A., & le Roux, S. (2017). Laboratory x-ray micro-computed tomography: a user guideline for biological samples. Gigascience, Vol. 6(6), pp.

1–11. Available: https://doi.org/10.1093/gigascience/gix027

Farncombe, T., & Iniewski, K. (2017). Medical Imaging: Technology and Applications (1st ed.) Vol. 18. CRC Press. Available: https://doi.org/10.1201/b15511

Feldkamp, L., Davis, L. & Kress, J. (1984). Practical Cone-Beam Algorithm. Journal of the Optical Society of America. A, Optics and Image Science, Vol. 1(6), pp. 612–619. Available:

https://doi.org/10.1364/JOSAA.1.000612

Fu, Q., Martin, B., Matus, D., & Gao, L. (2016). Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy. Nature Commu-nications, Vol. 7(1), pp. 11088–11088. Available: https://doi.org/10.1038/ncomms11088

Funane, T., Hou, S., Zoltowska, K., van Veluw, S., Berezovska, O., Kumar, A., & Bacskai, B.

(2018). Selective plane illumination microscopy (SPIM) with time-domain fluorescence lifetime imaging microscopy (FLIM) for volumetric measurement of cleared mouse brain samples. Review of Scientific Instruments, Vol. 89(5), pp. 053705–053705. Available:

https://doi.org/10.1063/1.5018846

Glaser, A., Reder, N., Chen, Y., McCarty, E., Yin, C., Wei, L., Wang, Y., True, L., & Liu, J. (2017).

Light-sheet microscopy for slide-free non-destructive pathology of large clinical speci-mens. Nature Biomedical Engineering, Vol. 1(7). Available:

https://doi.org/10.1038/s41551-017-0084

Goggin, P., Ho, E., Gnaegi, H., Searle, S., Oreffo, R., & Schneider, P. (2020). Development of protocols for the first serial block-face scanning electron microscopy (SBF SEM) studies of bone tissue. Bone (New York, N.Y.), Vol. 131, pp. 115107–115107. Available:

https://doi.org/10.1016/j.bone.2019.115107

Greger, K., Swoger, J., & Stelzer, E. (2007). Basic building units and properties of a fluores-cence single plane illumination microscope. Review of Scientific Instruments, Vol. 78(2), 023705–023705–7. Available: https://doi.org/10.1063/1.2428277

Hashimoto, T., Thompson, G., Zhou, X., & Withers, P. (2016). 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy. Ultrami-croscopy, Vol. 163, pp. 6–18. Available: https://doi.org/10.1016/j.ultramic.2016.01.005

He, L., Long, L., Antani, S., & Thoma, G. (2011). Histology image analysis for carcinoma de-tection and grading. Computer Methods and Programs in Biomedicine, Vol. 107(3), pp.

538–556. https://doi.org/10.1016/j.cmpb.2011.12.007

Heikkilä, P. & Kärjä, V. (2019) Patologian alan tutkimukset. Rintasyövän valtakunnallinen diagnostiikka- ja hoitosuositus, pp. 16–23. Available: https://rintasyoparyhma.yhdistysa-vain.fi/hoitosuositus/

Huda, W. (2016). Review of Radiologic Physics (4th ed.). Wolters Kluwer Health. 336 p.

Hughes, L., Hawes, C., Monteith, S. & Vaughan, S. (2014). Serial block face scanning elec-tron microscopy—the future of cell ultrastructure imaging. Protoplasma, Vol. 251(2), pp.

395–401. Available: https://doi.org/10.1007/s00709-013-0580-1

Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. (2004). Optical Sectioning Deep inside Live Embryos by Selective Plane Illumination Microscopy. Science (American Association for the Advancement of Science), Vol. 305(5686), pp. 1007–1009. Available:

https://doi.org/10.1126/science.1100035

Kirschner, S., Mürle, B., Felix, M., Arns, A., Groden, C., Wenz, F., Hug, A., Glatting, G., Kramer, M., Giordano, F., & Brockmann, M. (2016). Imaging of orthotopic glioblastoma xenografts in mice using a clinical CT scanner: Comparison with micro-CT and histology. PloS One, Vol. 11(11), pp. e0165994–e0165994. Available: https://doi.org/10.1371/jour-nal.pone.0165994

Kornfeld, J., Benezra, S., Narayanan, R., Svara, F., Egger, R., Oberlaender, M., Denk, W., &

Long, M. (2017). EM connectomics reveals axonal target variation in a sequence-generat-ing network. eLife, Vol. 6. Available: https://doi.org/10.7554/eLife.24364

Krzic, U., Gunther, S., Saunders, T., Streichan, S., & Hufnagel, L. (2012). Multiview light-sheet microscope for rapid in toto imaging. Nature Methods, Vol. 9(7), pp. 730–733. Avail-able: https://doi.org/10.1038/nmeth.2064

Lichtman, J., & Conchello, J. (2005). Fluorescence microscopy. Nature Methods, Vol. 2(12), pp. 910–919. Available: https://doi.org/10.1038/nmeth817

Lloyd-Lewis, B., Davis, F., Harris, O., Hitchcock, J., Lourenco, F., Pasche, M., & Watson, C.

(2016). Imaging the mammary gland and mammary tumours in 3D: Optical tissue clearing and immunofluorescence methods. Breast Cancer Research : BCR, Vol. 18(1), pp. 127–127.

Available: https://doi.org/10.1186/s13058-016-0754-9

Mizutani, R., & Suzuki, Y. (2012). X-ray microtomography in biology. Micron (Oxford, Eng-land : 1993), Vol. 43(2), pp. 104–115. Available: https://doi.org/10.1016/j.mi-cron.2011.10.002

Mordang, J., Gubern-Mérida, A., Bria, A., Tortorella, F., Mann, R., Broeders, M., den Heeten, G., & Karssemeijer, N. (2018). The importance of early detection of calcifications associ-ated with breast cancer in screening. Breast Cancer Research and Treatment, Vol. 167(2), pp. 451–458. https://doi.org/10.1007/s10549-017-4527-7

National Cancer Institute (2020). Cancer stat facts: female breast cancer. Available (Refer-enced 25.3.2021): https://seer.cancer.gov/statfacts/html/breast.html

Nie, J., Liu, S., Yu, T., Li, Y., Ping, J., Wan, P., Zhao, F., Huang, Y., Mei, W., Zeng, S., Zhu, D.,

& Fei, P. (2020). Fast, 3D Isotropic Imaging of Whole Mouse Brain Using Multiangle‐Re-solved Subvoxel SPIM. Advanced Science, Vol. 7(3), pp. 1901891–n/a. Available:

https://doi.org/10.1002/advs.201901891

Panier, T., Romano, S., Olive, R., Pietri, T., Sumbre, G., Candelier, R., & Debrégeas, G.

(2013). Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy. Frontiers in Neural Circuits, Vol. 7, pp. 65–65.

Avaible: https://doi.org/10.3389/fncir.2013.00065

Peddie, C., & Collinson, L. (2014). Exploring the third dimension: Volume electron micros-copy comes of age. Micron (Oxford, England : 1993), Vol. 61, pp. 9–19. Available:

https://doi.org/10.1016/j.micron.2014.01.009

Pinali, C., & Kitmitto, A. (2014). Serial block face scanning electron microscopy for the study of cardiac muscle ultrastructure at nanoscale resolutions. Journal of Molecular and

Cellular Cardiology, Vol. 76, pp. 1–11. Available:

https://doi.org/10.1016/j.yjmcc.2014.08.010

Qiu, S., Dorrius, M., de Jongh, S., Jansen, L., de Vries, J., Schröder, C., Zhang, G., de Vries, E., van der Vegt, B., & van Dam, G. (2018). Micro-computed tomography (micro-CT) for in-traoperative surgical margin assessment of breast cancer: A feasibility study in breast con-serving surgery. European Journal of Surgical Oncology, Vol. 44(11), pp. 1708–1713. Avail-able: https://doi.org/10.1016/j.ejso.2018.06.022

Smith, D., & Starborg, T. (2019). Serial block face scanning electron microscopy in cell bi-ology: Applications and technology. Tissue & Cell, Vol. 57, pp. 111–122. Available:

https://doi.org/10.1016/j.tice.2018.08.011

Senter-Zapata, P. (2016). The Role of Micro-CT in 3D Histology Imaging. Pathobiology (Ba-sel), Vol. 83(2-3), pp. 140–147. Available: https://doi.org/10.1159/000442387

Song, D., Shujaat, S., Huang, Y., Van Dessel, J., Politis, C., Lambrichts, I., & Jacobs, R.

(2021). Effect of platelet-rich and platelet-poor plasma on 3D bone-to-implant contact: a preclinical micro-CT study. International Journal of Implant Dentistry, Vol. 7(1), p. 11–11.

Available: https://doi.org/10.1186/s40729-021-00291-5

Svensson, R., Herchenhan, A., Starborg, T., Larsen, M., Kadler, K., Qvortrup, K., & Magnus-son, S. (2017). Evidence of structurally continuous collagen fibrils in tendons. Acta Bio-materialia, Vol. 50, pp. 293–301. Available: https://doi.org/10.1016/j.actbio.2017.01.006

Tamminen, I., Lehto, K., Hannula, M., Ojansivu, M., Johansson, L., Kellomäki, M., Miettinen, S., Aula, A., Ihalainen, T., & Hyttinen, J. (2020). A tube-source X-ray microtomography ap-proach for quantitative 3D microscopy of optically challenging cell-cultured samples.

Tang, R., Buckley, J., Fernandez, L., Coopey, S., Aftreth, O., Michaelson, J., Saksena, M., Lei, L., Specht, M., Gadd, M., Yagi, Y., Rafferty, E., Brachtel, E., & Smith, B. (2013). Micro-com-puted tomography (Micro-CT): a novel approach for intraoperative breast cancer speci-men imaging. Breast Cancer Research and Treatspeci-ment, Vol. 139(2), pp. 311–316. Available:

https://doi.org/10.1007/s10549-013-2554-6

Tang, R., Saksena, M., Coopey, S., Fernandez, L., Buckley, J., Lei, L., Aftreth, O., Koerner, F., Koerner, F., Michaelson, J., Rafferty, E., Brachtel, E., & Smith, B. (2016). Intraoperative mi-cro-computed tomography (micro-CT): A novel method for determination of primary tu-mour dimensions in breast cancer specimens. British Journal of Radiology, Vol. 89(1058), pp. 20150581–20150581. Available: https://doi.org/10.1259/bjr.20150581

Teymouri, J., Hullar, T., Holden, T., & Chole, R. (2011). Verification of computed tomo-graphic estimates of cochlear implant array position: A micro-CT and histologic analy-sis. Otology & Neurotology, Vol. 32(6), pp. 980–986. Available:

https://doi.org/10.1097/MAO.0b013e3182255915

The human protein atlas: Breast cancer, histology. Web page. Available (referenced 23.4.2021): https://www.proteinatlas.org/learn/dictionary/pathology/breast+can-cer#Breast-cancer-1,-ductal-carcinoma

Tomaszewska, I., Leszczyński, B., Wróbel, A., Gładysz, T., & Duncan, H. (2018). A micro-computed tomographic (micro-CT) analysis of the root canal morphology of maxillary third molar teeth. Annals of Anatomy, Vol. 215, pp. 83–92. Available:

https://doi.org/10.1016/j.aanat.2017.09.003

Vihinen, H., Belevich, I. & Jokitalo, E. (2013) Three dimensional electron microscopy of cel-lular organelles by serial block face SEM and ET. Available: https://www.re-

searchgate.net/publication/256441984_Three_dimensional_electron_micros-copy_of_cellular_organelles_by_serial_block_face_SEM_and_ET

Virta, J., Hannula, M., Tamminen, I., Lindfors, K., Kaukinen, K., Popp, A., Taavela, J., Saa-valainen, P., Hiltunen, P., Hyttinen, J., & Kurppa, K. (2020). X-ray microtomography is a novel method for accurate evaluation of small-bowel mucosal morphology and surface area. Scientific Reports, Vol. 10(1), pp. 13164–13164. Available:

https://doi.org/10.1038/s41598-020-69487-w

Wilke, S., Antonios, J., Bushong, E., Badkoobehi, A., Malek, E., Hwang, M., Terada, M., Ellis-man, M., & Ghosh, A. (2013). Deconstructing complexity: serial block-face electron micro-scopic analysis of the hippocampal mossy fiber synapse. The Journal of Neurosci-ence, Vol. 33(2), pp. 507–522. Available: https://doi.org/10.1523/JNEUROSCI.1600-12.2013

Xu, Y., Li, D., Chen, Q., & Fan, Y. (2013). Full supervised learning for osteoporosis diagnosis using micro‐CT images. Microscopy Research and Technique, Vol. 76(4), pp. 333–341.

Available: https://doi.org/10.1002/jemt.22171