• Ei tuloksia

This study showed that 20x and 15x diluted urine could provide enough nutrients and support microalgal growth in open ponds. This pilot project also revealed that it is feasible to grow microalgae in colder climate such as Nordic countries have.

S. acuminatus was able to grow on 20x diluted urine as a batch system for 94 days without any addition of extra urine, trace elements, artificial light or CO2 supply. The result of microalgal cultivation in the pond was comparable to the result of microalgal cultivation in the standard media, OD660 6.8 and 6.4 respectively, and the highest biomass yield was 2.31 g VSS/ l of pond volume. Higher ambient temperatures (20°C), as well as long day-light (19 h/ day), enhanced microalgal growth, and with the reduction of these two exter-nal factors in combination with nutrient depletion, also the microalgal growth was re-duced. Furthermore, this study showed that it is possible to keep a semi-continuous growth of S. acuminatus cultivated on diluted urine (15x and 20x) in open ponds for more than 94 days (maximum OD660 for 15x dilution was 0.8). S. acuminatus showed an ability to remove phosphorus and nitrogen as well as organic matter from the diluted urine. Nev-ertheless, S. acuminatus grown in open ponds was influenced by many external factors such as temperature, light intensity or nutrient composition of the cultivation medium. To describe more precisely how the combination of these factors affected the behavior of S.

acuminatus, more analysis, and more data are needed.

Ideas for improvement of the microalgal cultivation in open ponds and nutrient recovery could include testing higher urine dilutions, using more efficient harvesting methods and potential re-use of the effluent from the harvesting for re-feeding the pond instead of using tap water. Lastly, plans could focus on further microalgal biomass use to close the loop of the circular economy.

REFERENCES

ABC Science. (2012). Urine diversion toilet. Retrieved 10/31, 2017, from http://www.abc.net.au/science/articles/2012/01/31/3415550.htm

Al Hattab, M., Ghaly, A., & Hammoud, A. (2015). Microalgae Harvesting Methods for Industrial Production of Biodiesel: Critical Review and Comparative Analysis.

Journal of Fundamentals of Renewable Energy and Applications, 5(2), 1000154.

https://doi.org/10.4172/20904541.1000154

Antonini, S., Nguyen, P. T., Arnold, U., Eichert, T., & Clemens, J. (2012). Solar thermal evaporation of human urine for nitrogen and phosphorus recovery in Vietnam.

Science of the Total Environment, 414, 592–599.

https://doi.org/10.1016/j.scitotenv.2011.11.055

APHA. (1998). Stadard methods for the examination of water and wastewater. Available:

https://www.standardmethods.org/. Accessed 11/2017.

Azad, H. S., & Borchardt, J. A. (1970). Variations in phosphorus uptake by algae.

Environmental Science & Technology, 4(9), 737–743.

https://doi.org/10.1021/es60044a008

Beler Baykal, B., Kocaturk, N. P., Allar, A. D., & Sari, B. (2009). The effect of initial loading on the removal of ammonium and potassium from source-separated human urine via clinoptilolite. Water Science and Technology, 60(10), 2515 LP-2520.

Retrieved from http://wst.iwaponline.com/content/60/10/2515.abstract

Brennan, L., & Owende, P. (2010, February 1). Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products.

Renewable and Sustainable Energy Reviews. Pergamon.

https://doi.org/10.1016/j.rser.2009.10.009

Cai, T., Park, S. Y., & Li, Y. (2013, March 1). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews.

Pergamon. https://doi.org/10.1016/j.rser.2012.11.030

Canfield, D. E., Glazer, A. N., & Falkowski, P. G. (2010). The evolution and future of Earth’s nitrogen cycle. Science (New York, N.Y.), 330(6001), 192–6.

https://doi.org/10.1126/science.1186120

Carey, D. E., Yang, Y., McNamara, P. J., & Mayer, B. K. (2016, September 1). Recovery of agricultural nutrients from biorefineries. Bioresource Technology. Elsevier.

https://doi.org/10.1016/j.biortech.2016.02.093

Chang, Y., Wu, Z., Bian, L., Feng, D., & Leung, D. Y. C. (2013). Cultivation of Spirulina platensis for biomass production and nutrient removal from synthetic human urine.

Applied Energy, 102, 427–431. https://doi.org/10.1016/j.apenergy.2012.07.024 Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation,

photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102(1), 71–81.

https://doi.org/10.1016/j.biortech.2010.06.159

Childers, D. L., Corman, J., Edwards, M., & Elser, J. J. (2011). Sustainability Challenges of Phosphorus and Food: Solutions from Closing the Human Phosphorus Cycle. methods at various steps of wastewater treatment and sewage sludge management.

The concept of “no solid waste generation” and analytical methods. Journal of Cleaner Production. Elsevier. https://doi.org/10.1016/j.jclepro.2016.11.116

Collos, Y., & Harrison, P. J. (2014, March 15). Acclimation and toxicity of high ammonium concentrations to unicellular algae. Marine Pollution Bulletin.

Pergamon. https://doi.org/10.1016/j.marpolbul.2014.01.006

Coppens, J., Lindeboom, R., Muys, M., Coessens, W., Alloul, A., Meerbergen, K., … Vlaeminck, S. E. (2016). Nitrification and microalgae cultivation for two-stage biological nutrient valorization from source separated urine. Bioresource Technology, 211, 41–50. https://doi.org/10.1016/j.biortech.2016.03.001

Cuellar-Bermudez, S. P., Aleman-Nava, G. S., Chandra, R., Garcia-Perez, J. S., Contreras-Angulo, J. R., Markou, G., … Parra-Saldivar, R. (2017). Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Research, 24, 438–449.

https://doi.org/10.1016/j.algal.2016.08.018

Delgadillo-Mirquez, L., Lopes, F., Taidi, B., & Pareau, D. (2016). Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture.

Biotechnology Reports, 11, 18–26. https://doi.org/10.1016/j.btre.2016.04.003 Dineshkumar, R., Kumaravel, R., Gopalsamy, J., Sikder, M. N. A., & Sampathkumar, P.

(2017). Microalgae as Bio-fertilizers for Rice Growth and Seed Yield Productivity.

Waste and Biomass Valorization, 1–8. https://doi.org/10.1007/s12649-017-9873-5 Ganrot, Z., Dave, G., & Nilsson, E. (2007). Recovery of N and P from human urine by

freezing, struvite precipitation and adsorption to zeolite and active carbon.

Bioresource Technology, 98(16), 3112–3121.

https://doi.org/https://doi.org/10.1016/j.biortech.2006.10.038

Grundestam, J., & Hellström, D. (2007). Wastewater treatment with anaerobic membrane bioreactor and reverse osmosis. Water Science & Technology, 56(5), 211.

https://doi.org/10.2166/wst.2007.574

HACH. (2017). LCK Cuvette Test System. Available: https://uk.hach.com/lck. Accessed 11/2017.

Jaatinen, S., Lakaniemi, A.-M., & Rintala, J. (2015). Use of diluted urine for cultivation of Chlorella vulgaris. Environmental Technology, 3330(November), 1–36.

https://doi.org/10.1080/09593330.2015.1105300

Kvarnström, E., & Stockholm Environment Institute. (2006). Urine diversion : one step towards sustainable sanitation. Stockholm Environment Institute. Retrieved from https://books.google.fi/books?hl=sk&lr=&id=3JfWwl8iE10C&oi=fnd&pg=PR6&d q=Urine+diversion:+One+step+towards+sustainable+sanitation&ots=JroDf1_q2s

&sig=1dhedX5meFs1HMnq7--VYfnWwxE&redir_esc=y#v=onepage&q=Urine diversion%3A One step towards sustainable sanitation&f=false

Langergraber, G., & Muellegger, E. (2005, April 1). Ecological Sanitation - A way to solve global sanitation problems? Environment International. Pergamon.

https://doi.org/10.1016/j.envint.2004.08.006

Ledezma, P., Kuntke, P., Buisman, C. J. N., Keller, J., & Freguia, S. (2015, April 1).

Source-separated urine opens golden opportunities for microbial electrochemical technologies. Trends in Biotechnology. Elsevier Current Trends.

https://doi.org/10.1016/j.tibtech.2015.01.007

Lehtovuori, P., Edelman, H., Rintala, J., Jokinen, A., Rantanen, A., Särkilahti, M., &

Joensuu, T. (n.d.). DEVELOPMENT VISION FOR HIEDANRANTA. Retrieved from

https://tutcris.tut.fi/portal/files/5897526/Development_vision_for_Hiedanranta.pdf Li, C., Cabassud, C., Reboul, B., & Guigui, C. (2015). Effects of pharmaceutical

micropollutants on the membrane fouling of a submerged MBR treating municipal wastewater: Case of continuous pollution by carbamazepine. Water Research, 69, 183–194. https://doi.org/10.1016/j.watres.2014.11.027

Lomas, M. W., & Glibert, P. M. (1999). Temperature regulation of nitrate uptake: A novel hypothesis about nitrate uptake and reduction in cool-water diatoms. Limnology and Oceanography, 44(3), 556–572. https://doi.org/10.4319/lo.1999.44.3.0556

Maurer, M., Pronk, W., & Larsen, T. A. (2006, October 1). Treatment processes for

source-separated urine. Water Research. Pergamon.

https://doi.org/10.1016/j.watres.2006.07.012

Melia, P. M., Cundy, A. B., Sohi, S. P., Hooda, P. S., & Busquets, R. (2017). Trends in the recovery of phosphorus in bioavailable forms from wastewater. Chemosphere,

186(Supplement C), 381–395.

https://doi.org/https://doi.org/10.1016/j.chemosphere.2017.07.089

Milton, R. D., Cai, R., Abdellaoui, S., Leech, D., De Lacey, A. L., Pita, M., & Minteer, S. D. (2017). Bioelectrochemical Haber-Bosch Process: An Ammonia-Producing H2 /N2 Fuel Cell. Angewandte Chemie International Edition, 56(10), 2680–2683.

https://doi.org/10.1002/anie.201612500

Patel, A., Gami, B., Patel, P., & Patel, B. (2017, May 1). Microalgae: Antiquity to era of

integrated technology. Renewable and Sustainable Energy Reviews. Pergamon.

https://doi.org/10.1016/j.rser.2016.12.081

Posadas, E., Del, M., Morales, M., Gomez, C., Acién, F. G., & Muñoz, R. (2015).

Influence of pH and CO 2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. CHEMICAL

ENGINEERING JOURNAL, 265, 239–248.

https://doi.org/10.1016/j.cej.2014.12.059

Powell, N., Shilton, A. N., Pratt, S., & Chisti, Y. (2008). Factors Influencing Luxury Uptake of Phosphorus by Microalgae in Waste Stabilization Ponds. Environmental Science & Technology, 42(16), 5958–5962. https://doi.org/10.1021/es703118s Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2011). Dual role of microalgae:

Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88(10), 3411–3424.

https://doi.org/10.1016/j.apenergy.2010.11.025

Reay, D. S., Nedwell, D. B., Priddle, J., & Ellis-Evans, J. C. (1999). Temperature dependence of inorganic nitrogen uptake: reduced affinity for nitrate at suboptimal temperatures in both algae and bacteria. Applied and Environmental Microbiology, 65(6), 2577–84. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10347046 Ren, H.-Y., Liu, B.-F., Ma, C., Zhao, L., & Ren, N.-Q. (2013). A new lipid-rich microalga

Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnology for Biofuels, 6(1), 143. https://doi.org/10.1186/1754-6834-6-143

Roy, E. D. (2017). Phosphorus recovery and recycling with ecological engineering: A

review. Ecological Engineering, 98, 213–227.

https://doi.org/10.1016/j.ecoleng.2016.10.076

Schmidt, J. J., Gagnon, G. A., & Jamieson, R. C. (2016). Microalgae growth and phosphorus uptake in wastewater under simulated cold region conditions. Ecological Engineering, 95, 588–593. https://doi.org/10.1016/j.ecoleng.2016.06.114

Schönning, C., Stenström, T. A., & Programme, E. (n.d.). Guidelines on the Safe Use of Urine and Faeces in Ecological Sanitation Systems. Retrieved from www.sei.se Simha, P., & Ganesapillai, M. (2017, May 1). Ecological Sanitation and nutrient recovery

from human urine: How far have we come? A review. Sustainable Environment Research. Elsevier. https://doi.org/10.1016/j.serj.2016.12.001

Solovchenko, A., Verschoor, A. M., Jablonowski, N. D., & Nedbal, L. (2016, September 1). Phosphorus from wastewater to crops: An alternative path involving microalgae.

Biotechnology Advances. Elsevier.

https://doi.org/10.1016/j.biotechadv.2016.01.002

Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–

96. https://doi.org/10.1263/jbb.101.87

Tampere. (2017). Available: https://www.tampere.fi/asuminen-ja-ymparisto/kaupunkisuunnittelu-ja-rakentamishankkeet/hiedanranta.html. Accessed:

10/2017

Tao, R., Kinnunen, V., Praveenkumar, R., Lakaniemi, A. M., & Rintala, J. A. (2017).

Comparison of Scenedesmus acuminatus and Chlorella vulgaris cultivation in liquid digestates from anaerobic digestion of pulp and paper industry and municipal wastewater treatment sludge. Journal of Applied Phycology, (September), 1–12.

https://doi.org/10.1007/s10811-017-1175-6

Tao, R., Lakaniemi, A. M., & Rintala, J. A. (2017). Cultivation of Scenedesmus acuminatus in different liquid digestates from anaerobic digestion of pulp and paper industry biosludge. Bioresource Technology, 245, 706–713.

https://doi.org/10.1016/j.biortech.2017.08.218

Tarpeh, W. A., Udert, K. M., & Nelson, K. L. (2017). Comparing Ion Exchange Adsorbents for Nitrogen Recovery from Source-Separated Urine. Environmental Science & Technology, 51(4), 2373–2381. https://doi.org/10.1021/acs.est.6b05816 Tindall, J. A., Weeks, E. P., & Friedel, M. (2005). Part 2: A field study of enhanced

remediation of Toluene in the vadose zone using a nutrient solution. Water, Air, and Soil Pollution (Vol. 168). https://doi.org/10.1007/s11270-005-3584-4

Trivedi, J., Aila, M., Bangwal, D. P., Kaul, S., & Garg, M. O. (2015). Algae based biorefinery - How to make sense? Renewable and Sustainable Energy Reviews, 47, 295–307. https://doi.org/10.1016/j.rser.2015.03.052

Tuantet, K., Janssen, M., Temmink, H., Zeeman, G., Wijffels, R. H., & Buisman, C. J. N.

(2014). Microalgae growth on concentrated human urine. Journal of Applied Phycology, 26(1), 287–297. https://doi.org/10.1007/s10811-013-0108-2

Tuantet, K., Temmink, H., Zeeman, G., Janssen, M., Wijffels, R. H., & Buisman, C. J. N.

(2014). Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor. Water Research, 55, 162–174.

https://doi.org/10.1016/j.watres.2014.02.027

Wang, L., Li, Y., Sommerfeld, M., & Hu, Q. (2013). A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid. Bioresource Technology, 129, 289–295.

https://doi.org/10.1016/j.biortech.2012.10.062

Wang, L., Yang, H., Wang, Q., & Niranjan, S. (2013). Energy and Environment:

Challenges and Achievements in Rapid Urbanization. The Scientific World Journal, 2013, 1–2. https://doi.org/10.1155/2013/594816

Wang, Z., Gong, H., Zhang, Y., Liang, P., & Wang, K. (2017). Nitrogen recovery from low-strength wastewater by combined membrane capacitive deionization (MCDI) and ion exchange (IE) process. Chemical Engineering Journal, 316, 1–6.

https://doi.org/10.1016/j.cej.2017.01.082

Wayama, M., Ota, S., Matsuura, H., Nango, N., Hirata, A., & Kawano, S. (2013). Three-dimensional ultrastructural study of oil and astaxanthin accumulation during

encystment in the green alga Haematococcus pluvialis. PloS One, 8(1), e53618.

https://doi.org/10.1371/journal.pone.0053618

Whitton, R., Le Mével, A., Pidou, M., Ometto, F., Villa, R., & Jefferson, B. (2016).

Influence of microalgal N and P composition on wastewater nutrient remediation.

Water Research, 91, 371–378. https://doi.org/10.1016/j.watres.2015.12.054

Yang, Y.-Y., Toor, G. S., Wilson, P. C., & Williams, C. F. (2017). Micropollutants in groundwater from septic systems: Transformations, transport mechanisms, and human health risk assessment. https://doi.org/10.1016/j.watres.2017.06.054

Zhang, S., Lim, C. Y., Chen, C. L., Liu, H., & Wang, J. Y. (2014). Urban nutrient recovery from fresh human urine through cultivation of Chlorella sorokiniana. Journal of

Environmental Management, 145, 129–136.

https://doi.org/10.1016/j.jenvman.2014.06.013

Zhu, L., Dong, D., Hua, X., Xu, Y., Guo, Z., & Liang, D. (2017). Ammonia nitrogen removal and recovery from acetylene purification wastewater by air stripping. Water Science and Technology, 75(11), 2538–2545. https://doi.org/10.2166/wst.2017.117