• Ei tuloksia

Due to the Arctic climate change and the related diminishing of Arctic sea ice cover, the general condi-tions for Arctic shipping are changing. The retreat of Arctic sea ice opens up new routes for maritime transportation, both trans-Arctic passages and new alternatives within the Arctic region. Hence the amount of Arctic shipping is presumed to increase.

Despite the maritime conditions in the Arctic are undeniably changing, certain characteristic fea-tures of the Arctic waters will remain unaltered. Hence the sailing conditions of the Arctic region will not be comparable to those of blue waters at least in the near future, and open-water vessels are very likely to encounter serious hindrances when operating in the Arctic. In general, as an ever larger fleet with varying standards of equipment will be exposed to the harsh conditions of the Arctic, a considera-ble statistical risk of humanitarian and environmental disasters follows.

The increase in Arctic shipping will also lead to an increased amount of emissions. The increased emissions may have remarkable and unpredictable influences to the particularly sensitive Arctic envi-ronment. With regard to emission species, especially black carbon is presumed to have climatic signifi-cance within the Arctic context. Black carbon absorbs solar radiation very effectively, and when depos-ited to snow or sea ice cover, it may notably alter the radiative equilibrium of the Arctic region.

The International Maritime Organization (IMO) has had a central role in cutting down emissions from marine activities. However, with regard to black carbon, there are some disagreements among IMO member states that hinder implementing regulations and thus gaining abatements. Above all, de-fining black carbon unequivocally has proven to be a rather difficult task, and the related selection of approved measurement technologies has been a rather time-consuming process.

Altogether, assessing the climate impact from black carbon emissions originating in Arctic shipping is a very timely task, as the current volume of Arctic shipping and the related emissions is yet rather moderate, but substantial growth is expected already in the near future. Hence the disputes within IMO must also be resolved as soon as possible, so that the undesired effects of Arctic shipping emissions can be minimized.

There is a wide range of methods and technologies for gaining black carbon emission abatements, and the most efficient alternative is likely to be a combination of different single solutions. However, the reductions in black carbon emissions cannot be assessed as a separate issue, and the consequences of different abatement measures to other species of emissions have to be taken into account right from the beginning.

Many of the solutions aiming at reductions in nitrogen and sulfur oxides as well as carbon dioxide, for example, cut down the black carbon emissions as well, though this is not always the case. In general, it is the joint effect on every different emission species that counts, but with regard to certain specific regions—such as the Arctic—the significance of apparent local climate impacts due to certain specific emission species—such as black carbon—may alter the overall situation substantially.

In conclusion, despite the fact that reductions in locally affecting short-lived emissions may com-prise an effective measure to gain relatively fast response, the only way to gain long-term climate change mitigation goals is to continue pursuing abatements of carbon dioxide and other long-lived greenhouse gas emissions. Vice versa, since reducing emissions of long-lived greenhouse gases will have an effect only on longer time scales, cutting down black carbon and other short-lived emissions can effectively help reducing near-term global warming and its impacts, particularly in regions most vulnerable to climate change—such as the Arctic.

Reports of the Finnish Environment Institute 41/2014 101

REFERENCES

ABS 2014. Navigating the Northern Sea Route – Status and Guidance. American Bureau of Shipping Advisory. Available online:

http://www.eagle.org/eagleExternalPortalWEB/ShowProperty/BEA%20Repository/References/Capability%20Brochures/NSR_Advisor y, viewed in 12.08.2014.

ACIA 2005. Arctic Climate Impact Assessment. Cambridge University Press, 2005.

Aker Arctic 2006. Aker Yards strengthens its position as the preferred arctic shipbuilder. Press release, online source:

http://www.akerarctic.fi/170706.htm, viewed in 12.08.2014,

Alfred-Wegener-Institut 2014. Milestone on the way to construction of new vessel as successor to research icebreaker Polarstern: Reederei F.

Laeisz as partner. Press release, online source:

http://www.awi.de/en/news/press_releases/detail/item/milestone/?tx_list_pi1[mode]=6&cHash=32e991a81e8a7af168cc4fd3588f5bc8, viewed in 12.08.2014.

AMAP 2011a. The Impact of Black Carbon on Arctic Climate (2011). By: P.K. Quinn, A. Stohl, A. Arneth, T. Berntsen, J. F. Burkhart, J.

Christensen, M. Flanner, K. Kupiainen, H. Lihavainen, M. Shepherd, V. Shevchenko, H. Skov, and V. Vestreng. Arctic Monitoring and Assessment Programme (AMAP), Oslo.

AMAP 2011b. Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere. Arctic Monitoring and Assess-ment Programme (AMAP), Oslo, Norway.

AMSA 2009. Arctic Marine Shipping Assessment 2009 Report. Arctic Council, April 2009, second printing.

Andrew, R., 2014. Socio-Economic Drivers of Change in the Arctic. CICERO Center for International Climate and Environmental Research – Oslo.

Arctic Portal Library 2014. Online source: library.arcticportal.org/1474/11/search-rescue_ensku_110524_minnka.jpg, viewed in 25.09.2014.

Barents Observer 2013a. Builds new Arctic Coast Guard icebreaker. Online source: http://barentsobserver.com/en/security/2013/08/builds-new-arctic-coast-guard-icebreaker-27-08, viewed in 12.08.2014.

Barents Observer 2013b. First container ship on Northern Sea Route. Online source: http://barentsobserver.com/en/arctic/2013/08/first-container-ship-northern-sea-route-21-08, viewed in 22.08.2014.

Barents Observer 2013c. Russia lays down world’s largest nuclear icebreaker. Online source:

http://barentsobserver.com/en/arctic/2013/11/russia-lays-down-worlds-largest-nuclear-icebreaker-06-11, viewed in 11.08.2014.

Barents Observer 2013d. Towards commercial breakthrough for Northern Sea Route. Online source:

http://barentsobserver.com/en/arctic/2013/07/towards-commercial-breakthrough-northern-sea-route-30-07, viewed in 22.08.2014.

Barents Observer 2014a. Baltiysky Shipyard to build three new icebreakers by 2020. Online source:

http://barentsobserver.com/en/arctic/2014/05/baltiysky-shipyard-build-three-new-icebreakers-2020-08-05, viewed in 11.08.2014.

Barents Observer 2014b. No more nuclear power for Arctic tourists. Online source: http://barentsobserver.com/en/arctic/2014/07/no-more-nuclear-power-arctic-tourists-29-07, viewed in 11.08.2014.

British Antarctic Survey 2014. News Story - New polar research ship for UK. Press release, online source:

http://www.antarctica.ac.uk/about_bas/news/news_story.php?id=2593, viewed in 12.08.2014.

Browse, J., K. S. Carslaw, A. Schmidt, and J. J. Corbett 2013. Impact of future Arctic shipping on high-latitude black carbon deposition. Geo-physical Research Letters, vol. 40, 4459–4463, doi:10.1002/grl.50876, 2013.

Buhaug, Ø., Corbett, J. J., Endresen, Ø., Eyring, V., Faber, J., Hanayama, S., Lee, D. S., Lee, D., Lindstad, H., Mjelde, A., Nelissen, D., Nilsen, J., Pålsson, C., Winebrake, J.J., Wu, W., Yoshida, K. 2009. Second IMO Greenhouse Gas Study 2009, International Maritime Organiza-tion, London, 2009.

CBC 2013. Arctic icebreaker delayed as Tories prioritize supply ships. Online source: http://www.cbc.ca/news/politics/arctic-icebreaker-delayed-as-tories-prioritize-supply-ships-1.1991522, viewed in 12.08.2014.

China Daily 2014. New icebreaker planned by 2016: officials. Online source: http://www.chinadaily.com.cn/china/2014-01/06/content_17216579.htm, viewed in 12.08.2014.

Corbett, J. J., Wang, C., Winebrake, J. J., and Green, E. 2007. Review of Marpol Annex VI and the NOx Technical Code: Allocation and Fore-casting of Global Ship Emissions. International Maritime Organization, London, UK, 27 pp., 2007.

Corbett, J. J., Lack, D. A., Winebrake, J. J., Harder, S., Silberman, J. A., and Gold, M. 2010. Arctic shipping emissions inventories and future scenarios. Atmos. Chem. Phys., 10, 9689–9704, 2010, doi:10.5194/acp-10-9689-2010.

Dalsøren, S. B., B. H. Samset, G. Myhre, J. J. Corbett, R. Minjares, D. Lack, and J. S. Fuglestvedt 2013. Environmental impacts of shipping in 2030 with a particular focus on the Arctic region. Atmos. Chem. Phys., 13, 1941–1955, 2013, doi:10.5194/acp-13-1941-2013.

DNV 2010. Shipping across the Arctic Ocean, A feasible option in 2030-2050 as a result of global warming? DNV Research and Innovation, Position Paper 04 – 2010.

DNV-GL 2011. LNG for Greener Shipping in North America. Online source: http://blogs.dnvgl.com/lng/2011/02/lng-for-greener-shipping-in-north-america, viewed in 24.10.2014.

Flanner, M. G. 2013. Arctic climate sensitivity to local black carbon. J. Geophys. Res. Atmos., 118, 1840–1851, doi:10.1002/jgrd.50176.

Fuglestvedt, J., Berntsen, T., Eyring, V., Isaksen, I., Lee, D., and Sausen, R. 2009. Shipping Emissions: From Cooling to Warming of Cli-mate—and Reducing Impacts on Health. Environ. Sci. Technol., 43, 9057–9062, doi:10.1021/es901944r.

The Globe and Mail 2014. Why Canada’s search for an icebreaker is an Arctic embarrassment. Online source:

http://www.theglobeandmail.com/news/national/the-north/why-canadas-search-for-an-icebreaker-is-an-arctic-embarrassment/article16425755, viewed in 11.08.2014.

IGSD 2013. Primer on Short-Lived Climate Pollutants. Institute for Governance & Sustainable Development.

IMO 2010. Guidelines for ships operating in Polar waters. A 26/Res.1024, 18 January 2010. Available online:

http://www.imo.org/blast/blastDataHelper.asp?data_id=29985&filename=A1024%2826%29.pdf, viewed in 12.08.2014.

IMO 2011a. Amendments to the Annex of the Protocol of 1997 to Amend the International Convention for the Prevention of Pollution from Ships, 1973, as Modified by the Protocol of 1978 Relating Thereto (Inclusion of regulations on energy efficiency for ships in MARPOL Annex VI). Resolution MEPC.203(62). Available online:

http://www.imo.org/MediaCentre/HotTopics/GHG/Documents/eedi%20amendments%20RESOLUTION%20MEPC203%2062.pdf, viewed in 18.08.2014.

IMO 2011b. Definition and measurement of Black Carbon in international shipping. BLG 16/15/4, 25 November 2011.

IMO 2014. Prevention of air pollution from ships (agenda items 8 and 9). PPR 1/WP.5, 6 February 2014.

IPCC 2002. CO2, CH4, and N2O emissions from transportation-water-borne navigation. Background Paper for IPCC Expert Meetings on Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Available online:

http://www.ipcc-nggip.iges.or.jp/public/gp/bgp/2_4_Water-borne_Navigation.pdf, viewed in 19.08.2014.

102 Reports of the Finnish Environment Institute 41/2014

IPCC 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Inter-governmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

Jalkanen, J.-P., L. Johansson, J. Kukkonen, A. Brink, J. Kalli, and T. Stipa 2012. Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide. Atmos. Chem. Phys., 12, 2641–2659, 2012. doi:10.5194/acp-12-2641-2012.

Khon, V. C., I. I. Mokhov, M. Latif, V. A. Semenov and W. Park 2010. Perspectives of Northern Sea Route and Northwest Passage in the twenty-first century. Climatic Change (2010), 100:757–768, doi:10.1007/s10584-009-9683-2.

Lack, D., B. Lerner, C. Granier, T. Baynard, E. Lovejoy, P. Massoli, A. R. Ravishankara, and E. Williams 2008. Light absorbing carbon emis-sions from commercial shipping. Geophys. Res. Lett., 35, L13815, doi:10.1029/2008GL033906.

Lack, D. A., J. J. Corbett, T. Onasch, B. Lerner, P. Massoli, P. K. Quinn, T. S. Bates, D. S. Covert, D. Coffman, B. Sierau, S. Herndon, J.

Allan, T. Baynard, E. Lovejoy, A. R. Ravishankara, and E. Williams 2009. Particulate emissions from commercial shipping: Chemical, physical, and optical properties. J. Geophys. Res., 114, D00F04, doi:10.1029/2008JD011300.

Lack, D.A. & Corbett, J.J. 2012. Black carbon from ships: a review of the effects of ship speed, fuel quality and exhaust gas scrubbing. Atmos.

Chem. Phys., 12, 3985–4000, 2012, doi:10.5194/acp-12-3985-2012.

Lack, D. A., Thuesen, J. & Elliott, R. 2012. Investigation of appropriate control measures (abatement technologies) to reduce Black Carbon emissions from international shipping. Litehauz, Denmark, 20November 2012. Available online:

http://www.imo.org/OurWork/Environment/PollutionPrevention/AirPollution/Documents/Air%20pollution/Report%20IMO%20Black

%20Carbon%20Final%20Report%2020%20November%202012.pdf, viewed in 12.08.2014.

Lindholt, L. & Glomsrød, S. 2011. The role of the Arctic in future global petroleum supply. Discussion Papers No. 645, February 2011 Statis-tics Norway, Research Department. Available online: http://www.ssb.no/a/publikasjoner/pdf/DP/dp645.pdf, viewed in 12.08.2014.

Liu, M & Kronbak, J. 2010. The potential economic viability of using the Northern Sea Route (NSR) as an alternative route between Asia and Europe. Journal of Transport Geography, 18 (2010), 434–444, doi:10.1016/j.jtrangeo.2009.08.004.

National Post 2013. Northwest Passage crossed by first cargo ship, the Nordic Orion, heralding new era of Arctic commercial activity. Online source: http://news.nationalpost.com/2013/09/27/northwest-passage-crossed-by-first-cargo-ship-the-nordic-orion-heralding-new-era-of-arctic-commercial-activity, viewed in 22.08.2014.

NSIDC 2014. Arctic Sea Ice News and Analysis. Online source: http://nsidc.org/arcticseaicenews/files/2014/11/Figure21.png, viewed in 17.11.2014.

NSR Information Office 2014. Transit statistics. Online source: http://www.arctic-lio.com/nsr_transits, viewed in 22.08.2014.

NVP 2013. Shipping in Arctic Water: The interaction of sea ice, ship technology, climate change, economy and other operational conditions.

Nansen-NVP Summer School Report, The Norwegian Scientific Academy for Polar Research. Available online: http://polar- academy.com/News_archive/News_2013/n_13_09_16_summerschool_summary/documents/NansenSummerSchoolReport-2013-studentrepport_000.pdf, viewed in 12.08.2014.

Overland, J. E., M. Wang, J. E. Walsh, and J. C. Stroeve 2013. Future Arctic climate changes: Adaptation and mitigation time scales. Earth’s Future, 2, 68–74, doi:10.1002/2013EF000162.

Peters, G. P., T. B. Nilssen, L. Lindholt, M. S. Eide, S. Glomsrød, L. I. Eide, and J. S. Fuglestvedt 2011. Future emissions from shipping and petroleum activities in the Arctic. Atmos. Chem. Phys., 11, 5305–5320, 2011, doi:10.5194/acp-11-5305-2011.

Ragner, C. J. 2000. Northern Sea Route Cargo Flows and Infrastructure – Present State and Future Potential. FNI Report 13/2000.

Rasmussen, E. A. & Turner, J. (eds.) 2003. Polar Lows. Cambridge: Cambridge University Press. Available from: Cambridge Books Online, http://dx.doi.org/10.1017/CBO9780511524974, accessed 16 July 2014.

Riska, K. 2011. The World Icebreaker, Ice Breaking Supply and Research Vessel Fleet. Baltic Icebreaker Management. Available online:

http://portal.fma.fi/sivu/www/baltice/jaanmurtajalista.pdf, viewed in 12.08.2014.

Ristimäki, J., Hellen, G., and Lappi, M. 2010. Chemical and Physical Characterization of Exhaust Particulate Matter from a Marine Medium Speed Diesel Engine. Paper No. 73, CIMAC Congress, Bergen, Norway, 2010.

Shindell, D. & Faluvegi, G. 2009. Climate response to regional radiative forcing during the twentieth century. Nature Geoscience, vol. 2, April 2009, doi:10.1038/NGEO473.

Short, J. R. 2003. The World Through Maps: A History of Cartography. Buffalo, NY: Firefly Books, 2003.

Stephenson, S. R., L. C. Smith and J. A. Agnew 2011. Divergent long-term trajectories of human access to the Arctic. Nature Climate Change, 1:156–160, doi:10.1038/nclimate1120.

Stephenson, S. R., L. C. Smith, L. W. Brigham and J. A. Agnew 2013. Projected 21st-century changes to Arctic marine access. Climatic Change, 118:885–899, doi:10.1007/s10584-012-0685-0.

Suomen Arktinen Seura 2013. Painopiste pohjoiseen – Suomi on arktinen osaaja. Press release, online source:

http://www.arcticfinland.fi/loader.aspx?id=06ad56c5-2e13-43d3-881b-3f62002e8a3d.

UNEP 2012. Fifth Global Environment Outlook / GEO-5. United Nations Environment Programme.

UNEP/WMO 2011. Integrated Assessment of Black Carbon and Tropospheric Ozone: Summary for Decision Makers. United Nations Envi-ronment Programme / World Meteorological Organization.

USCG 2013a. Major Icebreakers of the World. USCG Office of Waterways and Ocean Policy. Available online:

http://www.uscg.mil/hq/cg5/cg552/docs/20130718%20Major%20Icebreaker%20Chart.pdf, viewed in 12.08.2014.

USCG 2013b. Polar Ice Breaker. USCG fact sheet, available online: http://www.uscg.mil/acquisition/icebreaker/pdf/icebreaker.pdf, viewed in 12.08.2014.

USGS 2008. Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle. USGS Fact Sheet 2008-3049. Available online: http://pubs.usgs.gov/fs/2008/3049/fs2008-2008-3049.pdf, viewed in 12.08.2014.

Wang, M. & Overland, J. E. 2012. A sea ice free summer Arctic within 30 years: An update from CMIP5 models. Geophysical Research Letters, vol. 39, L18501, doi:10.1029/2012GL052868, 2012.

Winther, M., J. H. Christensen, M. S. Plejdrup, E. S. Ravn, Ó. F. Eriksson and H. O. Kristensen 2014. Emission inventories for ships in the arctic based on satellite sampled AIS data. Atmospheric Environment, 91 (2014) 1–14, doi:10.1016/j.atmosenv.2014.03.006.

YLE 2011. EU:n arktisten alueiden tutkimuslaivaa ei rakenneta? Online source:

http://yle.fi/uutiset/eun_arktisten_alueiden_tutkimuslaivaa_ei_rakenneta/2402961, viewed in 12.08.2014.

Ødemark, K., Dalsøren, S. B., Samset, B. H., Berntsen, T. K., Fuglestvedt, J. S., and Myhre, G. 2012. Short-lived climate forcers from current shipping and petroleum activities in the Arctic. Atmos. Chem. Phys., 12, 1979–1993, 2012, doi:10.5194/acp-12-1979-2012.

Østreng, W., K. M. Eger, B. Fløistad, A. Jørgensen-Dahl, L. Lothe, M. Mejlænder-Larsen and T. Wergeland 2013. Shipping in Arctic Waters:

A comparison of the Northeast, Northwest and Trans-Polar Passages. Springer Praxis Books, doi:10.1007/978-3-642-16790-4_3, Springer-Verlag Berlin Heidelberg 2013.

Reports of the Finnish Environment Institute 41/2014 103

KUVAILULEHTI

Julkaisija Suomen ympäristökeskus Julkaisuaika

12/2014

Tekijä(t) Vesa Vihanninjoki

Julkaisun nimi Arctic Shipping Emissions in the Changing Climate

Julkaisusarjan

nimi ja numero Suomen ympäristökeskuksen raportteja 41/2014 Julkaisun teema

Julkaisun osat/

muut saman projektin tuottamat julkaisut

Julkaisu on saatavana vain internetistä: www.syke.fi/julkaisut | helda.helsinki.fi/syke

Tiivistelmä Arktisen ilmastonmuutoksen ja siihen liittyvän arktisen merijääpeitteen sulamisen myötä arktisen merenkulun olosuhteet ja edellytykset ovat muuttumassa. Arktisen merijään vetäy-tyminen avaa uusia kulkuyhteyksiä sekä arktisen alueen sisäiselle että transarktiselle laiva-liikenteelle. Arktisen laivaliikenteen määrän odotetaan tämän vuoksi kasvavan.

Havaitusta kehityksestä huolimatta arktisen alueen merenkulkuolosuhteet tulevat säilymään haastavina, ja erityistä huomiota tulee jatkossakin kiinnittää sekä miehistön, kaluston että muun infrastruktuurin asianmukaisuuteen arktisella alueella.

Muiden ilmeisten haasteiden ja riskien ohella arktisen laivaliikenteen määrän kasvuun liit-tyy laivaliikenteestä aiheutuvien päästöjen lisääntyminen. Lisääntyneillä päästöillä voi olla huomattavia ja ennakoimattomia haittavaikutuksia erityisen herkälle arktiselle ympäristölle.

Päästölajeista etenkin mustalla hiilellä oletetaan olevan ilmastollista merkitystä arktisessa kontekstissa. Musta hiili absorboi auringon säteilyä hyvin tehokkaasti, ja kerrostuessaan lumi- ja jääpeitteen päälle se voi muuttaa arktisen alueen säteilytasapainoa huomattavasti.

Lisääntynyt arktinen laivaliikenne aiheuttaa musta hiili -päästöjä, joiden ilmastovaikutusta tässä raportissa pyritään arvioimaan.

Asiasanat Arktinen merenkulku, Arktinen ilmastonmuutos, Laivaliikenteen päästöt, Musta hiili Rahoittaja/

toimeksiantaja

ISSN (pdf) ISBN (verkkoj.)

1796-1726 978-952-11-4408-0

Sivuja Kieli

105 Englanti

Luottamuksellisuus Julkinen

Julkaisun jakelu Suomen ympäristökeskus (SYKE), neuvonta PL 140, 00251, Helsinki

Sähköposti: neuvonta.syke@ymparisto.fi Julkaisun kustantaja Suomen ympäristökeskus (SYKE), syke.fi

PL 140, 00251, Helsinki Puh. 0295 251 000 Painopaikka ja -aika Helsinki

104 Reports of the Finnish Environment Institute 41/2014

PRESENTATIONSBLAD

Utgivare Finlands miljöcentral Datum

12/2014

Författare Vesa Vihanninjoki

Publikationens titel Arctic Shipping Emissions in the Changing Climate

Publikationsserie

och nummer Finlands miljöcentrals rapporter 41/2014 Publikationens tema

Publikationens delar/

andra publikationer inom samma projekt

Publikationen finns tillgänglig på internet: www.syke.fi/publikationer | helda.helsinki.fi/syke

Sammandrag På grund av den arktiska klimatförändringen och den relaterade minskning av arktiska havsisen, ska de allmänna villkoren för arktiska sjöfarten förändras. Reträtt av den arktiska havsisen öppnar nya vägar för sjötransporter, både trans-arktiska passager och nya alterna-tiv inom den arktiska regionen. För den skull mängden arktiska sjöfarten antas öka.

Trots den observerade utvecklingen, kommer förhållandena i den arktiska regionen förbli utmanande. Särskild uppmärksamhet kommer att krävas även i framtiden när det gäller den lämpligheten av besättningen, flottan och annorlunda infrastruktur.

Utöver andra uppenbara utmaningar och risker kommer ökningen i arktiska sjöfarten leda till en ökad mängd utsläpp. De ökade utsläpp kan ha betydande och oförutsägbara inverkan på den särskilt ömtåliga arktiska miljön.

Bland olika sorter av utsläpps, antas speciellt black carbon ha klimatisk betydelse i den arktiska sammanhang. Black carbon absorberar solstrålning mycket effektivt, och när avla-gras på snö eller havsisen kan det betydligt ändra strålningsbalansen i den arktiska region-en. Den ökade arktiska sjöfarten producerar utsläpp av black carbon, vars klimateffekter examineras i denna rapport.

Nyckelord Arktisk sjöfarten, Arktisk klimatförändring, Fartygutsläpp, Black carbon Finansiär/

Reports of the Finnish Environment Institute 41/2014 105

DOCUMENTATION PAGE

Publisher Finnish Environment Institute Date

12/2014

Author(s) Vesa Vihanninjoki

Title of publication Arctic Shipping Emissions in the Changing Climate

Publication series

and number Reports of the Finnish Environment Institute 41/2014 Theme of publication

Parts of publication/

other project publications

The publication is available in the internet: www.syke.fi/publications | helda.helsinki.fi/syke

Abstract Due to the Arctic climate change and the related diminishing of Arctic sea ice cover, the general conditions for Arctic shipping are changing. The retreat of Arctic sea ice opens up new routes for maritime transportation, both trans-Arctic passages and new alternatives within the Arctic region. Hence the amount of Arctic shipping is presumed to increase.

Despite the observed development, the sailing conditions in the Arctic waters will remain challenging. Thus particular attention will be required also in the future with regard to crew, fleet and other infrastructural issues.

In addition to other apparent challenges and risks, the increase in Arctic shipping will lead to an increased amount of emissions. The increased emissions may have considerable and unpredictable influences to the particularly sensitive Arctic environment.

With regard to emission species, especially black carbon is presumed to have climatic

With regard to emission species, especially black carbon is presumed to have climatic