• Ei tuloksia

Concluding remarks

It is appealing to speculate that TA proteins are the modern descendents of the fi rst integral membrane proteins found in the last universal common ancestor (LUCA).

Primitive membranes most probably did not come equipped with the highly conserved and extensive PCC machineries found today. Therefore spontaneous integration of polypeptides into the lipid bilayer would have been the only mechanism available. These fi rst integral membrane proteins could then have also served to enhance the integration of other proteins into the membrane. This would explain why the PCC channels discussed here all contain TA protein subunits that quite often function to stabilize the protein complexes (Table 2). The Bcl-2 proteins represent just one group of TA proteins that exploit this mechanism of instant membrane integration. By employing various mechanisms to control the availability of the C-terminal TMD for membrane insertion, they are able to generate spatial and temporal regulation of cellular localization.

Concluding remarks

Acknowledgements

Acknowledements

This work was carried out at the Institute of Biotechnology, University of Helsinki, dur-ing 2001-2006. I acknowledge the fi nancial support provided by the Research Founda-tion of the University of Helsinki, the Helsinki Graduate School in Biotechnology and Molecular Biology, and the Federation of European Biochemical Societies.

I wish to express my gratitude to my supervisor Professor Marja Makarow for her support, guidance, and encouragement. These years under her supervision have been an invaluable learning experience.

I would also like to thank my collaborators and co-authors Nica Borgese, Silvia Brambillasca, Paolo Soffi entini, Emanuela Pedrazzini, Sandra Stefanovic, Ramanujan Hegde, Urmas Arumäe, Eija Jokitalo, and Maili Jakobson. Their contributions to this work are acknowledged and I am very grateful for the opportunities these very fruitful collaborations have given me to acquire new and valuable skills. I also value the oppor-tunities these collaborations have given me to expand my scientifi c horizons.

To my thesis reviewers Docent Vesa Olkkonen and Dr Thomas Sommer, I would like to convey my gratitude for their constructive criticisms of my thesis.

My gratitude also extends to the members of my follow up group Jussi Jäntti and Urmas Arumäe. Your inputs and encouragement at our meetings have been very helpful.

I would also like to thank Leevi Kääriäinen for his help and encouragement especially this last year.

I also thank the members of the Institute of Biotechnology and its director Professor Mart Saarma for their contributions in making Viikki a wonderful place to work at. At no time have I felt alone here, as there has always been someone with whom to share my wins and losses in my continual scientifi c battles. I especially want to thank the staff of the electron and light microscopy units, without whom I would have probably infl icted a lot more damage to the equipment and myself.

Also my thanks to Pekka Lappalanen, Erkki Raulo, and Anita Tienhaara of the GSBM, and Eeva Sievi of the VGSB. Their assistance and encouragement over the years have been priceless and our joint expeditions to the outside world will remain unforget-table.

My deepest gratitude also goes to the present and past members of the “yeast group”

Taina, Anna Liisa, Eeva, Ricardo, Ansku, Leena, Hanna, Laura, Anton, Netta, Sergei, Vijay and Mari. In particular I wish to thank both Taina Suntio and Anna Liisa Nyfors for their excellent practical assistance and advice. Without you two, this bird would have never taken off.

And to all my friends and family my absolutely sincere thanks.Your unfl inching support has meant the world to me. Thank you.

Helsinki, 2006

References

R

eferences

Abe, Y., Shodai, T., Muto, T., Mihara, K., Torii, H., Nishikawa, S., Endo, T. and Kohda, D. (2000). Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100, 551-560.

Abell, B. M., Jung, M., Oliver, J. D., Knight, B. C., Tyedmers, J., Zimmermann, R. and High, S. (2003). Tail-anchored and signal-anchored proteins utilize overlapping pathways during membrane insertion. J. Biol. Chem.

278, 5669-5678.

Abell, B. M., Pool, M. R., Schlenker, O., Sinning, I. and High, S. (2004). Signal recognition particle mediates post-translational targeting in eukaryotes. EMBO J. 23, 2755-2764.

Ahting, U., Thun, C., Hegerl, R., Typke, D., Nargang, F. E., Neupert, W. and Nussberger, S. (1999). The TOM core complex: The general protein import pore of the outer membrane of mitochondria. J. Cell Biol. 147, 959-968.

Alder, N. N., Shen, Y., Brodsky, J. L., Hendershot, L. M. and Johnson, A. E.

(2005). The molecular mechanisms underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum. J. Cell Biol.

168, 389-399.

Anderson, D. J., Mostov, K. E. and Blobel, G.

(1983). Mechanisms of integration of de novo-synthesized polypeptides into membranes:

Signal-recognition particle is required for integration into microsomal membranes of calcium ATPase and of lens MP26 but not of cytochrome b5. Proc. Natl. Acad. Sci. U. S. A.

80, 7249-7253.

Antonsson, B., Conti, F., Ciavatta, A., Montessuit, S., Lewis, S., Martinou, I., Bernasconi, L., Bernard, A., Mermod, J. J.

and Mazzei, G. et al. (1997). Inhibition of bax channel-forming activity by bcl-2. Science 277, 370-372.

Ardail, D., Privat, J. P., Egret-Charlier, M., Levrat, C., Lerme, F. and Louisot, P. (1990).

Mitochondrial contact sites. lipid composition and dynamics. J. Biol. Chem. 265, 18797-18802.

Bacher, G., Pool, M. and Dobberstein, B.

(1999). The ribosome regulates the GTPase of the beta-subunit of the signal recognition particle receptor. J. Cell Biol. 146, 723-730.

Batenburg, A. M., Demel, R. A., Verkleij, A.

J. and de Kruijff, B. (1988). Penetration of the signal sequence of escherichia coli PhoE protein into phospholipid model membranes leads to lipid-specifi c changes in signal peptide structure and alterations of lipid organization.

Biochemistry 27, 5678-5685.

Becker, L., Bannwarth, M., Meisinger, C., Hill, K., Model, K., Krimmer, T., Casadio, R., Truscott, K. N., Schulz, G. E. and Pfanner, N. et al. (2005). Preprotein translocase of the outer mitochondrial membrane: Reconstituted Tom40 forms a characteristic TOM pore. J.

Mol. Biol. 353, 1011-1020.

Beckmann, R., Spahn, C. M., Eswar, N., Helmers, J., Penczek, P. A., Sali, A., Frank, J. and Blobel, G. (2001). Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361-372.

Bernstein, H. D., Poritz, M. A., Strub, K., Hoben, P. J., Brenner, S. and Walter, P.

(1989). Model for signal sequence recognition from amino-acid sequence of 54K subunit of signal recognition particle. Nature 340, 482-486.

Bessonneau, P., Besson, V., Collinson, I. and Duong, F. (2002). The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure. EMBO J. 21, 995-1003.

Blobel, G. and Dobberstein, B. (1975).

Transfer of proteins across membranes. I.

presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J. Cell Biol. 67, 835-851.

Bonifacino, J. S. and Glick, B. S. (2004). The mechanisms of vesicle budding and fusion.

Cell 116, 153-166.

References

Borgese, N., Brambillasca, S., Soffientini, P., Yabal, M. and Makarow, M. (2003a).

Biogenesis of tail-anchored proteins. Biochem.

Soc. Trans. 31, 1238-1242.

Borgese, N., Colombo, S. and Pedrazzini, E. (2003b). The tale of tail-anchored proteins:

Coming from the cytosol and looking for a membrane. J. Cell Biol. 161, 1013-1019.

Borgese, N., Gazzoni, I., Barberi, M., Colombo, S. and Pedrazzini, E. (2001).

Targeting of a tail-anchored protein to endoplasmic reticulum and mitochondrial outer membrane by independent but competing pathways. Mol. Biol. Cell 12, 2482-2496.

Borner, C. (2003). The bcl-2 protein family:

Sensors and checkpoints for life-or-death decisions. Mol. Immunol. 39, 615-647.

Bouillet, P. and Strasser, A. (2002). BH3-only proteins - evolutionarily conserved proapoptotic bcl-2 family members essential for initiating programmed cell death. J. Cell.

Sci. 115, 1567-1574.

Breyton, C., Haase, W., Rapoport, T. A., Kuhlbrandt, W. and Collinson, I. (2002).

Three-dimensional structure of the bacterial protein-translocation complex SecYEG.

Nature 418, 662-665.

Brix, J., Dietmeier, K. and Pfanner, N.

(1997). Differential recognition of preproteins by the purif ied cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J. Biol. Chem. 272, 20730-20735.

Brix, J., Ziegler, G. A., Dietmeier, K., Schneider-Mergener, J., Schulz, G. E. and Pfanner, N. (2000). The mitochondrial import receptor Tom70: Identification of a 25 kDa core domain with a specifi c binding site for preproteins. J. Mol. Biol. 303, 479-488.

Brodsky, J. L., Goeckeler, J. and Schekman, R. (1995). BiP and Sec63p are required for both co- and posttranslational protein translocation into the yeast endoplasmic reticulum. Proc. Natl. Acad. Sci. U. S. A. 92, 9643-9646.

Bruce, B. D. (2001). The paradox of plastid transit peptides: Conservation of function despite divergence in primary structure.

Biochim. Biophys. Acta 1541, 2-21.

Brugger, B., Sandhoff, R., Wegehingel, S., Gorgas, K., Malsam, J., Helms, J. B., Lehmann, W. D., Nickel, W. and Wieland, F. T. (2000). Evidence for segregation of sphingomyelin and cholesterol during formation of COPI-coated vesicles. J. Cell Biol. 151, 507-518.

Burri, L. and Lithgow, T. (2004). A complete set of SNAREs in yeast. Traffi c 5, 45-52.

Chirico, W. J., Waters, M. G. and Blobel, G. (1988). 70K heat shock related proteins s t i m u l a t e p r o t e i n t r a n s l o c a t i o n i n t o microsomes. Nature 332, 805-810.

Chittenden, T., Harrington, E. A., O’Connor, R., Flemington, C., Lutz, R. J., Evan, G.

I. and Guild, B. C. (1995). Induction of apoptosis by the bcl-2 homologue bak. Nature 374, 733-736.

Chupin, V., Killian, J. A., Breg, J., de Jongh, H. H., Boelens, R., Kaptein, R. and de Kruijff, B. (1995). PhoE signal peptide inserts into micelles as a dynamic helix-break-helix structure, which is modulated by the environment. A two-dimensional 1H NMR study. Biochemistry 34, 11617-11624.

Connolly, T., Rapiejko, P. J. and Gilmore, R. (1991). Requirement of GTP hydrolysis for dissociation of the signal recognition particle from its receptor. Science 252, 1171-1173.

Corsi, A. K. and Schekman, R. (1997). The lumenal domain of Sec63p stimulates the ATPase activity of BiP and mediates BiP recruitment to the translocon in saccharomyces cerevisiae. J. Cell Biol. 137, 1483-1493.

Cory, S. and Adams, J. M. (2002). The Bcl2 family: Regulators of the cellular life-or-death switch. Nat. Rev. Cancer. 2, 647-656.

Court, D. A., Kleene, R., Neupert, W. and Lill, R. (1996). Role of the N- and C-termini of porin in import into the outer membrane of neurospora mitochondria. FEBS Lett. 390, 73-77.

D’Arrigo, A., Manera, E., Longhi, R. and Borgese, N. (1993). The specifi c subcellular localization of two isoforms of cytochrome b5 suggests novel targeting pathways. J. Biol.

Chem. 268, 2802-2808.

Davis, P. J. and Poznansky, M. J. (1987).

Modulation of 3-hydroxy-3-methylglutaryl-CoA reductase by changes in microsomal c h o l e s t e r o l c o n t e n t o r p h o s p h o l i p i d composition. Proc. Natl. Acad. Sci. U. S. A. 84, 118-121.

De Silvestris, M., D’Arrigo, A. and Borgese, N. (1995). The targeting information of the mitochondrial outer membrane isoform of cytochrome b5 is contained within the carboxyl-terminal region. FEBS Lett. 370, 69-74.

Deshaies, R. J., Koch, B. D., Werner-Washburne, M., Craig, E. A. and Schekman, R. (1988). A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332, 800-805.

Deshaies, R. J., Sanders, S. L., Feldheim, D.

A. and Schekman, R. (1991). Assembly of yeast sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex. Nature 349, 806-808.

Deshaies, R. J. and Schekman, R. (1987).

A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum. J. Cell Biol. 105, 633-645.

Deshaies, R. J. and Schekman, R. (1990).

Structural and functional dissection of Sec62p, a membrane-bound component of the yeast endoplasmic reticulum protein import machinery. Mol. Cell. Biol. 10, 6024-6035.

Dietmeier, K., Honlinger, A., Bomer, U., Dekker, P. J., Eckerskorn, C., Lottspeich, F., Kubrich, M. and Pfanner, N. (1997). Tom5 functionally links mitochondrial preprotein receptors to the general import pore. Nature 388, 195-200.

Do, H., Falcone, D., Lin, J., Andrews, D. W.

and Johnson, A. E. (1996). The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process.

Cell 85, 369-378.

Dolezal, P., Likic, V., Tachezy, J. and Lithgow, T. (2006). Evolution of the molecular machines for protein import into mitochondria. Science 313, 314-318.

Driessen, A. J. (2005). Cell biology: Two pores better than one? Nature 438, 299-300.

Eichler, J. (2000). Archaeal protein translocation crossing membranes in the third domain of life. Eur. J. Biochem. 267, 3402-3412.

Ellgaard, L. and Helenius, A. (2003). Quality control in the endoplasmic reticulum. Nat. Rev.

Mol. Cell Biol. 4, 181-191.

E n o c h , H . G . , F l e m i n g , P. J. a n d Strittmatter, P. (1979). The binding of cytochrome b5 to phospholipid vesicles and biological membranes. effect of orientation on intermembrane transfer and digestion by carboxypeptidase Y. J. Biol. Chem. 254, 6483-6488.

Esnault, Y., Feldheim, D., Blondel, M. O., Schekman, R. and Kepes, F. (1994). SSS1 encodes a stabilizing component of the Sec61 subcomplex of the yeast protein translocation apparatus. J. Biol. Chem. 269, 27478-27485.

Finke, K., Plath, K., Panzner, S., Prehn, S., Rapoport, T. A., Hartmann, E. and Sommer, T. (1996). A second trimeric complex containing homologs of the Sec61p complex functions in protein transport across the ER membrane of S. cerevisiae. EMBO J. 15, 1482-1494.

Gambill, B. D., Voos, W., Kang, P. J., Miao, B., Langer, T., Craig, E. A. and Pfanner, N.

(1993). A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins. J. Cell Biol. 123, 109-117.

Garrido, C., Galluzzi, L., Brunet, M., Puig, P. E., Didelot, C. and Kroemer, G. (2006).

Mechanisms of cytochrome c release from mitochondria. Cell Death Differ.

Gellman, S. H. (1991). On the role of methionine residues in the sequence-independent recognition of nonpolar protein surfaces. Biochemistry 30, 6633-6636.

Gething, M. J. (1999). Role and regulation of the ER chaperone BiP. Semin. Cell Dev. Biol.

10, 465-472.

Glick, B. S., Brandt, A., Cunningham, K., Muller, S., Hallberg, R. L. and Schatz, G.

(1992). Cytochromes c1 and b2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism. Cell 69, 809-822.

Goder, V., Bieri, C. and Spiess, M. (1999).

Glycosylation can influence topogenesis of membrane proteins and reveals dynamic reorientation of nascent polypeptides within the translocon. J. Cell Biol. 147, 257-266.

G o o r m a g h t i g h , E . , M a r t i n , I . , Vandenbranden, M., Brasseur, R. and Ruysschaert, J. M. (1989). Secondary structure and orientation of a chemically synthesized mitochondrial signal sequence in phospholipid bilayers. Biochem. Biophys. Res.

Commun. 158, 610-616.

Gorlich, D., Prehn, S., Hartmann, E., Kalies, K. U. and Rapoport, T. A. (1992). A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 71, 489-503.

Halbach, A., Landgraf, C., Lorenzen, S., Rosenkranz, K., Volkmer-Engert, R., Erdmann, R. and Rottensteiner, H. (2006).

Targeting of the tail-anchored peroxisomal membrane proteins PEX26 and PEX15 occurs through C-terminal PEX19-binding sites. J.

Cell. Sci. 119, 2508-2517.

Hamman, B. D., Hendershot, L. M. and Johnson, A. E. (1998). BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 92, 747-758.

Hanein, D., Matlack, K. E., Jungnickel, B., Plath, K., Kalies, K. U., Miller, K. R., Rapoport, T. A. and Akey, C. W. (1996).

Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 87, 721-732.

Hann, B. C. and Walter, P. (1991). The signal recognition particle in S. cerevisiae. Cell 67, 131-144.

Heath-Engel, H. M. and Shore, G. C.

(2006). Regulated targeting of bax and bak to intracellular membranes during apoptosis. Cell Death Differ.

Heijne, G. V. (1986). The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J. 5, 3021-3027.

Heinrich, S. U., Mothes, W., Brunner, J. and Rapoport, T. A. (2000). The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233-244.

Heinrich, S. U. and Rapoport, T. A. (2003).

Cooperation of transmembrane segments during the integration of a double-spanning protein into the ER membrane. EMBO J. 22, 3654-3663.

Helmers, J., Schmidt, D., Glavy, J. S., Blobel, G. and Schwartz, T. (2003). The beta-subunit of the protein-conducting channel of the endoplasmic reticulum functions as the guanine nucleotide exchange factor for the beta-subunit of the signal recognition particle receptor. J. Biol. Chem. 278, 23686-23690.

Herker, E., Jungwirth, H., Lehmann, K. A., Maldener, C., Frohlich, K. U., Wissing, S., Buttner, S., Fehr, M., Sigrist, S. and Madeo, F. (2004). Chronological aging leads to apoptosis in yeast. J. Cell Biol. 164, 501-507.

High, S., Andersen, S. S., Gorlich, D., Hartmann, E., Prehn, S., Rapoport, T. A. and Dobberstein, B. (1993). Sec61p is adjacent to nascent type I and type II signal-anchor proteins during their membrane insertion. J.

Cell Biol. 121, 743-750.

Hill, K., Model, K., Ryan, M. T., Dietmeier, K., Martin, F., Wagner, R. and Pfanner, N. (1998). Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins [see comment. Nature 395, 516-521.

Hoepfner, D., Schildknegt, D., Braakman, I., Philippsen, P. and Tabak, H. F. (2005).

Contribution of the endoplasmic reticulum to peroxisome formation. Cell 122, 85-95.

Holkeri, H., Paunola, E., Jamsa, E. and Makarow, M. (1998). Dissection of the translocation and chaperoning functions of yeast BiP/Kar2p in vivo. J. Cell. Sci. 111 ( Pt 6), 749-757.

Honlinger, A., Bomer, U., Alconada, A., Eckerskorn, C., Lottspeich, F., Dietmeier, K.

and Pfanner, N. (1996). Tom7 modulates the dynamics of the mitochondrial outer membrane translocase and plays a pathway-related role in protein import. EMBO J. 15, 2125-2137.

Horwich, A. L., Kalousek, F., Mellman, I.

and Rosenberg, L. E. (1985). A leader peptide is suffi cient to direct mitochondrial import of a chimeric protein. EMBO J. 4, 1129-1135.

Hostetler, K. Y. and van den Bosch, H.

(1972). Subcellular and submitochondrial localization of the biosynthesis of cardiolipin and related phospholipids in rat liver. Biochim.

Biophys. Acta 260, 380-386.

Hovius, R., Thijssen, J., van der Linden, P., Nicolay, K. and de Kruijff, B. (1993).

Phospholipid asymmetr y of the outer membrane of rat liver mitochondria. evidence for the presence of cardiolipin on the outside of the outer membrane. FEBS Lett. 330, 71-76.

Huang, D. C. and Strasser, A. (2000). BH3-only proteins-essential initiators of apoptotic cell death. Cell 103, 839-842.

Isenmann, S., Khew-Goodall, Y., Gamble, J., Vadas, M. and Wattenberg, B. W. (1998). A splice-isoform of vesicle-associated membrane protein-1 (VAMP-1) contains a mitochondrial targeting signal. Mol. Biol. Cell 9, 1649-1660.

Janiak, F., Leber, B. and Andrews, D. W.

(1994). Assembly of bcl-2 into microsomal and outer mitochondrial membranes. J. Biol.

Chem. 269, 9842-9849.

Jantti, J., Keranen, S., Toikkanen, J., Kuismanen, E., Ehnholm, C., Soderlund, H. and Olkkonen, V. M. (1994). Membrane

insertion and intracellular transport of yeast syntaxin Sso2p in mammalian cells. J. Cell.

Sci. 107 ( Pt 12), 3623-3633.

Jarvis, P. and Soll, J. (2001). Toc, tic, and chloroplast protein import. Biochim. Biophys.

Acta 1541, 64-79.

Kalies, K. U., Rapoport, T. A. and Hartmann, E. (1998). The beta subunit of the Sec61 complex facilitates cotranslational protein transport and interacts with the signal peptidase during translocation. J. Cell Biol.

141, 887-894.

Kanaji, S., Iwahashi, J., Kida, Y., Sakaguchi, M. and Mihara, K. (2000). Characterization of the signal that directs Tom20 to the mitochondrial outer membrane. J. Cell Biol.

151, 277-288.

Kang, P. J., Ostermann, J., Shilling, J., Neupert, W., Craig, E. A. and Pfanner, N. (1990). Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature 348, 137-143.

Kaufmann, A., Manting, E. H., Veenendaal, A. K., Driessen, A. J. and van der Does, C. (1999). Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring SecE. Biochemistry 38, 9115-9125.

Kaufmann, T., Schlipf, S., Sanz, J., Neubert, K., Stein, R. and Borner, C. (2003).

Characterization of the signal that directs bcl-x(L), but not bcl-2, to the mitochondrial outer membrane. J. Cell Biol. 160, 53-64.

Keenan, R. J., Freymann, D. M., Stroud, R. M. and Walter, P. (2001). The signal recognition particle. Annu. Rev. Biochem. 70, 755-775.

Kim, P. K., Annis, M. G., Dlugosz, P. J., Leber, B. and Andrews, D. W. (2004). During apoptosis bcl-2 changes membrane topology at both the endoplasmic reticulum and mitochondria. Mol. Cell 14, 523-529.

Kim, P. K., Janiak-Spens, F., Trimble, W. S., Leber, B. and Andrews, D. W.

(1997). Evidence for multiple mechanisms

for membrane binding and integration via carboxyl-terminal insertion sequences.

Biochemistry 36, 8873-8882.

Kim, S. J., Mitra, D., Salerno, J. R. and Hegde, R. S. (2002). Signal sequences control gating of the protein translocation channel in a substrate-specifi c manner. Dev. Cell. 2, 207-217.

Korsmeyer, S. J., Wei, M. C., Saito, M., Weiler, S., Oh, K. J. and Schlesinger, P. H.

(2000). Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ. 7, 1166-1173.

Krieg, U. C., Walter, P. and Johnson, A.

E. (1986). Photocrosslinking of the signal sequence of nascent preprolactin to the 54-kilodalton polypeptide of the signal recognition particle. Proc. Natl. Acad. Sci. U. S. A. 83, 8604-8608.

Krimmer, T., Rapaport, D., Ryan, M. T., Meisinger, C., Kassenbrock, C. K., Blachly-Dyson, E., Forte, M., Douglas, M. G., Neupert, W. and Nargang, F. E. et al. (2001).

Biogenesis of porin of the outer mitochondrial membrane involves an import pathway via receptors and the general import pore of the TOM complex. J. Cell Biol. 152, 289-300.

Kumar, A., Agarwal, S., Heyman, J. A., Matson, S., Heidtman, M., Piccirillo, S., Umansky, L., Drawid, A., Jansen, R. and Liu, Y. et al. (2002). Subcellular localization of the yeast proteome. Genes Dev. 16, 707-719.

Kunkele, K. P., Heins, S., Dembowski, M., Nargang, F. E., Benz, R., Thieffry, M., Walz, J., Lill, R., Nussberger, S. and Neupert, W.

(1998). The preprotein translocation channel of the outer membrane of mitochondria. Cell 93, 1009-1019.

Kuroda, R., Ikenoue, T., Honsho, M., Tsujimoto, S., Mitoma, J. Y. and Ito, A.

(1998). Charged amino acids at the carboxyl-terminal portions determine the intracellular locations of two isoforms of cytochrome b5. J.

Biol. Chem. 273, 31097-31102.

Kurzchalia, T. V., Wiedmann, M., Girshovich, A. S., Bochkareva, E. S., Bielka, H. and Rapoport, T. A. (1986). The signal sequence of nascent preprolactin interacts with the 54K polypeptide of the signal recognition particle.

Nature 320, 634-636.

Kusters, R., Dowhan, W. and de Kruijff, B. (1991). Negatively charged phospholipids restore prePhoE translocation across phosphatidylglycerol-depleted escherichia coli inner membranes. J. Biol. Chem. 266, 8659-8662.

Kutay, U., Ahnert-Hilger, G., Hartmann, E., Wiedenmann, B. and Rapoport, T. A.

(1995a). Membrane insertion and targeting of a v-SNARE. Trends Cell Biol. 5, 151.

Kutay, U., Ahnert-Hilger, G., Hartmann, E., Wiedenmann, B. and Rapoport, T. A.

(1995b). Transport route for synaptobrevin via a novel pathway of insertion into the endoplasmic reticulum membrane. EMBO J.

14, 217-223.

Kutay, U., Hartmann, E. and Rapoport, T. A.

(1993). A class of membrane proteins with a C-terminal anchor. Trends Cell Biol. 3, 72-75.

Lan, L., Isenmann, S. and Wattenberg, B. W.

(2000). Targeting and insertion of C-terminally anchored proteins to the mitochondrial outer membrane is specifi c and saturable but does not strictly require ATP or molecular chaperones.

Biochem. J. 349, 611-621.

Lange, Y., Ye, J., Rigney, M. and Steck, T. L.

(1999). Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol.

J. Lipid Res. 40, 2264-2270.

Le Gall, S., Neuhof, A. and Rapoport, T.

(2004). The endoplasmic reticulum membrane is permeable to small molecules. Mol. Biol.

Cell 15, 447-455.

Leenhouts, J. M., Torok, Z., Demel, R. A., de Gier, J. and de Kruijff, B. (1994). The full length of a mitochondrial presequence is required for effi cient monolayer insertion and interbilayer contact formation. Mol. Membr.

Biol. 11, 159-164.

Legate, K. R., Falcone, D. and Andrews, D.

W. (2000). Nucleotide-dependent binding of the GTPase domain of the signal recognition particle receptor beta-subunit to the alpha-subunit. J. Biol. Chem. 275, 27439-27446.

Li, Y., Ge, M., Ciani, L., Kuriakose, G., Westover, E. J., Dura, M., Covey, D. F., Freed, J. H., Maxfi eld, F. R. and Lytton, J. et al.

(2004). Enrichment of endoplasmic reticulum with cholesterol inhibits sarcoplasmic-endoplasmic reticulum calcium ATPase-2b activity in parallel with increased order of membrane lipids: Implications for depletion of endoplasmic reticulum calcium stores and apoptosis in cholesterol-loaded macrophages.

J. Biol. Chem. 279, 37030-37039.

Liao, S., Lin, J., Do, H. and Johnson, A. E.

(1997). Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90, 31-41.

Liu, L. P. and Deber, C. M. (1997). Anionic phospholipids modulate peptide insertion into membranes. Biochemistry 36, 5476-5482.

Luirink, J., ten Hagen-Jongman, C. M., van der Weijden, C. C., Oudega, B., High, S., Dobberstein, B. and Kusters, R. (1994).

An alternative protein targeting pathway in escherichia coli: Studies on the role of FtsY.

EMBO J. 13, 2289-2296.

Lutter, M., Fang, M., Luo, X., Nishijima, M., Xie, X. and Wang, X. (2000). Cardiolipin provides specificity for targeting of tBid to

Lutter, M., Fang, M., Luo, X., Nishijima, M., Xie, X. and Wang, X. (2000). Cardiolipin provides specificity for targeting of tBid to